
PDES, SUBMANIFOLDS AND
AFFINE DIFFERENTIAL GEOMETRY

BANACH CENTER PUBLICATIONS, VOLUME 57
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2002

A HOLOMORPHIC REPRESENTATION FORMULA
FOR PARABOLIC HYPERSPHERES

VICENTE CORTÉS
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Abstract. A holomorphic representation formula for special parabolic hyperspheres is given.

Introduction. It was noticed by Blaschke that parabolic spheres in affine 3-space
admit parametrisations in terms of holomorphic functions (of one variable). This is re-
lated to the fact that the Monge-Ampère equation governing parabolic hyperspheres is
completely integrable in dimension two, a fact already known to Monge. The purpose
of this note is to derive an explicit formula describing special parabolic hyperspheres in
affine (2n+ 1)-space in terms of a holomorphic function of n variables.

1. Special parabolic affine hyperspheres. Let me briefly recall the notion of
special parabolic affine hypersphere [BC]. We consider Rm+1 as affine space with standard
connection denoted by ∇̃ and parallel volume form vol. A hypersurface is given by an
immersion ϕ : M → Rm+1 of an m-dimensional connected manifold. We assume that
M admits a transversal vector field ξ and that m > 1. This induces on M the volume
form ν = vol(ξ, . . .), a torsionfree connection ∇, a quadratic covariant tensor field g, an
endomorphism field S (shape tensor) and a one-form θ such that

∇̃XY = ∇XY + g(X,Y )ξ, ∇̃Xξ = SX + θ(X)ξ. (1.1)

Let us call the data (∇, g, S, θ) the Gauß-Weingarten data induced by the transversal
vector field ξ. We will assume that g is nondegenerate and, hence, is a pseudo-Riemannian
metric on M . This condition does not depend on the choice of ξ. According to Blaschke
[B], once the orientation of M is fixed, there is a unique choice of transversal vector field ξ
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such that ν coincides with the metric volume form volg and∇ν = 0. This particular choice
of transversal vector field is called the affine normal and the corresponding geometric
data (g,∇) are called Blaschke metric and induced connection. Notice that, for the affine
normal, θ = 0 and S is computable from (g,∇) (Gauß equations). Henceforth we use
always the affine normal as transversal vector field.

Definition 1. The hypersurface ϕ : M → Rm+1 is called a parabolic (or improper)
hypersphere if the affine normal is parallel, ∇̃ξ = 0. It is called special if there exists an
almost complex structure J on M which is skew symmetric with respect to the Blaschke
metric g and such that the 2-form ω := g(J ·, ·) is parallel with respect to the induced
connection ∇. Such an almost complex structure J is called compatible.

Notice that ∇̃ξ = 0 ⇔ S = 0 ⇔ ∇ is flat. It was proven in [BC] that any parabolic
two-dimensional sphere with (positive or negative) definite Blaschke metric is special
and that a compatible almost complex structure on a special parabolic hypersphere is
necessarily integrable. In fact, we proved the following stronger result, Theorem 1 below.

Recall that a special Kähler manifold (M,J, g,∇) is a (pseudo-)Kähler manifold
(M,J, g) endowed with a flat torsionfree connection ∇ such that ∇J is symmetric and
∇ω = 0, where ω = g(J ·, ·) is the Kähler form.

Theorem 1 [BC]. Let ϕ : M → Rm+1 be a special parabolic hypersphere with Bla-
schke metric g, induced connection ∇, compatible almost complex structure J and canon-
ical two-form ω = g(J ·, ·). Then (M,J, g,∇) is a special Kähler manifold. Conversely,
any simply connected special Kähler manifold (M,J, g,∇) admits an immersion ϕ : M →
Rm+1, which is a special parabolic hypersphere with Blaschke metric g, induced connec-
tion ∇ and compatible almost complex structure J . The immersion ϕ is unique up to a
unimodular affine transformation of Rm+1.

2. The holomorphic representation formula. It was proven in [ACD] that any
special Kähler manifold is locally defined by a holomorphic function, as follows. Let F
be a holomorphic function on a domain (i.e. a connected open set) U ⊂ Cn such that the
(real) matrix

Im ∂2F is invertible, (2.1)

where ∂2F denotes the holomorphic Hessian of F . Let us denote by MF ⊂ T ∗Cn the
image of the holomorphic section dF : U → T ∗U ⊂ T ∗Cn. It is a complex Lagrangian
submanifold with respect to the standard complex symplectic structure Ω =

∑
dzi∧dwi,

where (z1, . . . , zn, w1, . . . , wn) are canonical coordinates of T ∗Cn. We denote its complex
structure by J . Using the nondegeneracy condition (2.1), it is shown in [ACD] that the
Hermitian form γ :=

√
−1Ω(·, ·̄) is nondegenerate on MF and, hence, induces a (pseudo-)

Kähler metric g = Re γ|MF
. It is also shown that a torsionfree connection ∇ on MF

can be defined by the condition that the real parts xi := Re zi and yj := Rewj are
∇-affine functions on MF . In fact, it is shown that (x1, . . . , xn, y1, . . . , yn) is a (real)
local coordinate system near any point of MF and that the Kähler form ω = g(·, J ·) is
expressed by the formula ω = 2

∑
dxi ∧ dyi on MF .
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Theorem 2 [ACD]. Let F be a holomorphic function satisfying the nondegeneracy
condition (2.1) on a domain U ⊂ Cn. Then (MF , J, g,∇), defined above, is a special
Kähler manifold and any special Kähler manifold is locally of this form.

It is noticed in [BC] that combining Theorem 1 and Theorem 2 we can associate
a parabolic hypersphere to any holomorphic function F defined on a simply connected
domain U ⊂ Cn and satisfying the nondegeneracy condition (2.1). However, the proof of
Theorem 1 makes use of the Fundamental Theorem of affine differential geometry [DNV]
(the generalisation of Radon’s theorem [R] to higher dimensions) and does not involve any
explicit parametrisation of the immersion ϕ : M → R2n+1 realising a simply connected
special Kähler manifold (M,J, g,∇) of real dimension 2n as parabolic hypersphere. The
aim is now to provide an explicit formula, in terms of the holomorphic function F , for
the realisation of (MF , J, g,∇) as a parabolic hypersphere ϕF : MF

∼= U → R2n+1.
We will not restrict ourselves to functions F defined on simply connected domains

U ⊂ Cn. More generally, we consider a ‘multivalued’ function defined on an arbitrary
domain U ⊂ Cn. Or, in other words, a (univalued) function defined on some Riemann
domain Ũ over U . A Riemann domain over U is a holomorphic (unramified) covering π :
Ũ → U . Any holomorphic function F on Ũ defines a holomorphic Lagrangian immersion

φ : Ũ → T ∗U ⊂ T ∗Cn, φ(p) := dF ◦ (π∗|TpŨ)−1, p ∈ Ũ . (2.2)

Let us denote by J the complex structure of Ũ . Pulling back the canonical coordinates
of T ∗Cn to Ũ we obtain holomorphic functions

z̃i := φ∗zi and w̃j := φ∗wj

on Ũ . The holomorphic functions z̃i form a local holomorphic coordinate system near
any point of Ũ . We use the compact notation

z̃ := (z̃1, . . . , z̃n), Fz̃ = (Fz̃1 , . . . , Fz̃n) = (
∂F

∂z̃1 , . . . ,
∂F

∂z̃n
), Fz̃ z̃ =

∑
Fz̃k z̃

k etc.

Let ∂2F be the Hessian of F with respect to (the flat torsionfree holomorphic connection
defined by) the coordinate system z̃. We call F nondegenerate if Im ∂2F is invertible.
Then, as before, g := Reφ∗γ is a pseudo-Kähler metric and we can define a flat torsion-
free connection ∇ by the condition that the functions x̃i := Re z̃i and ỹj := Re w̃j are
∇-affine functions on Ũ . We also put ũi := Im z̃i and ṽj := Im w̃j . Let us abbreviate
M(F ) := (Ũ , J, g,∇) and define an immersion ϕF : Ũ → R2n+1 by the formula

ϕF := (Re z̃,ReFz̃, 2ImF − 2(ReFz̃)Im z̃) (2.3)

= (x̃1, . . . , x̃n, ỹ1, . . . , ỹn, 2ImF − 2
∑

(ỹk)ũk).

Theorem 3. Let F be a nondegenerate holomorphic function defined on a Riemann
domain Ũ . Then M(F ) = (Ũ , J, g,∇), defined above, is a special Kähler manifold with
Kähler form ω = g(·, J ·) = 2

∑
dx̃i ∧ dỹi. The immersion ϕF : Ũ → R2n+1 defined

by (2.3) is, with respect to the volume form vol := 2n det on R2n+1, a special parabolic
hypersphere with affine normal ξ = ∂2n+1, Blaschke metric g, induced connection ∇ and
compatible almost complex structure J . It is unique up to unimodular affine transforma-
tions of R2n+1.
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Proof. The first statement is a slight generalisation of the first part of Theorem 2,
with essentially the same proof. The uniqueness of ϕF follows, as in the proof of Theo-
rem 1, from the uniqueness statement of the Fundamental Theorem of affine differential
geometry. It suffices to prove that ϕF is a parabolic hypersphere with Blaschke metric
g, induced connection ∇ and compatible almost complex structure J . Let us compute
the Gauß-Weingarten data (∇v, gv, Sv, θv), see (1.1), induced by the transversal vector
field v = ∂2n+1 (the ‘vertical’ vector field). It is immediate that Sv = 0 and θv = 0. We
compute ∇v and gv for the coordinate vector fields

∂x̃i = ∂i +
∂f

∂x̃i
∂2n+1, ∂ỹj = ∂n+j +

∂f

∂ỹj
∂2n+1,

where

f := 2ImF − 2(ReFz̃)Im z̃ = 2ImF − 2
∑

ỹkũ
k

is the last component of ϕF . The covariant derivatives with respect to the connection ∇̃
of R2n+1 are given by

∇̃∂x̃i∂x̃j =
∂2f

∂x̃i∂x̃j
v, ∇̃∂x̃i∂ỹj = ∇̃∂ỹj ∂x̃i =

∂2f

∂x̃i∂ỹj
v, ∇̃∂ỹi∂ỹj =

∂2f

∂ỹi∂ỹj
v.

This shows that the coordinate vector fields ∂x̃i and ∂ỹj are parallel for the connection
∇v, so it coincides with ∇. Now θ = 0 implies ∇νv = ∇vνv = 0 for the volume form
νv = vol(v, . . .). Moreover, we see that gv = Hess∇(f) = ∇2f .

Claim 1. gv = g.

The claim, to be proven below, implies that v is the affine normal and, hence, that
gv = g is the Blaschke metric. Let us see why. The Riemannian volume of the (pseudo-)
Kähler manifold M(F ) with Kähler form ω = g(J ·, ·) = 2

∑n
i=1 dx̃

i ∧ dỹi is given by

volg = (−1)n(n−1)/2ω
n

n!
= 2ndx̃1 ∧ . . . ∧ dx̃n ∧ dỹ1 ∧ . . . ∧ dỹn = 2n det(v, . . .) = νv,

if we choose the orientation defined by νv. (Notice that dx̃1∧ . . .∧dx̃n∧dỹ1∧ . . .∧dỹn =
(−1)n(n−1)/2dx̃1∧dỹ1∧. . .∧dx̃n∧dỹn.) This shows that volg coincides with the ∇-parallel
volume form νv. So v is the affine normal and, hence, ϕF is a parabolic hypersphere with
Blaschke metric g and induced connection ∇. The fact that M(F ) is a special Kähler
manifold entails that J is skew symmetric with respect to g and ∇ω = 0. Therefore, the
complex structure J is compatible, in the sense of Definition 1, with the data (g,∇).

It remains to prove Claim 1. For the calculations we will use the next lemma.

Lemma 1. The partial derivatives of the functions ũi and ṽj on M(F ) with respect to
the ∇-affine coordinates (x̃1, . . . , x̃n, ỹ1, . . . , ỹn) satisfy the following equations:

∑

k

(ũkx̃i(ṽk)ỹj − ũkỹj (ṽk)x̃i) = δji ,

∑

k

ũkx̃i(ṽk)x̃j =
∑

k

ũkx̃j (ṽk)x̃i ,
∑

k

ũkỹi(ṽk)ỹj =
∑

k

ũkỹj (ṽk)ỹi

ũix̃j = −(ṽj)ỹi , ũiỹj = ũjỹi , (ṽi)x̃j = (ṽj)x̃i .
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Proof. Pulling back the symplectic form Ω of T ∗Cn by means of the Lagrangian immer-
sion φ : M(F ) → T ∗Cn defined in (2.2), we obtain the equation φ∗Ω = 0. Decomposing
it into real and imaginary parts yields the lemma.

Let us return to the proof of Theorem 3. First we observe that

∂x̃iImF = Im ∂x̃iF =
∑

j

Im
(
∂z̃j

∂x̃i
∂z̃jF

)
=
∑

j

Im ((δji +
√
−1ũjx̃i)Fz̃j ) = ṽi +

∑

j

ũjx̃i ỹj

and

∂ỹj ImF = Im ∂ỹjF =
∑

k

Im
(
∂z̃k

∂ỹj
∂z̃kF

)
=
∑

k

Im (
√
−1ũkỹjFz̃k) =

∑

k

ũkỹj ỹk.

The second derivatives of ImF are now easily computed with the help of Lemma 1:

∂2
x̃ix̃j ImF = (ṽi)x̃j +

∑

k

ũkx̃ix̃j ỹk, ∂
2
x̃iỹj

ImF =
∑

k

ũkỹj x̃i ỹk, ∂
2
ỹiỹj ImF = ũiỹj +

∑

k

ũkỹiỹj ỹk.

Using this and Lemma 1 one can now evaluate gv = ∇2f :

gv(∂x̃i , ∂x̃j ) = ∂2
x̃ix̃jf = 2((ṽi)x̃j +

∑

k

ũkx̃ix̃j ỹk)− 2
∑

k

ũkx̃ix̃j ỹk = 2(ṽi)x̃j ,

gv(∂x̃i , ∂ỹj ) = ∂2
x̃iỹj

f = 2
∑

k

ũkỹj x̃i ỹk − 2(ũjx̃i +
∑

k

ũkỹj x̃i ỹk) = −2ũjx̃i , (2.4)

gv(∂ỹi , ∂ỹj ) = ∂2
ỹiỹjf = 2(ũiỹj +

∑

k

ũkỹiỹj ỹk)− 2(ũjỹi + ũiỹj +
∑

k

ũkỹiỹj ỹk) = −2ũiỹj .

Notice that in virtue of (2.4) we have:

(ũi)x̃j = (ũj)x̃i . (2.5)

Let us compare this with g. The simplest way to compute g is using the fact that g = ω◦J ,
where ω = 2

∑
dxi ∧ dyi is the Kähler form and we consider g and ω as isomorphisms

TM → T ∗M (insertion of a vector in the first argument). It is easier to work with the
inverse metric g−1 = J−1 ◦ ω−1 = −J ◦ ω−1 = ω−1 ◦ J∗. Notice that

ω−1 =
1
2

∑
∂ỹi ∧ ∂x̃i , J∗dx̃i = −dũi and J∗dỹj = −dṽj .

Let us evaluate g−1 with the help of these formulas and Lemma

g−1(dx̃i, dx̃j) = −ω−1(dũi, dx̃j) = −1
2
ũiỹj ,

g−1(dx̃i, dỹj) = −ω−1(dũi, dỹj) =
1
2
ũix̃j ,

g−1(dỹi, dỹj) = −ω−1(dṽi, dỹj) =
1
2

(ṽi)x̃j .

Comparing with the formulas for gv and using Lemma 1 and (2.5) this proves that
g−1gv = id and, hence, that g = gv. This completes the proof of Claim 1 and Theorem 3.
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