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Abstract. A holomorphic representation formula for special parabolic hyperspheres is given.

Introduction. It was noticed by Blaschke that parabolic spheres in affine 3-space
admit parametrisations in terms of holomorphic functions (of one variable). This is re-
lated to the fact that the Monge-Ampere equation governing parabolic hyperspheres is
completely integrable in dimension two, a fact already known to Monge. The purpose
of this note is to derive an explicit formula describing special parabolic hyperspheres in
affine (2n + 1)-space in terms of a holomorphic function of n variables.

1. Special parabolic affine hyperspheres. Let me briefly recall the notion of
special parabolic affine hypersphere [BC]. We consider R™*! as affine space with standard
connection denoted by V and parallel volume form vol. A hypersurface is given by an
immersion ¢ : M — R™T! of an m-dimensional connected manifold. We assume that
M admits a transversal vector field ¢ and that m > 1. This induces on M the volume
form v = vol(¢, . ..), a torsionfree connection V, a quadratic covariant tensor field g, an
endomorphism field S (shape tensor) and a one-form 6 such that

VxY =VxY +g(X,Y)§, Vx&=S5X+0(X)E. (1.1)

Let us call the data (V,g,S,0) the Gauf-Weingarten data induced by the transversal
vector field £. We will assume that ¢ is nondegenerate and, hence, is a pseudo-Riemannian
metric on M. This condition does not depend on the choice of €. According to Blaschke
[B], once the orientation of M is fixed, there is a unique choice of transversal vector field £
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12 V. CORTES

such that v coincides with the metric volume form vol? and Vv = 0. This particular choice
of transversal vector field is called the affine normal and the corresponding geometric
data (g, V) are called Blaschke metric and induced connection. Notice that, for the affine
normal, # = 0 and S is computable from (g, V) (Gaufl equations). Henceforth we use
always the affine normal as transversal vector field.

DEFINITION 1. The hypersurface ¢ : M — R™*! is called a parabolic (or improper)
hypersphere if the affine normal is parallel, 65 = 0. It is called special if there exists an
almost complex structure J on M which is skew symmetric with respect to the Blaschke
metric g and such that the 2-form w := g(J-,-) is parallel with respect to the induced
connection V. Such an almost complex structure .J is called compatible.

Notice that V&€ = 0 < S = 0 < V is flat. It was proven in [BC] that any parabolic
two-dimensional sphere with (positive or negative) definite Blaschke metric is special
and that a compatible almost complex structure on a special parabolic hypersphere is
necessarily integrable. In fact, we proved the following stronger result, Theorem 1 below.

Recall that a special Kdhler manifold (M, J,g,V) is a (pseudo-)Kédhler manifold
(M, J, g) endowed with a flat torsionfree connection V such that VJ is symmetric and
Vw =0, where w = g(J+, ) is the Kéhler form.

THEOREM 1 [BC]. Let ¢ : M — R™*L be a special parabolic hypersphere with Bla-
schke metric g, induced connection V, compatible almost complex structure J and canon-
ical two-form w = g(J-,-). Then (M, J,g,V) is a special Kdihler manifold. Conversely,
any simply connected special Kdahler manifold (M, J, g, V) admits an immersion ¢ : M —
R™*L | which is a special parabolic hypersphere with Blaschke metric g, induced connec-
tion V and compatible almost complex structure J. The immersion ¢ is unique up to a
unsmodular affine transformation of R™+1,

2. The holomorphic representation formula. It was proven in [ACD] that any
special Kéhler manifold is locally defined by a holomorphic function, as follows. Let F'
be a holomorphic function on a domain (i.e. a connected open set) U C C™ such that the
(real) matrix

Imd*F is invertible, (2.1)

where °F denotes the holomorphic Hessian of F. Let us denote by Mp C T*C™ the
image of the holomorphic section dF' : U — T*U C T*C". It is a complex Lagrangian
submanifold with respect to the standard complex symplectic structure Q = > dz* A dw;,
where (z',...,2" w1, ..., w,) are canonical coordinates of T*C". We denote its complex
structure by J. Using the nondegeneracy condition (2.1), it is shown in [ACD] that the
Hermitian form ~ := /—1Q(-,~) is nondegenerate on M and, hence, induces a (pseudo-)
Kéhler metric ¢ = Re~|p,. It is also shown that a torsionfree connection V on Mg
can be defined by the condition that the real parts z! := Rez’ and y; = Rew; are
V-affine functions on M. In fact, it is shown that (z!,.... 2" y1,...,y,) is a (real)
local coordinate system near any point of M and that the Kéhler form w = g(-, J-) is
expressed by the formula w = 25" dx? A dy; on M.
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THEOREM 2 [ACD]. Let F be a holomorphic function satisfying the nondegeneracy
condition (2.1) on a domain U C C". Then (Mp,J,g,V), defined above, is a special
Kahler manifold and any special Kdahler manifold is locally of this form.

It is noticed in [BC] that combining Theorem 1 and Theorem 2 we can associate
a parabolic hypersphere to any holomorphic function F' defined on a simply connected
domain U C C™ and satisfying the nondegeneracy condition (2.1). However, the proof of
Theorem 1 makes use of the Fundamental Theorem of affine differential geometry [DNV]
(the generalisation of Radon’s theorem [R] to higher dimensions) and does not involve any
explicit parametrisation of the immersion ¢ : M — R2"*! realising a simply connected
special Kéhler manifold (M, J, g, V) of real dimension 2n as parabolic hypersphere. The
aim is now to provide an explicit formula, in terms of the holomorphic function F', for
the realisation of (MF, J, g, V) as a parabolic hypersphere ¢ : Mp = U — R2"+1,

We will not restrict ourselves to functions F' defined on simply connected domains
U C C". More generally, we consider a ‘multivalued’ function defined on an arbitrary
domain U C C". Or, in other words, a (univalued) function defined on some Riemann
domain U over U. A Riemann domain over U is a holomorphic (unramified) covering 7 :
U—U. Any holomorphic function F on U defines a holomorphic Lagrangian immersion

¢:U—TUCTC", ¢(p):=dFo(m|T,U)", pel. (2.2)

Let us denote by J the complex structure of U. Pulling back the canonical coordinates
of T*C™ to U we obtain holomorphic functions

Fi=¢*2" and W = ¢*w;

on U. The holomorphic functions #° form a local holomorphic coordinate system near
any point of U. We use the compact notation

oF oF

@a ey %)7
Let 02F be the Hessian of F with respect to (the flat torsionfree holomorphic connection
defined by) the coordinate system Z. We call F' nondegenerate if Im 9F is invertible.
Then, as before, g := Re ¢* is a pseudo-Kéhler metric and we can define a flat torsion-
free connection V by tlle condition that the functions #' := Re Z* and 9; = Rew; are

V-affine fugctions on U. We also put @' := Im 7 zlnd v; = Imw;. Let us abbreviate
M(F):= (U, J,g,V) and define an immersion pr : U — R?"*1 by the formula

vr = (ReZ,Re F3,2Im F — 2(Re F;)Im 2) (2.3)
= (@' A" P 2 F — 2> ().

THEOREM 3. Let F' be a nondegenerate holomorphic function defined on a Riemann
domain U. Then M(F) = ((7, J,9,V), defined above, is a special Kihler manifold with
Kdhler form w = g(-,J-) = 23.d&" A dij;. The immersion pp : U — R2H1 defined
by (2.3) is, with respect to the volume form vol := 2" det on R*"*1  q special parabolic
hypersphere with affine normal & = Jap41, Blaschke metric g, induced connection V and
compatible almost complex structure J. It is unique up to unimodular affine transforma-
tions of R2"+1,

Z:=(34,...,8"), Fs=(Fn,...,Fa)=( F:z=Y Faz* etc.
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Proof. The first statement is a slight generalisation of the first part of Theorem 2,
with essentially the same proof. The uniqueness of ¢ follows, as in the proof of Theo-
rem 1, from the uniqueness statement of the Fundamental Theorem of affine differential
geometry. It suffices to prove that ¢p is a parabolic hypersphere with Blaschke metric
g, induced connection V and compatible almost complex structure J. Let us compute
the GauB-Weingarten data (V?, g%, SY,0"), see (1.1), induced by the transversal vector
field v = 41 (the ‘vertical’ vector field). It is immediate that S¥ = 0 and 8V = 0. We
compute V¥ and g" for the coordinate vector fields

0 0
Oz = 0; + af 82n+1, ng = Ontj + 6Lf 82n+17

where
fi=2ImF —2(Re Fz)Imz =2ImF — 2 _ ji"

is the last component of . The covariant derivatives with respect to the connection v
of R?"*1 are given by
>’f Of >*f
0540 T 0p0y, 93,0y,
This shows that the coordinate vector fields 0z and Jj; are parallel for the connection

V¥, so it coincides with V. Now 6 = 0 implies Vv¥ = V¥»¥ = 0 for the volume form
v’ = vol(v,...). Moreover, we see that g = Hess" (f) = V2f.

%65_,1' Oz = Uy 63@ 0y, = %351- i %Bﬂi 0y, =

CrLamm 1. ¢g¥ =g.

The claim, to be proven below, implies that v is the affine normal and, hence, that
g¥ = g is the Blaschke metric. Let us see why. The Riemannian volume of the (pseudo-)
Kéhler manifold M (F) with Kéhler form w = g(J-,-) =21 | dZ* A dy; is given by

vold = (71)”<"*1>/2% = 2dF AL AdE AL A A d, = 2" det(v,...) = 17,
if we choose the orientation defined by v. (Notice that di' A...AdZ" Adij A ... ANdjj, =
(=)™ =D/24z  Ndgjy A. . . AdE" Adijy,.) This shows that vol? coincides with the V-parallel
volume form v*. So v is the affine normal and, hence, ¢ is a parabolic hypersphere with
Blaschke metric g and induced connection V. The fact that M(F) is a special Kéahler
manifold entails that J is skew symmetric with respect to g and Vw = 0. Therefore, the
complex structure J is compatible, in the sense of Definition 1, with the data (g, V).

It remains to prove Claim 1. For the calculations we will use the next lemma.

LEMMA 1. The partial derivatives of the functions @' and 0; on M(F') with respect to
the V-affine coordinates (T',..., 3", G1,...,9n) satisfy the following equations:

> (ki (Br)g, — ik (Bk)z) = 67,
k
Dk ()as = Y ik (Bk)g, > aE (Tr)g, = > s (B)y,

k k k k

iy = —(05)g, UgJ = ﬂi;, (03)zs = (05) 5.
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Proof. Pulling back the symplectic form 2 of 7*C™ by means of the Lagrangian immer-
sion ¢ : M(F) — T*C" defined in (2.2), we obtain the equation ¢*2 = 0. Decomposing
it into real and imaginary parts yields the lemma. m

Let us return to the proof of Theorem 3. First we observe that
Oz ImF = Im 93 F = Zlm ( .aZJF) = Im (6 + V=1, Fzy) = 0 + »_ i3
J J

and

95, Im F =Imdy, F = Zlm (‘9 0: kF> = Im(V=1af F5) =il i
k k
The second derivatives of ImF are now easily computed with the help of Lemma 1:
83 M F = (0;) Zu i3 Uks 1'y ImF = Zuy iUk aylyjlmF = u +Zuyly7yk

Using this and Lemma 1 one can now evaluate g* = V2 f:

9" (93¢,055) = 0Zizs f = 2((0s)zs + Zﬂ’éi]ﬂk) - 226’5%_7@71@ = 2(0:)z4,
9" (03,05,) = 0z y = QZU #i0k — 2( u .+ Zu #i0k) —2uii, (2.4)

gv(agﬂa’ljg) yly f - U/ + ZuylyJ yk) - 2(U + U’ + ZuylyJ yk) —211%]

Notice that in virtue of (2.4) we have:

()35 = (). (2.5)
Let us compare this with g. The simplest way to compute g is using the fact that g = woJ,
where w = 23" da® A dy; is the Kéhler form and we consider g and w as isomorphisms

TM — T*M (insertion of a vector in the first argument). It is easier to work with the
inverse metric g7 = J low ! = —Jow ™' = w1 o J*. Notice that

1 . _
=5 > 05 ANz, JUdF = —di’ and J*dj; = —d;.

—1

Let us evaluate g7 with the help of these formulas and Lemma

) ) ) ) 1 .
g 1 (dit,di) = —wH(dat, d3T) = — 5y
—1( i g —1(3~i 7=~ 1.
1(dac ,dg;) = —w 1(du ,dy;) = iuij,
1y e g~ 1,
g l(dyiadyj) = (dvzadyj) 2(Ui)17

Comparing with the formulas for ¢¥ and using Lemma 1 and (2.5) this proves that
g 'g¥ = id and, hence, that g = g*. This completes the proof of Claim 1 and Theorem 3. m

References

[ACD] D. V. Alekseevsky, V. Cortés and C. Devchand, Special complex manifolds, J. Geom.
Phys. 42 (2002), 85-105.



V. CORTES

O. Baues and V. Cortés, Realisation of special Kdhler manifolds as parabolic spheres,
Proc. Amer. Math. Soc. 129 (2001), 2403-2407.

W. Blaschke, Vorlesungen iber Differentialgeometrie II. Affine Differentialgeometrie,
Grundlehren der Mathematischen Wissenschaften VII, Springer, Berlin, 1923.

F. Dillen, K. Nomizu and L. Vrancken, Conjugate connections and Radon’s theorem in
affine differential geometry, Monatsh. Math. 109 (1990), 221-235.

J. Radon, Die Grundgleichungen der affinen Flachentheorie, Leipziger Berichte 70
(1918), 91-107.



