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Abstract. We give a complete classification of surfaces with parallel second fundamental
form in 3-dimensional Bianchi-Cartan-Vranceanu spaces.

1. Introduction. Submanifolds with parallel second fundamental form in Euclidean
space play an important role in differential geometry. In fact such submanifolds are sym-
metric R-spaces and imbedded as locally extrinsically symmetric submanifolds [26], [43].

When the ambient space is not symmetric, the condition “parallel second fundamental
form” is a strong restriction. In fact even if the ambient space is homogeneous, surfaces
with parallel second fundamental form are very few. For instance, we have proved that
the only surfaces with parallel second fundamental form in the 3-dimensional Heisenberg
group or the special linear group SL2R are Hopf cylinders [4], [5].
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Both the Heisenberg group and SL2R are contact space forms, i.e., complete and
connected Sasaki manifolds of constant holomorphic sectional curvature. More precisely
every simply connected contact space form of holomorphic sectional curvature c = −3
[resp. c < −3] is isomorphic to the Heisenberg group [resp. the universal covering of
SL2R].

Every 3-dimensional simply connected contact space form with holomorphic sectional
curvature greater than −3 is isomorphic to unit 3-sphere S3 with canonical Sasaki struc-
ture and its D-homothetic deformation. As Riemannian manifolds, such contact space
forms are represented as special unitary group SU(2) with specified left invariant metric.

The contact space forms have been studied in some contexts. For instance, Euclidean
3-space and simply connected contact 3-space forms are included in the so called Bianchi-
Cartan-Vranceanu family of 3-dimensional homogeneous Riemannian manifolds ([11],
[12], [21], [18], [19], [28], [52]), the classification of 3-dimensional naturally reductive
spaces [50] and the classification file of Thurston’s 3-dimensional model geometries [48].

It seems to be interesting to give a complete classification of surfaces with parallel
second fundamental form in 3-dimensional contact space forms. For these reasons, we
shall study surfaces with parallel second fundamental form in homogeneous Riemannian
3-manifolds with 4-dimensional isometry group.

This paper has two purposes. Firstly, we shall exhibit explicit matrix group mod-
els of 3-dimensional contact space forms. Furthermore we shall give explicit models of
3-dimensional homogeneous spaces with Bianchi-Cartan-Vranceanu metric and their as-
sociated almost contact structures.

In recent years, geometry of surfaces in a 3-dimensional homogeneous space with
Bianchi-Cartan-Vranceanu metric has been studied extensively.

For example Caddeo, Piu and Ratto [18], [19] studied surfaces of revolution with con-
stant mean or Gaussian curvature in the Heisenberg group. Tomter also studied surfaces
of revolution with constant mean curvature in the Heisenberg group [49].

Kokubu [34] studied rotational surfaces and conoids of constant mean curvature in
SL2R. Kikuchi [32] studied S1-equivariant constant mean curvature tori in elliptic contact
space form.

In [29], a representation formula for minimal surfaces in Heisenberg group is given.
The second purpose of this paper is to generalize the classification theorem for par-

allel surfaces in the Heisenberg group [4] and the special linear group SL2R [5] to sim-
ply connected 3-dimensional homogeneous Riemannian 3-manifolds with Bianchi-Cartan-
Vranceanu metrics.

2. Contact manifolds. Let M be a (2n + 1)-manifold. A one form η is called a
contact form on M if (dη)n ∧ η 6= 0. A manifold M together with a contact form is called
a contact manifold. The distribution D defined by

D = {X ∈ TM | η(X) = 0}

is called the contact structure or contact distribution determined by η.
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On a contact manifold (M, η), there exists a unique vector field ξ such that

η(ξ) = 1, dη(ξ, ·) = 0.

Namely ξ is transversal to the contact structure D. This vector field ξ is called the Reeb
vector field or characteristic vector field of (M, η).

Moreover there exists an endomorphism field ϕ and a Riemannian metric g on M

such that
ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,(2.1)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(ξ, ·) = η,(2.2)

dη(X,Y ) = 2g(X,ϕY )(2.3)

for all vector fields X, Y on M . The pair (ϕ, g) (or quartet (η, ξ, ϕ, g)) is called the as-
sociated almost contact structure of (M, η). More generally an odd dimensional manifold
M2n+1 is said to be an almost contact manifold if there exists a triplet (η, ξ, ϕ) satis-
fying (2.1). Note that the existence of an almost contact structure is equivalent to the
reducibility of the structure group of the tangent bundle TM of M to U(n)×{1}. On an
almost contact manifold (M, η; ξ, ϕ), there exists a Riemannian metric g satisfying (2.2).
Such a metric g is called a compatible metric of M .

Next, on the direct product M ×R(t) of an almost contact manifold M and real line
R(t), we can extend naturally the endomorphism field ϕ to an almost complex structure
J on M × R(t):

J(X, f
∂

∂t
) = (ϕX − fξ, η(X)

∂

∂t
), X ∈ X(M), f ∈ C∞(M × R).

If the almost complex structure J on M × R is integrable then (M, η) is said to be
normal. The normality is equivalent to the vanishing of the Sasaki torsion N1:

N1(X,Y ) = [ϕ, ϕ](X,Y ) + dη(X,Y ).

Here [ϕ, ϕ] is the Nijenhuis torsion of ϕ:

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ], X, Y ∈ X(M).

A normal contact manifold (M, η; ξ, ϕ, g) is called a Sasaki manifold. Note that the
notion of Sasaki manifold is equivalent to that of normal strongly pseudo convex CR-
manifold [45].

Proposition 2.1. Let (M, η, ξ, ϕ, g) be an almost contact manifold. Then M is a
contact manifold with associated metric (2.3) and ξ is a Killing vector field if and only if

∇Xξ = −ϕX, X ∈ X(M).

An almost contact manifold M is a Sasaki manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, X, Y ∈ X(M).

Note that on a Sasaki manifold, ξ is Killing.

To close this section, we shall prepare some fundamental facts on Hopf cylinders in
regular almost contact 3-manifolds.
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Let (M, η; ξ, ϕ, g) be an almost contact manifold. Then M is said to be regular if ξ
generates a one-parameter group K of isometries on M 2n+1, such that the action of K on
M2n+1 is simply transitive and structure tensors ϕ and η are invariant under K-action.
If M is contact then ϕ and η are automatically K-invariant, i.e, £ξϕ = 0 and £ξη = 0.
The Killing vector field ξ induces a regular one-dimensional Riemannian foliation on M .
We denote by M̃ := M/ξ the orbit space (the space of all leaves) of a regular almost
contact manifold M under the K-action.

The almost contact structure on the regular almost contact manifold induces an almost
Hermitian structure on the orbit space M̃ . Further the natural projection π : M → M̃ is
a Riemannian submersion. It is easy to see that M is contact if and only if M̃ is almost
Kähler (symplectic). In addition, M is Sasaki if and only if M̃ is Kähler (cf. Hatakeyama
[27], Ogiue [38]).

On the other hand, a complete and regular almost contact manifold M satisfies dη = 0
if and only if M is isomorphic to the direct product M̃ × R or M̃ × S1, see Lemma 2 in
[14]. In this case ξ is parallel.

In 1958, W. M. Boothby and H. C. Wang [16] proved that if M is a compact regular
contact manifold, then the natural projection π : M → M̃ defines a principal circle bundle
over a symplectic manifold M̃ and the symplectic form Φ of M̃ determines an integral
cocycle. Furthermore the contact form η gives a connection form of this circle bundle and
satisfies π∗Φ = dη. The fibering π : M → M̃ is called the Boothby-Wang fibering of a
regular compact contact manifold M .

In particular for a compact regular Sasaki manifold, the orbit space M̃ is a Hodge
manifold, i.e., a compact Kähler manifold whose Kähler form Φ is of bidegree (1,1) and
determines an integral cocycle. (A. Morimoto [36]. See also [38].) Hence M is a circle
bundle over a projective algebraic manifold M̃ .

The unit sphere S2n+1 is a typical example of regular compact Sasaki manifolds. For
S2n+1, the Boothby-Wang fibering coincides with the Hopf fibering S2n+1 → CPn.

Now we shall restrict our attention to 3-dimensional regular almost contact manifold
M3. In the rest of this section, we assume that the regular almost contact manifold M

is contact, the direct product M̃ × R or M̃ × S1. Let γ̃ be a curve parameterized by arc
length in M̃ with curvature κ̃. Taking the inverse image S := π−1(γ̃) of γ̃ in M3, then it
is easy to see that S is a flat surface in M 3.

We shall call this surface S the Hopf cylinder (or Boothby-Wang cylinder) over γ̃. The
mean curvature H of M is κ̃/2. In particular if γ̃ is closed, then S is called the Hopf torus
over γ̃.

U. Pinkall [40] used this construction in his study on flat tori in 3-sphere S3. In S3

case if we take a geodesic γ̃ in S2(1/2), then the Hopf torus over γ̃ is the Clifford minimal
torus.

For more details on contact manifolds, we refer to Blair’s lecture notes [13].

3. Contact space forms. Let (M, η; ξ, ϕ, g) be an almost contact manifold. A tan-
gent plane at a point of M is said to be a holomorphic plane if it is invariant under ϕ.
The sectional curvature of a holomorphic plane is called holomorphic sectional curvature.
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If the sectional curvature function of M is constant on all holomorphic planes in TM ,
then M is said to be of constant holomorphic sectional curvature.

Complete and connected Sasaki manifolds of constant holomorphic sectional curvature
are called contact space forms or Sasakian space forms. Let M 2n+1 be a contact space
form of constant holomorphic sectional curvature c. Then M is said to be an elliptic
[resp. parabolic or hyperbolic ] contact space form if c > −3 [resp. c = −3 or c < −3.]

S. Tanno classified simply connected contact space forms. Further he gave model
spaces for simply connected contact space forms.

Proposition 3.1 ([46]). Let M2n+1(c) be a simply connected contact space form.
Then M2n+1 is isomorphic to Heisenberg group N 2n+1 with canonical Sasaki structure if
c = −3, and M2n+1(c) is isomorphic to CHn × R if c < −3. Here CHn is the complex
hyperbolic n-space.

We shall recall Tanno’s explicit construction of simply connected elliptic contact space
form M2n+1(c), c > −3. See also V. N. Berestovskĭı and D. E. Vol’per [9] and T. Sakai
[41].

Let us denote by (η1, ξ1, ϕ1, g1) the canonical contact structure of unit sphere S2n+1.
For any positive number α, the deformation:

ηα := αη1, ξα := ξ1/α, ϕα = ϕ1, gα := αg1 + α(α− 1)η1 ⊗ η1

gives another contact structure on S2n+1. This deformation is called the D-homothetic
deformation of S2n+1.

One can easily check that the D-homothetic deformation of S2n+1 is a Sasaki manifold
of constant holomorphic sectional curvature c = 4/α − 3. Tanno classified the simply
connected elliptic contact space forms. (See also [13], pp. 99–100.)

Proposition 3.2 ([46]). Every simply connected (2n+1)-dimensional elliptic contact
space form M2n+1(c) is isomorphic to a D-homothetic deformation of the unit sphere
S2n+1 with c = 4/α− 3.

Note that a D-homothetic deformation of S2n+1 is a Berger sphere.
Every contact space form M2n+1(c) is realised as a real hypersurface in a complex

space form M2n+2(c−1) with constant holomorphic sectional curvature c−1. See J. Berndt
[6], [7] and N. Ejiri [25]:

• c > 1: M2n+1(c) is the geodesic sphere of radius r = tan−1(
√
c− 1/2) in complex

projective (n+ 1)-space CP n+1 of constant holomorphic sectional curvature c− 1,
• c = 1: M2n+1(c) is the unit sphere in complex Euclidean space Cn+1,
• −3 < c < 1: M2n+1(c) is the geodesic sphere of radius r = tanh−1(

√
1− c/2) in

complex hyperbolic (n+ 1)-space CHn+1 of constant holomorphic sectional curva-
ture c− 1,

• c = −3: M2n+1(c) is the horosphere in complex hyperbolic (n+ 1)-space CHn+1 of
constant holomorphic sectional curvature −4,

• c < −3: M2n+1(c) is the universal covering of a tube with radius
r = coth−1(

√
1− c/2) around a totally geodesic complex hyperbolic hyperplane in

CHn+1 of constant holomorphic sectional curvature c− 1.
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Remark 3.3. (1) H. Urakawa [51] studied the spectrum set of S2n+1 with Riemannian
metric g(t) = gα/t

2(n+1), α = t2n+1, t > 0. Furthermore H. Muto [37] and S. Tanno [47]
studied the harmonic stability of (S2n+1, g(t)). Namely stability of the identity map with
respect to the energy functional. Note that the sectional curvature of (S2n+1, g(t)) is
positive if 0 < t < (4/3)1/3 and the deformation g1 7→ g(t) preserves the volume element
of g1 [47].

(2) M. Barros [3] studied Willmore surfaces in (S3, gα/α), α > 0. The deformation
g1 7→ gα/α is called the canonical variation of g1 [10].

(3) É. Cartan proved that every isoparametric hypersurface in S4 with three distinct
principal curvatures is congruent to a tube of constant radius around the Veronese surface
in S4 (the image of the first standard imbedding of RP 2 in S4). Such a hypersurface is
called the Cartan hypersurface of S4. The Cartan hypersurface of S4 is extrinsically
homogeneous and represented as SO(3)/Z2 × Z2.

One can check that the universal Riemannian covering manifold of the Cartan hyper-
surface is isometric to M3(−2).

Contact space forms have some remarkable properties. First, contact space forms
are naturally reductive homogeneous spaces (so called Sasakian ϕ-symmetric spaces)
[15]. Next, contact space forms are weakly symmetric spaces (and hence commutative
spaces) [8].

In 3-dimensional case, Calvaruso, Perrone and Vanhecke [20] proved that every contact
space form is curvature homogeneous. (See Theorem 3.3 in [20].)

Here we recall that F. Tricerri and L. Vanhecke classified 3-dimensional naturally
reductive homogeneous Riemannian manifolds. Recall that if M = G/K is a homogeneous
manifold, and if g and k are the Lie algebras of G and K respectively, then M = G/K is
said to be reductive if there exists an Ad(K)-invariant subspace m of g complementary
to k in g. The linear subspace m is called the Lie subspace of g. A naturally reductive
homogeneous space is a reductive homogeneous manifold M = (G/K, g) furnished with
a G-invariant Riemannian metric such that for the corresponding inner product 〈·, ·〉 on
the Lie subspace m we have

〈[X,Y ]m, Z〉 = 〈X, [Y, Z]m〉, X, Y, Z ∈ m.

Here the subscript m means the m-part of vectors.

Proposition 3.4 ([50]). All the simply connected 3-dimensional naturally reductive
homogeneous Riemannian manifolds are space forms and the following unimodular Lie
groups with special left invariant metric:

The special unitary group SU(2), Heisenberg group N 3 and the universal covering
group S̃L2R of SL2R.

These naturally reductive homogeneous spaces admit a compatible contact structure.
More precisely these spaces admit structures of contact space form. In fact simply con-
nected 3-dimensional contact space forms are realized as above the Lie groups with left
invariant Sasaki structure (cf. Blair and Vanhecke [14]):
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Corollary 3.5. A simply connected 3-dimensional contact space form is one of the
following unimodular Lie groups with left invariant Sasaki structure: the special unitary
group SU(2), the Heisenberg group N 3 or the universal covering group S̃L2R of SL2R.

The only symmetric Sasaki manifold is the unit 3-sphere S3 (equivalently SU(2) with
bi-invariant Sasaki structure).

In the following three consecutive sections, we shall exhibit explicit models of 3-
dimensional contact space forms.

4. Elliptic contact space form. In this section, we shall give an explicit matrix
group model of a simply connected elliptic contact space form M3(c).

As is well known, the unit 3-sphere (S3; η1, ξ1, ϕ1, g1) is identified with the special
unitary group G = SU(2) with bi-invariant metric. In this section we shall give a SU(2)-
model of M3(c).

Let us denote the Lie algebra of G by g. The bi-invariant metric g1 of constant
curvature 1 on G is induced by the following inner product 〈·, ·〉1 on g:

〈X,Y 〉1 = −1
2

tr(XY ), X, Y ∈ g.

We take a quaternionic basis of g:

i =
(

0
√
−1√

−1 0

)
, j =

(
0 −1
1 0

)
, k =

( √−1 0
0 −

√
−1

)
.

By using this basis, the group SU(2) is described as

SU(2) =
{ (

x0 +
√
−1x3 −x2 +

√
−1x1

x2 +
√
−1x1 x0 −

√
−1x3

) ∣∣∣∣ x2
0 + x2

1 + x2
2 + x2

3 = 1
}
.

We identify g with Euclidean 3-space E3 via the correspondence

(x1, x2, x3)←→ x1i + x2j + x3k.

Denote the left translated vector fields of {i, j,k} by {E1, E2, E3}. Then a left invariant
Sasaki structure of G is given by

ξ1 := E3, η1 = g1(E3, ·),
ϕ1(E1) = E2, ϕ1(E2) = −E1, ϕ1(E3) = 0.

Note that the commutation relations of {E1, E2, E3} are

[E1, E2] = 2E3, [E2, E3] = 2E1, [E3, E1] = 2E2.

The Lie group G acts isometrically on the Lie algebra g by the Ad-action.

Ad : G× g→ g; Ad(a)X = aXa−1, a ∈ G, X ∈ g.

The Ad-orbit of k/2 is a sphere of radius 1/2 in the Euclidean 3-space E3 = g. The
Ad-action of G on S2(1/2) is isometric and transitive. The isotropy subgroup of G at k/2
is

U(1) =

{(
e
√−1t 0
0 e−

√−1t

) ∣∣∣∣ t ∈ R
}
.
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Hence S2(1/2) is represented by SU(2)/U(1) as a Riemannian symmetric space. The
natural projection

π1 : S3 → S2(1/2), π1(a) = Ad(a)(k/2)

is a Riemannian submersion and defines a principal U(1)-bundle over S2(1/2).
Since the Sasaki structure (η1, ξ1, ϕ1, g1) is left invariant, its D-homothetic deforma-

tion is also left invariant. Hence the elliptic contact space form M3(c) is identified with
SU(2) with the left invariant contact Riemannian structure:

η := αη1, ξ := ξ1/α, ϕ := ϕ1,

g(X,Y ) = αg1(X,Y ) + α(α− 1)η1(X)η1(Y ), c = 4/α− 3.

The Reeb vector field ξ generates a one parameter group of transformations on M3(c).
Since ξ is a Killing vector field, this transformation group acts isometrically on G. The
transformation group generated by ξ is identified with the following Lie subgroup K of G:

K =






 e

√
−1t
α 0

0 e
−
√
−1t
α



∣∣∣∣∣ t ∈ R




∼= U(1).

Furthermore the action of the transformation group generated by ξ corresponds to the
natural right action of K on G:

G×K → G; (a, k) 7→ ak.

By using the curvature formula due to O’Neill [39], one can see that the orbit space G/K
is a 2-sphere of radius

√
α/2, namely the constant curvature (c + 3)-sphere. (cf. Ogiue

[38].) The Riemannian metric g is not only G-left invariant but also K-right invariant.
Hence G×K acts isometrically on G. The elliptic contact space form M3(c) is represented
by G × K/K = G as a naturally reductive homogeneous space. For c 6= 1, M3(c) has
4-dimensional isometry group.

In particular g is G-bi-invariant if and only if c = 1. In this case M3(1) is represented
by G × G/G as a Riemannian symmetric space. Note that M3(1) has 6-dimensional
isometry group.

Now we shall take an orthonormal frame field {e1, e2, e3} of M3(c) by

e1 :=
1√
α
E1, e2 :=

1√
α
E2, e3 :=

1
α
ξ1.

Then the commutation relations of this basis are

[e1, e2] = 2e3, [e2, e3] =
c+ 3

2
e1, [e3, e1] =

c+ 3
2

e2.

The Levi-Civita connection ∇ of (M3(c), g) is described by

∇e1e1 = 0, ∇e1e2 = e3, ∇e1e3 = −e2,

∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e1,(4.1)

∇e3e1 =
c+ 1

2
e2, ∇e3e2 = −c+ 1

2
e1, ∇e3e3 = 0.

The Riemannian curvature tensor field R of (M3(c), g,∇) is described by

R1212 = c, R1313 = R2323 = 1(4.2)
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and the sectional curvatures are:

K12 = c, K13 = K23 = 1.(4.3)

The Ricci tensor Ric and the scalar curvature s are computed to be

R11 = R22 = c+ 1, R33 = 2, s = 2(c+ 2).(4.4)

5. Parabolic contact space forms. The 3-dimensional Heisenberg group N 3 is
R3(x, y, z) together with the group structure:

(x, y, z) · (x′, y′, z′) := (x+ x′, y + y′, z + z′ + (xy′ − x′y)/2 ).

We define a left invariant Riemannian metric g by

g =
dx2 + dy2

4
+

1
4

(
dz +

ydx− xdy
2

)2

.(5.1)

Then the Riemannian homogeneous space (N 3, g) has 4-dimensional isometry group.
In fact the identity component of the isometry group of (N 3, g) is isomorphic to the
semi-direct product SO(2)nN 3. The action of SO(2)nN3 on N3 is



[

cos θ − sin θ
sin θ cos θ

]
,



a

b

c




 ·



x

y

z




=




cos θ − sin θ 0
sin θ cos θ 0

1
2 (a sin θ − b cos θ) 1

2 (a cos θ + b sin θ) 1





x

y

z


+



a

b

c


 .

The Heisenberg group (N3, g) is represented by SO(2)nN 3/SO(2). This is a naturally
reductive homogeneous space representation for (N 3, g). The additive group (R,+) acts
isometrically and freely on N 3:

N3 × R→ N3; (x, y, z) · a = (x, y, z + a).

The natural projection π : N3 → N3/R = R2(x, y) defines a principal line bundle over
R2(x, y). The metric g induces a flat Riemannian metric (dx2 + dy2)/4 on R2(x, y).
Furthermore π is a Riemannian submersion.

Taking a left invariant orthonormal frame field E = (e1, e2, e3):

e1 = 2
∂

∂x
− y ∂

∂z
, e2 = 2

∂

∂y
+ x

∂

∂z
, e3 = 2

∂

∂z
,(5.2)

the commutation relations of E are

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

The dual coframe field ϑ = (θ1, θ2, θ3) is given by

θ1 =
1
2
dx, θ2 =

1
2
dy, θ3 =

1
2
dz − xdy − ydx

4
.

Note that the 1-form η := θ3 is a contact form on N3. The Levi-Civita connection ∇ of
(N3, g) is given by

∇e1e2 = −∇e2e1 = e3, ∇e1e3 = ∇e3e1 = −e2, ∇e2e3 = ∇e3e2 = e1.(5.3)
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The Riemannian curvature tensor R of (N 3, g) is described by

R1212 = −3, R1313 = R2323 = 1.

The sectional curvatures are

K12 = −3, K13 = K23 = 1.

Define an endomorphism field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕξ = 0, ξ = e3.

Then (η, ξ, ϕ) is a left invariant almost contact structure on N 3. Since the metric g is
related to this almost contact structure by

dη(X,Y ) = 2g(X,ϕY ).

Hence (N3, η, ξ, ϕ, g) is a contact Riemannian manifold. Moreover the holomorphic sec-
tional curvature of N3 is constantly −3. From Tanno’s classification we then obtain the
following result.

Proposition 5.1. The simply connected parabolic contact space form M3(−3) is iso-
morphic to the Heisenberg group N 3.

The Heisenberg group N3(x, y, z) is isomorphic to the following linear Lie group:

H3(x, y, t) =








1 y t

0 1 x

0 0 1


 ;x, y, t ∈ R



 .

In fact, the mapping ι : N3 → GL3R defined by

ι(x, y, z) =




1 y t

0 1 x

0 0 1


 , t = z +

xy

2

is a Lie group isomorphism between N 3 and H3. The homogeneous Sasaki metric on H3

induced by g is written as

gH =
dx2 + dy2

4
+

1
4

(dt− ydx)2.(5.4)

The contact form η corresponds to

ηH =
1
2

(dt− ydx).

Hence the Sasaki manifold (H3, ηH, gH) coincides with standard model of M3(−3). (See
Example A in [13], p. 29 and p. 81.)

6. Hyperbolic contact space forms. Let H2(1/2) be a hyperbolic 2-space of con-
stant curvature −4:

H2(1/2) =
(
{(x, y) ∈ R2 | y > 0}, dx

2 + dy2

4y2

)
.

As is well known the special linear group

G = SL2R = {X ∈ GL2R | det g = 1} .
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acts isometrically and transitively on H2(1/2) as linear fractional transformation group.
The isotropy subgroup K of G at (0, 1) is a rotation group SO(2). Hence H2(1/2) is
represented as H2(1/2) = G/K. It is well known that any element A ∈ G is decomposed
uniquely as

A =
(

1 x

0 1

)(√
y 0

0 1/
√
y

)(
cos θ sin θ
− sin θ cos θ

)

for x ∈ R, y ∈ R+, θ ∈ S1. (The Iwasawa decomposition of A ∈ SL2R.) In particular G
is diffeomorphic to H2 × S1. Note that G is not simply connected.

On the Lie algebra g of G, we shall define an inner product 〈·, ·〉:

〈X,Y 〉 =
1
2

tr(tXY ), X, Y ∈ g.(6.1)

The left invariant Riemannian metric g on G induced by 〈·, ·〉 is given explicitly by

g =
dx2 + dy2

4y2 +
(
dθ +

dx

2y

)2

.

The Riemannian homogeneous space (G, g) has 4-dimensional isometry group. In fact, g
is not only left G-invariant but also right K-invariant. Hence G×K acts isometrically and
transitively on G. Thus G is represented as G = (G ×K)/K. This gives a naturally re-
ductive homogeneous space representation for (G, g). Furthermore the natural projection
π : G→ H2(1/2) is a Riemannian submersion.

Taking an orthonormal frame field E = (e1, e2, e3)

e1 = 2y
∂

∂x
− ∂

∂θ
, e2 = 2y

∂

∂y
, e3 =

∂

∂θ
,

then the dual coframe field is given by ϑ = (θ1, θ2, θ3) of E is

θ1 =
dx

2y
, θ2 =

dy

2y
, θ3 = dθ +

dx

2y
.

The one form η := −θ3 is a left invariant contact form on G.

∇e1e1 = 2e2, ∇e1e2 = −2e1 − e3, ∇e1e3 = e2,

∇e2e1 = e3 ∇e2e2 = 0, ∇e2e3 = −e1,

∇e3e1 = e2, ∇e3e2 = −e1, ∇e3e3 = 0.
(6.2)

The Riemannian curvature of G is described by

R1212 = −7, R1313 = R2323 = 1.

Hence the sectional curvatures are given by

K12 = −7, K13 = K23 = 1.

We define an endomorphism field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕξ = 0, ξ = −e3.

Then (η, ξ, ϕ) is an almost contact structure on G. The left invariant metric g is related
to this almost contact structure by

dη(X,Y ) = 2g(X,ϕY ).

Hence (ξ, ϕ, g) is associated to η.
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Using the above formulas, the following result is easy to check.

Proposition 6.1. The almost contact manifold (G, η; ξ, ϕ, g) is a Sasaki manifold of
constant holomorphic sectional curvature −7.

Again by Tanno’s classification we have the following result.

Corollary 6.2. Every simply connected hyperbolic contact space form M3(c) is iso-
morphic to S̃L2R up to homothety.

7. Bianchi-Cartan-Vranceanu metrics. Let (M 3, g) be a Riemannian manifold.
Then the dimension of the isometry group I(M, g) is at most 6. In particular dim I(M 3, g)
= 6 if and only if (M3, g) is of constant curvature. Furthermore, it is known that there
exist no Riemannian 3-manifold with 5-dimensional isometry group (See p. 47, Theo-
rem 3.2 in [33].) If dim I(M3, g) = 4, then the action of isometry group is transitive.
L. Bianchi [11], [12] gave a local classification of 3-dimensional homogeneous Riemannian
metrics. Furthermore É. Cartan [21] has classified all 4-dimensional isometry groups on
Riemannian 3-manifolds (pp. 293-306 in [21]). See also Vranceanu [52]. In [21] and [52],
we can see the following 2-parameter family of Riemannian metrics:

ḡλ,µ =
dx2 + dy2

{1 + µ(x2 + y2)}2 +
(
dz +

λ

2
ydx− xdy

1 + µ(x2 + y2)

)2

, λ, µ ∈ R.(7.1)

This 2-parameter family {ḡλ,µ} of Riemannian metrics is called the Bianchi-Cartan-
Vranceanu metrics. The metrics as above are defined over the whole 3-space R3 for µ ≥ 0
and over the region x2 +y2 < −1/µ for µ < 0. We shall call the homogeneous Riemannian
3-manifolds M3 = M3

λ,µ defined by

M3 =
(
{(x, y, z) ∈ R3 | 1 + µ(x2 + y2) > 0}, ḡλ,µ

)

the Bianchi-Cartan-Vranceanu spaces (BCV-spaces for short). It is known that a BCV-
space M3 is isometric to the following homogeneous Riemannian 3-manifolds:

• If µ = λ = 0, then M ∼= E3 (Euclidean 3-space),
• If µ = 0, λ 6= 0, then M ∼= N3 (Heisenberg group),
• If µ > 0, λ 6= 0, then M ∼= SU(2) \ {∞} with left invariant metric,
• If µ < 0, λ 6= 0, then M ∼= S̃L2R with left invariant metric,
• If µ > 0, λ = 0, then M ∼= S2(

√
µ−1/2) \ {∞} × R,

• If µ < 0, λ = 0, then M ∼= H2(
√
−µ−1/2)× R,

• If 4µ− λ2 = 0 then M ∼= S3(2/λ) \ {∞}.

Here S2(r) and H2(r) denote the 2-sphere of radius r and the hyperbolic 2-space of
radius r.

In this section we shall study canonical almost contact structures of BCV-spaces.
Take an orthonormal frame field E = (e1, e2, e3):

e1 = {1 + µ(x2 + y2)} ∂
∂x
− λy

2
∂

∂z
, e2 = {1 + µ(x2 + y2)} ∂

∂y
+
λx

2
∂

∂z
, e3 =

∂

∂z
.
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Then the dual coframe field ϑ = (θ1, θ2, θ3) is given by

θ1 =
dx

1 + µ(x2 + y2)
, θ2 =

dy

1 + µ(x2 + y2)
, θ3 = dz +

λ

2
ydx− xdy

1 + µ(x2 + y2)
.

Note that the one-form η := θ3 is a contact form on M3 if and only if λ 6= 0. The
connection 1-forms {ω i

j } defined by dθi +
∑
ω i
j ∧ θj = 0 relative to ϑ are given by

(ω i
j ) =




0 −2µ(yθ1 − xθ2) + λ
2 θ

3 λ
2 θ

2

2µ(yθ1 − xθ2)− λ
2 θ

3 0 −λ2 θ1

−λ2 θ2 λ
2 θ

1 0


 .

In covariant derivative fashion, the Levi-Civita connection ∇̄ of M is described by the
formulae:

∇̄e1e1 = 2µye2, ∇̄e1e2 = −2µye1 +
λ

2
e3, ∇̄e1e3 = −λ

2
e2,

∇̄e2e1 = −2µxe2 −
λ

2
e3, ∇̄e2e2 = 2µxe1, ∇̄e2e3 =

λ

2
e1,(7.2)

∇̄e3e1 = −λ
2
e2, ∇̄e3e2 =

λ

2
e1, ∇̄e3e3 = 0.

[e1, e2] = −2µye1 + 2µxe2 + λe3, [e2, e3] = [e3, e1] = 0.(7.3)

The curvature forms Ω relative to ϑ are given by

Ω 1
2 = (4µ− 3λ2

4
)θ1 ∧ θ2, Ω 1

3 =
λ2

4
θ1 ∧ θ3, Ω 2

3 =
λ2

4
θ2 ∧ θ3,

hence the curvature tensor R̄ is described by the formula:

R̄1212 = 4µ− 3
4
λ2, R̄1313 = R̄2323 =

λ2

4
.(7.4)

The Ricci tensor Ric of M is given by

R̄11 = R̄22 = 4µ− λ2, R̄33 =
λ2

2
.

Hence the scalar curvature s̄ is s̄ = 8µ− λ2/2.

Remark 7.1. The geodesics of M3 are calculated by Sitzia [42]. See also Borghero
and Caddeo [17].

Define an endomorphism field ϕ by ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0 and define
ξ := e3. Then it is easy to check that (η, ξ, ϕ, ḡλ,µ) is an almost contact structure of M3.
In particular if λ 6= 0, (ϕ, ξ, ḡλ,µ) is the associated almost contact structure of η up to a
constant multiple. More precisely the exterior derivative dη is related to ϕ by

dη(X,Y ) = λḡ(X,ϕY ), X, Y ∈ X(M3).(7.5)

This almost contact structure satisfies the following:

(∇̄Xϕ)Y =
λ

2
{ḡ(X,Y )ξ − η(Y )X}, ∇̄Xξ = −λ

2
ϕX.(7.6)

These formulae show that ξ is a Killing vector field on M3. Moreover M3 is an almost
contact manifold of constant holomorphic sectional curvature c = 4µ−3λ2/4. In particular
if λ 6= 0, then it is a (λ/2)-Sasaki manifold of constant holomorphic sectional curvature
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c̄ = 4µ−3λ2/4. Namely M3 is homothetic to a Sasakian manifold of constant holomorphic
sectional curvature. (See Proposition 2.1.)

The vector field ξ is Killing, complete and it generates a one-parameter group of
isometries on M3. Furthermore this group action is simply transitive. The orbit space
M̃2 = M3/ξ is

M̃2 =
(
{(x, y) ∈ R2 | 1 + µ(x2 + y2) > 0 }, dx2 + dy2

{1 + µ(x2 + y2)}2
)
.

The natural projection π : M3 → M̃2 defined by π(x, y, z) = (x, y) is a Riemannian
submersion with totally geodesic fibres. The base space M̃2 is of constant curvature 4µ.

In case λ 6= 0, under the normalization:

η̂ :=
λ

2
η, ξ̂ :=

2
λ
ξ, ϕ̂ := ϕ, ĝ =

λ2

4
ḡ,

the almost contact manifold M̂3 = (M3, η̂; ξ̂, ϕ̂, ĝ) is a simply connected Sasaki manifold
of constant holomorphic sectional curvature ĉ := −3+16µ/λ2. Under this normalization,
the base space M̂2 of the fibering π : M̂3(ĉ)→ M̂2 is a Riemannian 2-manifold of constant
curvature 16µ/λ2.

In particular if µ ≤ 0, M̂3 is complete and simply connected and hence a parabolic
or hyperbolic contact space form.

Now we can give an explicit description of a compatible almost contact structure on
BCV-spaces.

(1) µ = λ = 0: In this case M3 is a Euclidean 3-space E3.
(2) µ = 0, λ 6= 0: Without loss of generality, we may assume (λ, µ) = (1, 0).

Proposition 7.2. The homogeneous Riemannain manifold M3
1,0 is homothetic to a

parabolic contact space form. More precisely it is homothetic to the Heisenberg group
N3 with left invariant Sasaki structure. The metrics ḡ1,0 and g in (5.1) are related by
g = ḡ1,0/4.

(3) µ < 0, λ 6= 0: In this case we may assume (λ, µ) = (2,−1). Note that, in this case,
M3

2,−1 = M̂3
2,−1.

Corollary 7.3. The homogeneous Riemannian manifold M3
2,−1 admits a left in-

variant Sasaki structure of constant holomorphic sectional curvature −7. More precisely
M3

2,−1 can be identified with (S̃L2R, g) in section 6.

(4) µ > 0, λ 6= 0: In this case, M̂3 is an open dense subset of an elliptic contact
space form. In fact, elliptic contact space forms are topologically 3-spheres, and M̂3 is
diffeomorphic to R3. The base space M̂2 of the fibering π : M̄3(ĉ)→ M̂2 is a Riemannian
2-manifold of constant curvature 16µ/λ2.

Proposition 7.4. The universal covering manifold of M3
λ,µ with λ 6= 0, µ > 0 is

homothetic to a simply connected elliptic contact space form M3(c) = SU(2), c > −3. In
particular M3

λ,µ is of constant curvature if and only if λ2 = 4µ.

(5) µ < 0, λ = 0: In this case M3 is a Riemannian product of the hyperbolic 2-space
H2(

√
−µ−1/2) of constant curvature 4µ (or more explicitly the open disk D(1/

√−µ)
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with radius 1/
√−µ centered at the origin together with the metric:

dx2 + dy2

{1 + µ(x2 + y2)}2 )

and a real line R(z). Hence the base space M̃2 coincides with D(1/
√−µ) and the projec-

tion π is nothing but the projection M3 → D(1/
√−µ). Let us denote by J the complex

structure of D(1/
√−µ). Then the almost contact structure is given by

ϕ

(
X, f

d

dt

)
= (JX, 0), X ∈ X(D(1/

√−µ)), f ∈ C∞(M3).

Obviously this almost contact structure is non contact and satisfies ∇̄ϕ = 0, ∇̄ξ = 0. The
one form η = dz defines a trivial flat connection on the line bundle M3 = D(1/

√−µ)×R.
(6) µ > 0, λ = 0: In this case M3 is a Riemannian product of a plane R2(x, y) with

constant positive curvature metric:

dx2 + dy2

{1 + µ(x2 + y2)}2(7.7)

and a real line R(z). As is well known this metric on R2 is induced from the metric of
the 2-sphere

S2(
√
µ−1/2) = {(x, y, t) ∈ R3 | x2 + y2 + t2 = µ−1/4}

via the stereographic projection with respect to the north pole.
Hence the base space M̃2 coincides with R2 with metric (7.5) and the projection π is

nothing but the projection M3 → R2. Let us denote by J the complex structure of R2.
Then the almost contact structure is given by

ϕ

(
X, f

d

dt

)
= (JX, 0), X ∈ X(R2), f ∈ C∞(M3).

Obviously this almost contact structure is non contact and satisfies ∇̄ϕ = 0, ∇̄ξ = 0.
The one form η = dz defines a trivial flat connection on the line bundle M3 = R2 × R.

8. Surfaces with parallel second fundamental form in M3
λ,µ. Let M3

λ,µ be a
BCV-space with constant holomorphic sectional curvature c = 4µ− 3λ2/4.

We shall determine all surfaces in M3
λ,µ with parallel second fundamental form.

First we shall recall the classification of surfaces with parallel second fundamental
form in Riemannian 3-space forms.

Without loss of generality we may restrict our attention to surfaces in E3, unit 3-sphere
S3 and unit hyperbolic 3-space H3. It is well known that surfaces with parallel second
fundamental form in E3 are planes (totally geodesic surfaces), spheres (totally umbilic
surfaces) or circular cylinders (cf. [31]).

In hyperbolic 3-space H3, surfaces with parallel second fundamental form are totally
geodesic hyperbolic 2-spaces, totally umbilic 2-spheres or equidistant surfaces around a
geodesic.

Finally in S3, surfaces with parallel second fundamental form are great spheres (to-
tally geodesic surfaces), small spheres (totally umbilic surfaces) or Hopf cylinders over
a Riemannian circle in the base space S2(1/2) of the Hopf fibering S3 → S2(1/2) (cf.
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[1] and [44]). Here Riemannian circles in S2(1/2) are curves in S2(1/2) with constant
curvature.

Remark 8.1 (B-scroll). A curve in S3(1) of constant torsion ±1 whose geodesic cur-
vature is a polynomial of the arc length parameter is called a twisted spherical polynomial
spiral. In particular if the geodesic curvature is constant, such a curve is called a twisted
spherical spiral. The second author showed in [23] that a B-scroll of a twisted spherical
polynomial spiral whose geodesic curvature is of degree k is a flat surface and its (k+1)-th
covariant derivative of the second fundamental form vanishes. In particular the B-scroll
of a twisted spherical spiral has parallel second fundamental form. One can check that a
B-scroll of a twisted spherical spiral is a Hopf cylinder (torus) over a Riemannian circle
in S2(1/2).

Since parallel surfaces in simply connected Riemannian 3-space forms are classified,
we may restrict our investigation to M3

λ,µ with 4µ − λ2 6= 0. In this section we shall
investigate such surfaces in M3

λ,µ with λ 6= 0, 4µ− λ2 6= 0.
Let S be a surface in M3 with unit normal vector field N . Denote by ∇ the Levi-Civita

connection of M induced by ∇̄. Then the second fundamental form h of M is defined by
the Gauss formula:

∇̄XY = ∇XY + h(X,Y ), X, Y ∈ X(S).

For any X,Y, Z ∈ X(S), the normal component of the curvature R̄(X,Y )Z satisfies
the Codazzi equation:

(R̄(X,Y )Z)⊥ = (∇Xh)(Y, Z)− (∇Y h)(X,Z).

Here the covariant derivative ∇h is defined by

(∇Xh)(Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

for all X,Y, Z ∈ X(M). Here ∇⊥ denotes the normal connection of S in M3.
A surface S is said to be parallel if ∇h = 0.

Theorem 8.2. Let M3
λ,µ be the BCV-space with 4µ− λ2 6= 0.

(i) If λ 6= 0, then the only parallel surfaces in M3
λ,µ are Hopf cylinders over Rieman-

nian circles in M̃2.
(ii) If λ = 0, then the only parallel surfaces in Riemannian symmetric space M3

0,µ

with µ 6= 0 are totally geodesic leaves and Hopf cylinders over Riemannian circles in M̃2.
Here Riemannian circles in M̃2 are curves in M̃2 with constant geodesic curvature.

Proof. Let {X1, X2, X3} be an orthonormal frame field of S such that X3 = N . Denote
by {ω1, ω2, ω3} the dual coframe field to {Xi}. We can write, using the notaions of the
previous section, ω3 = pθ1 + qθ2 + rθ3. Since {ωi} is orthonormal, p2 + q2 + r2 = 1. The
vector fields u1 = re1 − pe3, u2 = re2 − qe3 are tangent to S. In particular if r 6= 0,
{u1, u2} is a (local) frame field on S. By direct computations using (7.4) we obtain the
following:

Lemma 8.3. The normal components of curvature tensor R̄ are described by

(R̄(u1, u2)u1)⊥ = qr3(λ2 − 4µ)N, (R̄(u1, u2)u1)⊥ = −pr3(λ2 − 4µ)N.
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Assume that the second fundamental form h of S is parallel. Then the Codazzi equation
implies:

(R̄(u1, u2)u1)⊥ = (∇u1h)(u2, u1)− (∇u1h)(u1, u1) = 0.(8.1)

Similarly we have

(R̄(u2, u1)u2)⊥ = 0.(8.2)

First we consider the case r 6= 0.

Case I, r 6= 0: The preceding lemma implies p = q = 0, since we assumed λ2−4µ 6= 0.
Hence ω3 = θ3. Namely S is an integral surface of the distribution D defined by η = 0.

Subcase (i), λ = 0: In this case S is an integral surface of the distribution D defined
by dz = 0. Hence S is a leaf M̃2×{z0} for some z0. Note that this leaf is totally geodesic.

Subcase (ii), λ 6= 0: Since η in this case is a contact form, there are no integral
surfaces of D. This implies that this case cannot occur.

Case II, r = 0: In this case ω3 has the form ω3 = pθ1 +qθ2. Since p2 +q2 = 1, we may
write p = cosφ, q = sinφ. In addition, the orthonormal vector fields v1 = qe1−pe2, v2 =
e3 give an orthonormal frame field tangent to S.

Next by using (7.2), we have

∇̄v1v1 = v1(q)e1 − v1(p)e2 + 2µ(px+ qy)N, ∇̄v1v2 = −λ
2
N,

∇̄v2v1 = −λ
2
N + (v2(q)e1 − v2(p)e2), ∇̄v2v2 = 0.

By the symmetry of second fundamental form, we get pv2(q)−qv2(p) = 0. Equivalently
we have v2(φ) = 0.

By the Gauss formula we obtain the induced connection and the second fundamental
form:

∇v1v1 = 0, ∇v1v2 = 0, ∇v2v2 = 0,(8.3)

h(v1, v1) = {v1(φ) + 2µ(px+ qy)}N, h(v1, v2) = −λ
2
N, h(v2, v2) = 0.(8.4)

The mean curvature vector field H of S defined by

H =
1
2

tr h(8.5)

is computed as
H = HN, 2H = v1(φ) + 2µ(px+ qy).

Since h is parallel, the mean curvature H is constant. Furthermore (8.3) implies that S
is flat. Moreover (8.3) implies that we can take z as a (local) coordinate of S and hence
there exists a local coordinate system (t, z) such that

∂

∂t
= v1.

Thus the equation v2(φ) = 0 implies that φ depends only on t. With respect to this
coordinate system (t, z), the constancy of H is rewritten as

dφ

dt
= 2{H − µ(cosφ(t)x(t) + sinφ(t)y(t))}, H ∈ R.(8.6)
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It is easy to see that S is generated by two coordinate curves. The z-coordinate curves are
geodesics and integral curves of the vector field e3. The t-coordinate curves are horizontal
curves of curvature 2H. Let us denote by γ(t) the t-coordinate curve in M3. Then it is
easy to see that γ is a Frenet curve of osculating order at most 3. The principal normal
vector field of γ is the restriction of N on γ. The binormal vector field B of γ is ±e3. We
can assume B = e3. The Frenet-Serret formulas of γ are given by

∇̄γ′(T,N,B) = (T,N,B)




0 −2H 0
2H 0 −λ2
0 λ

2 0


 .(8.7)

This implies that t-coordinate curves are of constant torsion λ/2. Hence t-coordinate
curves are horizontal curves of curvature 2H. (See [2] [28], [30].)

Let us denote by γ̃(t) = (x(t), y(t)) the projection of γ to M̃2, namely γ̃ = π ◦ γ.
One can check that γ̃(t) is of constant curvature 2H. Equivalently t-coordinate curves
are horizontal lifts of Riemannian circles of curvature 2H in M̃2. (In particular the case
H = 0, γ̃ is a geodesic in M̃2.)

Recall that the surface S is parameterized by t and z. And the t-coordinate curves
are horizontal lifts of Riemannian circles in the base space with curvature 2H. Thus
we conclude that S is a Hopf cylinder over a Riemannian circle of curvature 2H. In
particular, S is parameterized by (x(t), y(t), z). We finish this paper by considering these
Riemannian circles in more detail.

From the definition of v1, we notice that

dx

dt
= sinφ(t)f(t),

dy

dt
= − cosφ(t)f(t), f(t) := 1 + µ(x(t)2 + y(t)2).(8.8)

Here φ(t) is the solution to (8.6). The equation (8.8) says t is the arc length parameter
of γ̃.

The function f(t) satisfies the following ordinary differential equation:

d

dt
log |f(t)| = 2µ{x(t) sinφ(t)− y(t) cosφ(t)}.(8.9)

On the other hand, differentiating (8.6),

d2φ

dt2
(t) =

dφ

dt
(t)

d

dt
log |f(t)|.(8.10)

If φ′ = 0, then from (8.8) we obtain that γ̃ is a straight line. So we assume that φ′ 6= 0.
Comparing (8.9) and (8.10), we have

f(t) = αφ′(t), α ∈ R.
Hence we obtain the following explicit expression for γ̃:

(x(t), y(t)) = (−α cosφ(t) + x0,−α sinφ(t) + y0).(8.11)

Therefore the curve is a circle centered at (x0, y0).

Corollary 8.4. All parallel surfaces in contact space forms M3(c), c 6= 1 are Hopf
cylinders over Riemannian circles in the base Riemannian space form M̃2(c+ 3) of con-
stant curvature (c+ 3).
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Note that Corollary 8.4 implies the nonexistence of totally geodesic surfaces and
extrinsic spheres–i.e., totally umbilical surfaces with parallel mean curvature vector fields,
in contact 3-space forms with c 6= 1.

Remark 8.5. In the SL2R case, Hopf cylinders coincide with rotational surfaces in
the sense of Kokubu [34].

Remark 8.6. The second named author classified hypersurfaces in Riemannian
space forms with higher order parallel second fundamental form [22], [23] and [24]. In
particular all the higher order parallel surfaces in S3 are classified as follows:

Theorem 8.7 ([23], [24]). Let M be a higher order parallel surface of S3(1). Then
either M is an open part of a 2-sphere of S3, or of a Hopf cylinder over a spherical curve
in S2(1/2) whose geodesic curvature is a polynomial function of the arc length parameter.

Based on this result and Theorem 8.2, the following conjecture naturally arises:

Conjecture. A higher order parallel surface in M3
λ,µ with 4µ − λ2 6= 0 is a Hopf

cylinder over a curve in the base space M̃2(4µ) whose geodesic curvature is a polynomial
function of the arc length parameter.

References

[1] E. Backes and H. Reckziegel, On symmetric submanifolds of spaces of constant curvature,
Math. Ann. 263 (1983), 419–433.

[2] C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-manifolds, Geom. Dedicata
49 (1994), 135–142.

[3] M. Barros, Willmore tori in non-standard 3-sphere, Math. Proc. Cambridge Phil. Soc. 121
(1997), 321–324.

[4] M. Belkhelfa and F. Dillen, Parallel surfaces in Heisenberg space, in: Differential Geometry
in honor of Radu Rosca, KU Brussels, to appear.

[5] M. Belkhelfa, F. Dillen and J. Inoguchi, Parallel surfaces in the real special linear group
SL(2,R), Bull. Austral. Math. Soc. 65 (2002), 183–189.
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J. 10 (1987), 102–107.

[16] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. Math. 68 (1958), 721–734.
[17] F. Borghero and R. Caddeo, Une structure de séparabilité et géodésiques dans les huit
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[21] É. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris,

1928.
[22] F. Dillen, The classification of hypersurfaces of a Euclidean space with parallel higher

order fundamental form, Math. Z. 203 (1990), 635–643.
[23] F. Dillen, Hypersurfaces of a real space form with parallel higher order fundamental form,

Soochow J. Math. 18 (1992), 321–338.
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