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Abstract. We give some optimal estimates of the height, curvature and volume of compact
hypersurfaces in Rn+1 with constant curvature bounding a planar closed (n− 1)-submanifold.

1. Introduction. The compact hypersurfaces of constant positive curvature K in
Rn+1 (K-hypersurfaces) have been the principal objects of interaction between differential
geometry theory of convex bodies and elliptic partial differential equations, specially those
of Monge-Ampère type. Although many problems about their existence and uniqueness
seem far from being understood, here we pose the problem of clarifying some properties
about the geometry and topology of a K-hypersurface.

Since closed K-hypersurfaces are round spheres, the K-hypersurfaces of interest to us
bound a connected submanifold of codimension 2 which lies in a hyperplane.

Let S be a compact n-manifold with a nonempty connected boundary ∂S and x : S →
Rn+1 be a K-hypersurface such that Γ = x(∂S) lies in a hyperplane P of Rn+1. First, we
recall some elementary facts about K-hypersurfaces. Let N and η be unit normal vector
fields along S and ∂S in Rn+1 and P , respectively. Then, (up to sign) we have that

〈dN, dx〉 = 〈N, η〉〈dη, dx〉,
along ∂S. This means that asymptotic directions on Γ are also asymptotic on x(S).
We conclude that Γ must be locally strictly convex and P meets x(S) transversally.
Moreover, if n ≥ 3, then the normal vector field η : ∂S → Sn−1 along ∂S in P is a
global diffeomorphism and Γ must be a hyperovaloid in P . Now, if Γ is embedded, then
by using for instance the results of Ghomi, see [6], we can find a connected hypersurface
M in Rn+1 such that x(S) + M is a hyperovaloid in Rn+1. Consequently, there exists a
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convex body U in Rn+1 with ∂U = x(S) +M . Particularly, x(S) must be embedded and
it lies in one of the halfspaces determined by P .

Our goal in this paper is to prove some optimal estimates of the height, curvature
and enclosed volume of hypersurfaces with positive constant curvature.

In §2 we prove two elliptic PDE’s associated with the second fundamental form of the
immersion which help us get height estimates for K-hypersurfaces (Theorems 1 and 2).

In §3 we derive a balancing formula which lets us obtain optimal curvature estimates
of K-hypersurfaces bounding a connected (n− 1)-hyperovaloid in P (Theorem 3).

Finally in §4 we prove an estimation of the volume enclosed by a graph with constant
curvature and boundary lying in a hyperplane.

2. Height estimates. In order to get an estimation of the maximum height at which
a hypersurface with constant curvature can rise above a hyperplane, we calculate the
laplacian with respect to the second fundamental form of the immersion and its Gauss
map.

Lemma 1. Let S be an orientable n-manifold and x : S → Rn+1 an immersion with
Gauss map N : S → Sn and a non-degenerate second fundamental form, σ = −〈dN, dx〉.
Then, the curvature of the immersion is constant if and only if

∆σx = nN, ∆σN = −nH N,(1)

where H is the mean curvature of the immersion and ∆σ denotes the laplacian of the
second fundamental form.

Proof. Let∇ and∇σ be the Levi-Civita connections of the usual metric of Rn+1 and σ,
respectively, and consider {E1, . . . , En} an orthonormal moving frame in a neighbourhood
of p ∈ S, parallel at p for the metric σ, that is, σ(Ei, Ej) = εiδij , ∇σEi(p)Ej = 0, where
εi = ±1 and δij the Kronecker delta.

Using that 〈∇EiN,Ej〉 = −σ(Ei, Ej) = −εiδij we can calculate 〈∆σN,Ej〉 at p:

〈∆σN,Ej〉 =
n∑

i=1

εi〈Ei(Ei(N)), Ej〉 =
n∑

i=1

εi〈∇Ei∇EiN,Ej〉(2)

=
n∑

i=1

εi(Ei〈∇EiN,Ej〉 − 〈∇EiN,∇EiEj〉)

=
n∑

i=1

εi〈−∇EiN,∇EiEj〉.

Moreover, if G = (gkl) = (〈Ek, El〉) and G−1 =
(
glk
)

is its inverse matrix, then

−∇EiN =
n∑

l=1

εig
ilEl.(3)

Since the Lie bracket [Ei, Ej ](p) = 0, from (2), (3) and Koszul formula, we obtain

〈∆σN,Ej〉 =
n∑

i,l=1

gil〈∇EiEj , El〉 =
1
2

n∑

i,l=1

gil (Ei〈Ej , El〉+ Ej〈Ei, El〉 − El〈Ei, Ej〉)
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=
1
2

n∑

i,l=1

gilEj(gil) =
1
2

trace(G−1Ej(G)) =
1
2
Ej(log(det(G))),

where det denotes the usual determinant.
As the curvature K satisfies |K| det(G) = 1

〈∆σN,Ej〉 = −1
2
Ej(log |K|).(4)

Thus, it is clear that the tangent part of ∆σN vanishes if, and only if, K is constant.
On the other hand, using (3)

〈∆σN,N〉 =
n∑

i=1

εi〈Ei(Ei(N)), N〉 =
n∑

i=1

εi〈∇Ei∇EiN,N〉(5)

=
n∑

i=1

εi(Ei〈∇EiN,N〉 − 〈∇EiN,∇EiN〉)

=
n∑

i,l=1

gil〈El,∇EiN〉 = −
n∑

i,l=1

gilεiδil = −
n∑

i=1

giiεi

= −nH.
In that way, from (4) and (5), K is constant if and only if ∆σN = −nH N and we

conclude the first assertion of the Lemma.
Now, the Codazzi equation gives

〈∇EiN,∇EjEk〉 = 〈∇EjN,∇EiEk〉, i, j, k = 1, . . . , n,

and from (2), (3) and (4) we obtain:

〈∆σx,Ej〉 =
n∑

i=1

εi〈Ei(Ei(x)), Ej〉 =
n∑

i=1

εi〈∇Ei∇Eix,Ej〉(6)

=
n∑

i=1

εi〈∇EiEi, Ej〉 =
n∑

i,k=1

εiεkgjk〈∇EiEi,−∇EkN〉

=
n∑

i,k=1

εiεkgjk〈∇EkEi,−∇EiN〉 =
n∑

k=1

εkgjk〈∆σN,Ek〉

= −1
2

n∑

k=1

εkgjkEk(log |K|).

Moreover,

〈∆σx,N〉 =
n∑

i=1

εi〈Ei(Ei(x)), N〉 =
n∑

i=1

εi〈∇Ei∇Eix,N〉(7)

=
n∑

i=1

εi〈∇EiEi, N〉 =
n∑

i=1

εi〈Ei,−∇EiN〉 = n.

Since the matrix (εkgjk) has non-zero determinant, from (6) and (7), K is constant if
and only if ∆σx = nN .
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As a consequence of the above Lemma we obtain (see [2], [3])

Corollary 1. An orientable hypersurface in Rn+1 with non-degenerate second fun-
damental form has constant curvature if and only if its Gauss map is harmonic for σ.

Lemma 1 and the Alexandrov reflection principle let us get estimates of the maximum
height at which K-hypersurfaces can rise above a hyperplane. We also characterize the
spherical caps as the unique graphs that reach those bounds.

Let S be a compact n-manifold with a connected boundary ∂S and consider a K-
hypersurface x : S → Rn+1 such that

Γ = x(∂S) ⊂ P = {p ∈ Rn+1 | 〈p, a〉 = 0, |a| = 1}.
Theorem 1. If x is an embedding, then the maximum height at which x(S) can rise

above P is 2/ n
√
K.

Proof. Up to an isometry, we can assume that a = (0, · · · , 1) and x(S) lies in P+ =
{p ∈ Rn+1 | 〈p, a〉 ≥ 0}. Since x(S) is compact, there exists a point where every principal
curvature has the same sign. Thus, σ is definite.

By using, in a standard way, the Alexandrov reflection principle with respect to par-
allel hyperplanes to P coming down from the highest point, x(S) must be a graph, at
least until the hyperplane is halfway down to P . Thus, it is sufficient to check that the
bound 1/ n

√
K is satisfied if x(S) is a graph.

We suppose x(S) is a graph and choose the inner normal N . Then, σ is positive
definite and

∆σ( n
√
K〈x, a〉+ 〈N, a〉) = n( n

√
K −H)〈N, a〉.(8)

Since H ≥ n
√
K, see [8], and 〈N, a〉 ≤ 0

∆σ( n
√
K〈x, a〉+ 〈N, a〉) ≥ 0 on S.(9)

Now, bearing in mind that n
√
K〈x, a〉+〈N, a〉 ≤ 0 on the boundary, we have n

√
K〈x, a〉

+ 〈N, a〉 ≤ 0 on S and the inequality follows.

Theorem 2. If x(S) is a graph on a compact domain in P and the Euclidean gradient
of height function, 〈x, a〉, is bounded along ∂S (that is, there exists a real constant m such
that |∇〈x, a〉| ≤ m ≤ 1 on ∂S), then 〈x, a〉 ≤ (1−

√
1−m2)/ n

√
K.

Moreover, equality holds if and only if x(S) is a spherical cap.

Proof. As before we can assume that a = (0, · · · , 1) and x(S) lies in P+. Consider the
inner normal N , then 〈N, a〉 = −

√
1− |∇〈x, a〉|2. Thus, on the boundary of S

n
√
K〈x, a〉+ 〈N, a〉 = 〈N, a〉 ≤ −

√
1−m2

and then, from (9), we have, n
√
K〈x, a〉+ 〈N, a〉 ≤ −

√
1−m2 on S, that is,

〈x, a〉 ≤ −〈N, a〉 −
√

1−m2

n
√
K

≤ 1−
√

1−m2

n
√
K

.(10)

Moreover, if equality holds, then there exists an interior point on the domain where
n
√
K〈x, a〉+ 〈N, a〉 = −

√
1−m2. Using again (9) and the maximum principle the equality

holds everywhere. Therefore, from (8), H = n
√
K and S is a spherical cap, see [8].
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3. Curvature estimates. Let S be a compact n-manifold with connected boundary
∂S and x : S → Rn+1 an immersion such that the image of the boundary of S lies in the
hyperplane P = {p ∈ Rn+1 | 〈p, a〉 = 0, |a| = 1}. Then, the number

A =
1
n

∫

∂S

〈x× dx× n−1). . . ×dx , a〉

is called the algebraic area of x(∂S). Moreover, the above number does not depend on
the parametrization of the immersion and if x(∂S) is embedded then |A| is the volume
enclosed by x(∂S) in P .

Recall from the Introduction that if x is a K-hypersurface, then the curvature of x|∂S
in P ≡ Rn does not vanish at any point. Moreover, if n ≥ 3, x is an embedding.

Now, we obtain a necessary condition for a connected (n − 1)-manifold lying in a
hyperplane P to be the boundary of a compact K-hypersurface.

Theorem 3. If x : S → Rn+1 is a K-hypersurface, then

nK |A| ≤
∫

∂S

K∂S dA = vol(Sn−1)deg(η),

where η is the Gauss map of x : ∂S → P and K,K∂S > 0 denote the curvature of S and
∂S in Rn+1 and P , respectively.

Moreover, equality holds if and only if x(S) is a hemisphere.

Proof. Choose N and η such that K and K∂S are positive. It is clear that

dN× n). . . ×dN = K dx× n). . . ×dx
and using that K is constant, we have

d(N × dN× n−1). . . ×dN) = d(K x× dx× n−1). . . ×dx).

Then, from Stokes’s theorem we obtain

nK |A| = K

∫

∂S

〈x× dx× n−1). . . ×dx, a〉 dA =
∫

∂S

〈N × dN× n−1). . . ×dN, a〉 dA,

where a is a unit normal vector to P such that the above integral is non-negative.
On the other hand, there exists a real function θ such that N = cos θ η+sin θ a. Thus,

dN = dθ (− sin θ η + cos θ a) + cos θ dη and

〈N × dN× n−1). . . ×dN, a〉 = (cos θ)n 〈η × dη× n−1). . . ×dη, a〉.
Therefore,

nK |A| =
∫

∂S

(cos θ)nK∂S dA ≤
∫

∂S

K∂S dA = vol(Sn−1)deg(η).(11)

Moreover, if equality holds then cos θ = 1 along ∂S and N = η, that is, 〈N, a〉 = 0 on
∂S. Hence, x(S) meets P orthogonally and x(S) must be a graph on a convex domain in
P if n ≥ 3.

In this way, for n ≥ 3, using the Alexandrov reflection principle in any direction, v,
perpendicular to a, x(S) must be symmetric with respect to a hyperplane with normal
vector v, see [11]. Therefore, x(S) is a revolution hypersurface.
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Since equality holds x(∂S) must be a sphere of radius 1/ n
√
K and using again the

Alexandrov reflection principle for graphs with the same boundary, x(S) must be a hemi-
sphere.

For n = 2, since 〈N, a〉 = 0, x(∂S) is a line of curvature and its geodesic curvature
vanishes identically. Thus, from the Gauss–Bonnet theorem

2π χ(S) =
∫

S

K > 0.

Therefore, the Euler characteristic of S, χ(S) is positive, that is, χ(S) = 1 and using
Lemma 2 in [5], x(S) is a hemisphere.

Remark 1. Under the conditions of the above theorem:

1. If S is a surface in R3, that is, n = 2, then

K |A| ≤ π |i(∂S)|
where i(∂S) is the rotation index of the curve x(∂S).

2. If n ≥ 3,
nK |A| ≤ vol(Sn−1).

Now, we study compact graphs with non-zero curvature (not necessarily constant).

Theorem 4. If x(S) is a graph with non-zero positive curvature on a compact domain
in the hyperplane P and the Euclidean gradient of the height function is bounded by a
real constant m along ∂S (that is, |∇〈x, a〉| ≤ m ≤ 1 on ∂S), then

nK0 |A| ≤ mn

∫

∂S

K∂S dA

where K,K∂S > 0 denote the curvature of x(S) and x(∂S) in Rn+1 and P , respectively,
and K0 is the minimum of K on x(S).

Moreover, equality holds if and only if x(S) is a spherical cap.

Proof. We can consider x(S) ⊂ P+. By taking the inner normals N, η along S and
∂S, respectively, and using the Stokes theorem

nK0 |A| = K0

∫

∂S

〈x× dx× n−1). . . ×dx, a〉 dA ≤
∫

∂S

K 〈x× dx× n−1). . . ×dx, a〉 dA

=
∫

S

K d(〈x× dx× n−1). . . ×dx, a〉) dA =
∫

S

d〈N × dN× n−1). . . ×dN, a〉 dA

=
∫

∂S

〈N × dN× n−1). . . ×dN, a〉 dA.

Arguing as in the above theorem N = cos θ η + sin θ a along ∂S and

nK0 |A| ≤
∫

∂S

cosn θK∂S dA.

Since sin θ = 〈N, a〉 = −
√

1− |∇〈x, a〉|2 on ∂S and cos θ > 0 then cos θ = |∇〈x, a〉| ≤
m and the theorem follows.

If equality holds K = K0 on S and |∇〈x, a〉| = m on ∂S. Thus, using the Alexandrov
reflection principle, as in the above theorem, x(S) must be a spherical cap.
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4. Volume estimates. In this section, we give an estimation for the volume enclosed
by a graph with constant curvature and planar boundary.

With the same notation as in §3 we have

Theorem 5. If x(S) is a K-hypersurface such that it is a graph on a compact domain
in the hyperplane P with bounded Euclidean gradient of the height function along ∂S (that
is, there exists a real constant m such that |∇〈x, a〉| ≤ m ≤ 1 on ∂S), then

(a) for n = 2

V ≤ 2−
√

1−m2 (2 +m2)

3
√
K3

π,

(b) for n ≥ 3

nV ≤ vol(Sn−1)
n
√
Kn+1

∫ 1

√
1−m2

√
(1− t2)n dt,

where V is the volume enclosed by S and P .
Moreover, equality holds if and only if S is a spherical cap.

Proof. We can assume x(S) ⊂ P+ and a = (0, · · · , 1). Then,

V =
∫ h

0
|At| dt

where h is the maximum height of the graph above P and At is the algebraic area of
Bt = S ∩ {〈x, a〉 = t}.

From (11),

nK V =
∫ h

0

(∫

Bt

|∇〈x, a〉|nKBt dAt

)
dt

curvature of Bt in {〈x, a〉 = t}.
Then, from (10)

1− |∇〈x, a〉|2 = 〈N, a〉2 ≥ (
√

1−m2 + n
√
K 〈x, a〉)2,

and we have

nK V ≤
∫ h

0

(∫

Bt

(1− (
√

1−m2 + n
√
K t)2)

n
2 KBt dA

)
dt

=
∫ h

0
(1− (

√
1−m2 + n

√
K t)2)

n
2

(∫

Bt

KBt dA

)
dt.

But,
∫
Bt
KBt dA = vol(Sn−1) does not depend on t, consequently,

nK V ≤
∫ h

0
(1− (

√
1−m2 + n

√
K t)2)

n
2 dt vol(Sn−1),

and the theorem follows as in Theorem 4.
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