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1. Introduction. A semi-Riemannian manifold (M, g), n ≥ 3, is said to be semisym-
metric ([46]) if

R ·R = 0(1)

on M . If on M we have

R · S = 0(2)

then (M, g) is called Ricci-semisymmetric. The manifold (M, g), n ≥ 4, is said to be
Weyl-semisymmetric if

R · C = 0(3)

on M . For precise definitions of the symbols used, we refer to Section 2 of this paper.
We say that (1)–(3) are conditions of semisymmetric type ([16], Section 4.3). In Section
3 of this paper we present also other relations of this type. Some considerations on semi-
Riemannian manifolds satisfying the conditions of semisymmetric type lead to weaker
curvature conditions, namely to pseudosymmetry type conditions (e.g., see [9], [16] and
[48]). In this paper we present a review of recent results on semi-Riemannian manifolds
satisfying such conditions. The basic class of manifolds related to this subject is formed
by pseudosymmetric manifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is said to
be pseudosymmetric ([16], Section 3.1; [48]) if at every point of M the tensors R · R
and Q(g,R) are linearly dependent. Thus (M, g) is pseudosymmetric if and only if on
UR = {x ∈M |R − κ

n(n−1)G 6= 0 at x} we have

R ·R = LRQ(g,R),(4)

where LR is some function on UR. It is clear that every semisymmetric manifold is
pseudosymmetric. The converse statement is not true. For instance, the Schwarzschild
spacetime is a non-semisymmetric pseudosymmetric manifold ([30]). In Section 4 we
present results on pseudosymmetric manifolds. In that section we give also results re-
lated to Ricci-pseudosymmetric, Weyl-pseudosymmetric manifolds as well as manifolds
with pseudosymmetric Weyl tensor. We mention that every hypersurface in a Rieman-
nian space of constant curvature realizing Chen’s basic equality ([11]) is a manifold with
pseudosymmetric Weyl tensor [31](Corollary 5.1).

In Section 5 we present other groups of conditions of pseudosymmetry type. A semi-
Riemannian manifold (M, g), n ≥ 3, is said to be a Ricci-generalized pseudosymmetric
manifold ([16], Section 5.3) if at every point of M the tensors R · R and Q(S,R) are
linearly dependent. Thus (M, g) is Ricci-generalized pseudosymmetric if and only if on
U = {x ∈M |Q(S,R) 6= 0 at x} we have

R ·R = LQ(S,R),(5)

where L is some function on U . A Ricci-generalized pseudosymmetric manifold is called
special if on M we have

R ·R = Q(S,R).(6)
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The condition (6) arose during investigations of curvature properties of semi-Riemannian
manifolds satisfying

ω(X)R(Y, Z) + ω(Y )R(Z,X) + ω(Z)R(X,Y ) = 0,(7)

where ω is a 1-form on M . Namely, it is known that (7) implies (6) on a subset of M
consisting of all points at which the 1-form ω is nonzero ([16], Section 5.3). In Section 5
we present results on semi-Riemannian manifolds satisfying (6). Among other things, we
state that this condition is fulfilled on every hypersurface M of a semi-Euclidean space
En+1
s , with signature (s, n+ 1− s). In other words, the difference tensor R ·R−Q(S,R)

vanishes onM . In the case when the ambient space is a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, with signature (s, n + 1 − s), the tensor R · R − Q(S,R) of
every hypersurface M in Nn+1

s (c) is expressed by (e.g., see [16], Section 5.5)

R ·R−Q(S,R) = − (n− 2) κ̃
n(n+ 1)

Q(g, C),(8)

where κ̃ is the scalar curvature of the ambient space. The last relation leads to the next
condition of pseudosymmetry type on a semi-Riemannian manifolds (M, g): at every point
of M the tensors R ·R−Q(S,R) and Q(g, C) are linearly dependent. This is equivalent
on UC = {x ∈M |C 6= 0 at x} to

R ·R−Q(S,R) = L1Q(g, C),(9)

where L1 is some function on UC . It is also known that any 4-dimensional warped product
M1×FM2, dim M1 = 1, fulfils (9) ([13]). Thus, in particular, every generalized Robertson-
Walker spacetime ([4]) satisfies (9). There are also 4-dimensional non-warped product
manifolds which realize (9). For instance, the Akivis-Goldberg metrics have this property.
In Section 5 we describe in detail curvature properties of this class of metrics. In that
section we also consider other curvature conditions of pseudosymmetry type. Among other
things we present conditions related to hypersurfaces in spaces of constant curvature or
in affine hypersurfaces ([6], [15], [17] and [20]).

In Section 6 we present results on quasi-Einstein hypersurfaces in En+1
s (c), n ≥ 4,

satisfying some curvature condition of pseudosymmetry type (see [21], [26], [28]). These
results are closely related to the warped product solutions of the P. J. Ryan problem (see
[19] and [20] and references therein).

Recently, in [27] a curvature property of pseudosymmetry type of Einstein manifolds
has been found. Namely we have

Theorem 1.1 ([27], Theorem 3.1). On any semi-Riemannian Einstein manifold the
following identity is satisfied:

R · C − C ·R =
κ

(n− 1)n
Q(g,R) =

κ

(n− 1)n
Q(g, C).(10)

Evidently, for n = 2 or n = 3, the above condition is satisfied trivially. Motivated
by the above theorem we introduced in [27] (see also [24]) a family of curvature con-
ditions of pseudosymmetry type. In Section 7 we present results on non-Einstein and
non-conformally flat semi-Riemannian manifolds fulfilling these conditions.
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We finish this section with a remark that every condition of pseudosymmetry type on
a semi-Riemannian manifold (M, g) is on a certain open subset of M locally equivalent
to a system of partial differential equations of second order.

2. Basic definitions. In this section we present definitions of the tensors considered
in this paper. Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian connected mani-
fold of class C∞. We denote by ∇, S and κ, the Levi-Civita connection, the Ricci tensor
and the scalar curvature of (M, g), respectively. We define on M the endomorphisms
X ∧A Y , R(X,Y ) and C(X,Y ) by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

C(X,Y ) = R(X,Y )− 1
n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
,

respectively, where A is a (0, 2)-tensor on M , X,Y, Z ∈ Ξ(M), Ξ(M) being the Lie
algebra of vector fields on M and the Ricci operator S is defined by g(X,SY ) =
S(X,Y ). The Riemann curvature tensor R, the Weyl tensor C and the (0, 4)-tensor G of
(M, g) are defined by R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), C(X1, X2, X3, X4) =
g(C(X1, X2)X3, X4) and G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4), respectively. For
symmetric (0, 2)-tensors A and B we define their Kulkarni-Nomizu product A ∧B by

(A ∧B)(X1, X2;X,Y ) = A(X1, Y )B(X2, X) +A(X2, X)B(X1, Y )

−A(X1, X)B(X2, Y )−A(X2, Y )B(X1, X).

Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be a (0, 4)-tensor
associated with B(X,Y ) by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).(11)

It is well known that the tensor B is said to be a generalized curvature tensor if the
following conditions are fulfilled:

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2) = 0.

Clearly, the the tensors R, C and G are generalized curvature tensors. It is also easy to
see that A ∧B is also a generalized curvature tensor.

Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be the tensor
defined by (11). We extend the endomorphism B(X,Y ) to a derivation B(X,Y )· of the
algebra of tensor fields on M , assuming that it commutes with contractions and B(X,Y )·
f = 0 for any smooth function on M . Now for a (0, k)-tensor field T , k ≥ 1, we can define
the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk;X,Y )

= −T (B(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).

In addition, if A is a symmetric (0, 2)-tensor field then we define the (0, k + 2)-tensor
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Q(A, T ) by

Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk;X,Y )

= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In particular, in this way, we obtain the (0, 6)-tensors B ·B and Q(A,B). Setting in the
above formulas B = R or B = C, T = R or T = C or T = S, A = g or A = S, we get
the tensors R ·R, R ·C, C ·R, C ·C, Q(g,R), Q(g, C), Q(S,G), Q(S,R), Q(S,C), R · S,
C · S, and Q(g, S).

For a (0, k)-tensor field T , k ≥ 1, and a symmetric (0, 2)-tensor field A on M , we
define the (0, k)-tensor A · T by

(A · T )(X1, . . . , Xk) = −T (AX1, X2, . . . , Xk)− . . .− T (X1, X2, . . . ,AXk),

where the endomorphism A is defined by g(AX,Y ) = A(X,Y ). Putting in the above
formula T = R or T = C and A = S, we obtain the tensors: S ·R and S · C.

Let M be a hypersurface in a semi-Riemannian space of constant curvature Nn+1
s (c),

n ≥ 4. Let g denote the metric tensor of M induced from the metric tensor of Nn+1
s (c).

The second fundamental tensor H and the shape operator A of M satisfy the relation
Hk(X,Y ) = g(AkX,Y ), k = 1, 2, . . ., where X,Y are vector fields tangent to M . We
denote by UH the subset of M consisting of all points at which H2 is not a linear
combination of the tensors H and g.

3. Semisymmetric manifolds. It is well known that the class of semisymmetric
manifolds includes the set of locally symmetric manifolds (∇R = 0) as a proper subset.
Semisymmetric Riemannian manifolds were first studied by E. Cartan, A. Lichnerowicz,
R. S. Couty and N. S. Sinjukov. In [43] K. Nomizu asked whether there exist complete,
irreducible and simply connected Riemannian manifolds of dimension ≥ 3 satisfying (1)
and not locally symmetric. The first positive example was constructed by H. Takagi ([47]).
A fundamental study on Riemannian semisymmetric manifolds was made by Z. I. Szabó
(e.g., see [46]). Semisymmetric non-conformally flat (C 6= 0) semi-Riemannian manifolds
were studied by A. Derdziński and W. Roter. They investigated semisymmetric manifolds
having parallel Weyl tensor (∇C = 0) as well as semisymmetric manifolds with recurrent
Weyl tensor (∇C = C ⊗ ψ) (see [44] and references therein). Under some additional
assumptions such manifolds satisfy (9). In particular, we have

Theorem 3.1 (cf. [23], Theorem 4.3). Every manifold (M, g), n ≥ 4, with parallel
Weyl tensor, which is nor locally symmetric and nor conformally flat, satisfies (9).

Recently, semisymmetric semi-Riemannian manifolds were investigated in [38] and
[42]. In particular, in [38] there have been investigated curvature properties of pseu-
dosymmetry type of semi-Riemannian manifolds satisfying the following condition:

R =
φ

2
S ∧ S(12)

on the set U ⊂ M consisting of all points of M at which rank S > 1, where φ is some
function on U .
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We note that the class of Ricci-semisymmetric manifolds includes the set of Ricci-
symmetric manifolds (∇S = 0) as a proper subset. Every semisymmetric manifold is
Ricci-semisymmetric. The converse statement is not true. However, under some additional
assumptions, (1) and (2) are equivalent. The problem of the equivalence of (1) and (2)
was considered by several authors (e.g., see [1], [5], [19] and [20] and references therein).
Recently, examples of non-semisymmetric quasi-Einstein Ricci-symmetric hypersurfaces
in Euclidean spaces En+1, n ≥ 5, were found in [1]. There also exist non-semisymmetric
Ricci-symmetric (quasi-Einstein or non-quasi-Einstein) hypersurfaces in semi-Euclidean
spaces En+1

s , n ≥ 5, ([19], see also [20]). In Section 6 we present results on quasi-Einstein
hypersurfaces in semi-Euclidean spaces.

Every semisymmetric manifold is Weyl-semisymmetric. The converse statement is not
true. It is known that (1) and (3) are equivalent on the set UC of any semi-Riemannian
manifold (M, g) of dimension n ≥ 5. If n = 4 this statement is not true. There exists a 4-
dimensional non-semisymmetric and non-conformally flat Riemannian manifold satisfying
(3). We refer to [16](Section 9) for a review of results related to this subject.

There also exist semi-Riemannian manifolds which satisfy the following condition
(e.g., see [16], Section 5.6):

ω(X) C(Y, Z) + ω(Y ) C(Z,X) + ω(Z) C(X,Y ) = 0,

where ω is a 1-form on M . If this is satisfied at a point x ∈M and the 1-form ω is nonzero
at this point, then at x we have ([16], Section 5.6) C ·C = 0. Recently, semi-Riemannian
manifolds satisfying other curvature conditions of semisymmetry type: S ·R = 0 or

S · C = 0,(13)

were investigated e.g. in: [12], [21] and [34].

4. Pseudosymmetric manifolds. The condition (4) arose during the study on to-
tally umbilical submanifolds of semisymmetric manifolds ([16], Section 13), as well as
when considering geodesic mappings of semisymmetric manifolds ([16], Section 10). It
is known that every totally umbilical submanifold, with parallel mean curvature vector
field, in a semi-Riemannian semisymmetric (or more generally, in a pseudosymmetric)
manifold is also pseudosymmetric. In particular, extrinsic spheres in pseudosymmetric
Riemannian manifolds are also pseudosymmetric. Further, if a semi-Riemannian mani-
fold (M, g) admits a geodesic mapping onto a semisymmetric (or more general, onto a
pseudosymmetric) manifold then (M, g) is pseudosymmetric. The class of pseudosym-
metric manifolds is the widest known class of manifolds which is closed with respect
to geodesic mappings. It is easy to verify that (4) is invariant under concircular de-
formations ([16], Section 11). We also mention that the metric of the Schwarzschild
spacetime is a conformal deformation of some semisymmetric metric. The Schwarzschild
spacetime, the Kottler spacetime as well as the Reissner-Nordström spacetime are non-
semisymmetric pseudosymmetric manifolds ([14], [30]). In general, the Robertson-Walker
spacetimes are pseudosymmetric. However, in some special case, certain Robertson-
Walker spacetimes are semisymmetric ([16], Section 6). For more detailed information
on the geometric motivation for the introduction of pseudosymmetric manifolds, and for
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a review of results on different aspects of pseudosymmetric manifolds we refer to [16]
and [48].

Let S be the Ricci operator of a semi-Riemannian manifold (M, g). It is known that at
every point x of a conformally flat semisymmetric semi-Riemannian manifold (M, g) its
operator S2 is a linear combination of S and the identity transformation of TxM . The con-
verse statement is not true. If at every point of a conformally flat manifold (M, g) its Ricci
operator has the above property then, in general, (M, g) is a non-semisymmetric pseu-
dosymmetric manifold ([16], Section 6). We mention that there also exist non-conformally
flat pseudosymmetric manifolds which are non-semisymmetric (e.g., see [16], Section 3.6).

A special subclass of pseudosymmetric manifolds is determined by the following de-
composition of the curvature tensor of (M, g).

Theorem 4.1 (cf. [23], Theorem 4.2). Let (M, g), n ≥ 4, be a semi-Riemannian
manifold. If on the set US ∩ UC ⊂M its curvature tensor R has the decomposition

R =
φ

2
S ∧ S + µ g ∧ S + η G,(14)

then on this set we have (4) and

R ·R = Q(S,R) +
(
LR +

µ

φ

)
Q(g, C), LR =

µ

φ
((n− 2)µ− 1)− η (n− 2),

where φ, µ and η are some functions on US ∩ UC .

We note that (12) is a special case of (14). Evidently, the Schwarzschild spacetime
the Kottler spacetime as well as the Robertson-Walker spacetimes can not fullfil (14).
In [39](Example 5.3) a class of four dimensional warped products satisfying (14) were
determined. In particular, in view of this result, we can state that the Reissner-Nordström
spacetime fulfils (14) ([39]). We mention that in [39] generalized curvature tensors having
a decomposition of the form (14) were investigated.

A pseudosymmetric manifold (M, g), n ≥ 3, is said to be a pseudosymmetric manifolds
of constant type if the function LR, defined by (4) is constant on UR ([40], [41]). [36], [40]
and [41] contain results related to local classification of 3-dimensional pseudosymmetric
manifolds of constant type.

Recently, some results on pseudosymmetric D’Atri spaces of dimension n = 3 or n = 4
were obtained in [8] and [9] (see also [7]).

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric ([16], Section
4.1) if at every point of M the tensors R · S and Q(g, S) are linearly dependent. Thus
(M, g) is Ricci-pseudosymmetric if and only if on US = {x ∈ M |S − κ

ng 6= 0 at x} we
have

R · S = LS Q(g, S),(15)

where LS is some function on US . Note that US ⊂ UR . If at a point x of a manifold (M, g)
the condition (4) is satisfied then (15) holds at x. The converse statement is not true (e.g.,
see [16], Section 8). A family of compact non-pseudosymmetric Ricci-pseudosymmetric
manifolds was described in [29].

The Cartan hypersurfaces in the sphere Sn+1(c) are compact, minimal hypersurfaces
with constant principal curvatures −

√
3c, 0,

√
3c of the same multiplicity. Thus such
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hypersurfaces are isoparametric. The Cartan hypersurfaces exist only for n = 3, 6, 12
or 24. More precisely, the Cartan hypersurfaces are tubes of constant radius over the
standard Veronese embeddings i : FP 2 → S3d+1(c) → E3d+2 , d = 1, 2, 4 or 8, of the
projective plane FP 2 in the sphere S3d+1(c) in E3d+2, where F = R (real numbers), C
(complex numbers), H (quaternions) or O (octonions), respectively. These hypersurfaces
were discovered by E. Cartan in his work about isoparametric hypersurfaces. Cartan
hypersurfaces are manifolds, with non-parallel Ricci tensor, satisfying

(∇S)(X,Y ;Z) + (∇S)(Y, Z;X) + (∇S)(Z,X;Y ) = 0,(16)

for all X,Y, Z ∈ Ξ(M). Further, in [32](Theorem 1) it was shown that every Cartan hy-
persurface in Sn+1(c), n = 6, 12 or 24, is a non-pseudosymmetric Ricci-pseudosymmetric
manifold fulfilling

R · S =
τ

n(n+ 1)
Q(g, S),(17)

where τ is the scalar curvature of Sn+1(c). Cartan hypersurface in S4(c) is a pseudosym-
metric manifold satisfying R ·R = τ

12 Q(g,R). Recently, new curvature properties of the
Cartan hypersurfaces has been obtained in [20]. We present it in the next section.

We also mention that in [18](see also references therein) the conditions of pseudosym-
metry and Ricci-pseudosymmetry realized on hypersurfaces of semi-Riemannian spaces
of constant curvature were investigated. For instance, we have

Theorem 4.2 ([18], Theorems 3.1 and 5.1). Let M be a hypersurface in Nn+1
s (c),

n ≥ 4. Then M is pseudosymmetric if and only if at every x ∈M its second fundamental
tensor H is of rank two or at this point H2, the square of H, is a linear combination of
H and the metric tensor g. Moreover, on UH ⊂M we have

R ·R =
τ

n(n+ 1)
Q(g,R).(18)

Theorem 4.3 (cf. [39], Example 5.4). The curvature tensor R of a pseudosymmetric
hypersurface M in Nn+1

s (c), n ≥ 4, is of the form (14) on the subset UH ⊂M .

Let N2(c) be a minimal surface with constant curvature c in the unit (n+ 1)-sphere
Sn+1(1). According to [11](Section 6) the tubular hypersurface T π

2
(N2(c)) with radius

π
2 about N2(c) is called a generalized Cartan hypersurface in Sn+1(1). At every point
of that hypersurface its second fundamental tensor H fulfils rankH ≤ 2. Generalized
Cartan hypersurfaces satisfy Chen’s basic equality. This, together with Theorem 4.3,
leads immediately to the following

Corollary 4.1. Every generalized Cartan hypersurface, with c 6= 0, fulfils (18).

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be Weyl-pseudosymmetric ([16],
Section 4.2) if at every point of M the tensors R ·C and Q(g, C) are linearly dependent.
Thus (M, g) is Weyl-pseudosymmetric if and only if on UC ⊂M we have

R · C = LC Q(g, C),(19)

where LC is some function on UC . Note that UC ⊂ UR . Evidently, every pseudosymmetric
manifold is Weyl-pseudosymmetric. The converse statement is not true. It is known that
(4) and (19) are equivalent on the subset UC of every semi-Riemannian manifold of
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dimension n ≥ 5 (e.g., see [16], Section 9.2). Further, both conditions are equivalent
on the subset UC of every 4-dimensional warped product manifold ([16], Section 9.3).
Every conformally flat Riemannian manifold of dimension ≥ 4 is Weyl-pseudosymmetric.
There exist non-pseudosymmetric conformally flat manifolds (e.g., see [16], Section 3.5)
as well as non-pseudosymmetric Weyl-pseudosymmetric manifolds with nonzero tensor
R · C (e.g., see [16], Section 9.2).

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold with pseudosym-
metric Weyl tensor ([16], Section 12.6) if at every point of M the tensors C · C and
Q(g, C) are linearly dependent. Thus (M, g) is a manifold with pseudosymmetric Weyl
tensor if and only if

C · C = LQ(g, C),(20)

on UC , where L is some function on UC . It is known that every warped product M1×FM2,
dim M1 = dim M2 = 2, fulfils (20) ([16], Section 12.6). Manifolds fulfilling (4) and
(20) were investigated in [33]. Hypersurfaces with pseudosymmetric Weyl tensor were
investigated e.g. in [31]. We have

Theorem 4.4 ([31], Theorem 3.1). Any 2-quasi umbilical hypersurface, of dimension
n ≥ 4, in a conformally flat space is a manifold with pseudosymmetric Weyl tensor.

5. Other conditions of pseudosymmetry type. We recall that a Ricci-gene-
ralized pseudosymmetric manifold is called special if (6) holds on M . For results on
manifolds satisfying (6) we refer to Section 5 of [16] and references therein. Recently,
4-dimensional warped products fulfilling (6) and (13) were studied in [12].

The warped product M1 ×F M2, of a 1-dimensional manifold (M1, g), g11 = −1,
with a warping function F , and a 3-dimensional Riemannian manifold (M2, g̃) is said
to be a generalized Robertson-Walker spacetime (e.g., see [4]). Recently these spacetimes
have been widely and intensively studied; see for example [45] and references therein. In
particular, when the manifold (M2, g̃) is a Riemannian space of constant curvature, the
warped product M1 ×F M2 is called a Robertson-Walker spacetime. Every Robertson-
Walker spacetime is pseudosymmetric (e.g., see [16], Section 12.2). In [13] it was shown
that generalized Robertson-Walker spacetimes fulfil (9).

Recently, in [34] it was proved that 4-dimensional semi-Riemannian manifolds inves-
tigated in [3] also fulfil (9). Let M be a manifold of dimension n = pq, and let SC(p, q)
be a differentiable field of Segre cones SCx(p, q) ⊂ TxM , x ∈M . The pair (M,SC(p, q))
is called an almost Grassmann structure and is denoted by AG(p − 1, p + q − 1). The
manifold M endowed with such structure is said to be an almost Grassmann manifold
([2], Chapter 7; [3], Definition 1.1). Certain additional conditions lead to so-called semi-
integrable almost Grassmann structures ([3], Definition 1.2). The latter were studied in
[3] and examples of such structures, mainly 4-dimensional, are presented there. Some
semi-Riemannian metrics are related to these structures. The problem arises to describe
curvature properties and, in particular, curvature properties of pseudosymmetry type,
of these metrics. In [34] curvature properties of 4-dimensional metrics considered in the
Examples 3.5 - 3.16 of [3] were found. These metrics will be called Akivis-Goldberg, in
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short AG-metrics. It is easy to check that the Ricci tensor S and the scalar curvature κ
of an AG-metric satisfy

(i) rankS ≤ 2, (ii) S2 = 0, (iii) κ = 0.(21)

In [34] it was shown that every AG-metric fulfils (13). We can also check that the AG-
metrics considered in the Examples 3.5-3.13 and 3.15 of [3] satisfy (7) for some nonzero
1-form. Thus we see that these metrics fulfil also (6). In addition, in [34] it was shown
that the AG-metric, defined in Example 3.5 of [3], is a non-warped product metric. This
metric cannot be realized as a hypersurface in a space N 5

s ([34]).
We denote by C the class of all semi-Riemannian manifolds, of dimensions ≥ 4, sat-

isfying (6). In this class we can distinguish at least three subclasses: C1, C2, and C3. The
subclass C1 is formed by warped products ([16], Section 5.3). The subclass C2 is formed by
semi-Riemannian manifolds whose curvature tensor R satisfies R = εA ∧A, ε = ±1, for
some symmetric (0, 2)-tensor A. In particular, every hypersurface in En+1

s , n ≥ 3, belongs
to this subclass ([16], Section 5.4). The subclass C3 is formed by manifolds fulfilling (7)
such that ω is nonzero on a dense subset of a given manifold. The AG-metric g defined
in Example 3.5 of [3] belongs to the subclass C3 but belongs neither to C1 nor to C2.
This shows that the subclass C3 is essential. In [12] we present an example of a warped
product manifold which belongs to the class C2 and does not belong to the class C3. It
is an open problem whether there exist other subclasses of the class C. The AG-metrics
defined in the Examples 3.14 and 3.16 of [3] are semisymmetric metrics with a nonzero
tensor Q(S,R). Therefore both metrics do not satisfy (6). However, they satisfy (9). Thus
we can state that the AG-metrics satisfy (9) ([34], Theorem 4.4). We recall that confor-
mally symmetric manifolds which are neither locally symmetric and neither conformally
flat also satisfy (9) ([23], Theorem 4.3). However, they form two disjoint subclasses of the
class of all semi-Riemannian manifolds satisfying (9) ([34], Remark 4.9).

[22] considers semi-Riemannian manifolds (M, g), n ≥ 4, fulfilling at every point the
condition: the tensors R ·C and Q(S,C) are linearly dependent. This is equivalent on the
set U = {x ∈M |Q(S,C) 6= 0 at x} to

R · C = LQ(S,C),(22)

where L is some function on U . We note that every semisymmetric manifold, as well
as every Weyl-semisymmetric manifold, satisfies (22) trivially. There also exist non-
semisymmetric and non-Weyl-semisymmetric manifolds satisfying this condition. Mani-
folds satisfying (22) have recently been investigated e.g. in: [21], [22], [25], [26] and [28].
The conditions: (4), (5), (9), (15), (19), (20) and (22) are called conditions of pseudosym-
metry type ([15], [16] and [48]).

As mentioned in the previous section, new curvature properties of the Cartan hyper-
surfaces of dimension n = 6, 12 or 24 have been obtained in [20]. Namely, we have

Theorem 5.1 (cf. [20], Theorem 4.3). On every Cartan hypersurface M in Sn+1(c),
n = 6, 12 or 24, the following relations are fulfilled: (17),

R · C = Q(S,R)− (n− 2)τ
n(n+ 1)

Q(g,R)− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G),(23)
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C ·R =
n− 3
n− 2

Q(S,R)− (n− 3)τ
(n− 1)(n+ 1)

Q(g,R)− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G),

C · C =
n− 3
n− 2

Q(S,R)− (n− 3)τ
(n− 1)(n+ 1)

Q(g,R)− (n− 3)(n2 − n− 3)τ
(n− 2)2n(n+ 1)2 Q(S,G).

Very recently, hypersurfaces of semi-Riemannian spaces of constant curvature
Nn+1
s (c), n ≥ 4, satisfying (23) were investigated in [35]. Among other things, the fol-

lowing curvature characterization of Ricci-pseudosymmetric hypersurfaces was proved.

Theorem 5.2 ([35], Theorem 6.1). Let M be a hypersurface in Nn+1
s , n ≥ 4. Then

(17) is fulfilled on UH ⊂M if and only if (23) holds on UH .

There are also other curvature conditions of pseudosymmetry type. For instance, a
family of conditions of pseuodsymmetry type on non-degenerate affine hypersurfaces M
were introduced and investigated in [15] and [17]. These papers investigated curvature
conditions formed with the tensors R∗ · R∗, Q(Ric(R∗), R∗), Q(h,R∗), where R∗ is the
Opozda-Verstraelen curvature tensor and h is the Blaschke-Berwald metric on M . We
also mention that recently a group of conditions of pseudosymmetry type formed by the
tensors: R, C and powers Hk, k = 1, 2, 3, obtained from the second fundamental tensor
H of a hypersurface M in En+1

s , n ≥ 4, were introduced and studied in [6].

6. Quasi-Einstein manifolds. A semi-Riemannian manifold (M, g), n ≥ 2, is said
to be an Einstein manifold if on M we have

S =
κ

n
g,(24)

where S and κ denote the Ricci tensor and the scalar curvature of (M, g), respectively.
According to [10] (see p. 432), (24) is called the Einstein metric condition. It is well known
that Einstein manifolds form a natural subclass of various classes of semi-Riemannian
manifolds which are determined by curvature conditions imposed on their Ricci tensor
([10], Table, pp. 432-433). For instance, every Einstein manifold belongs to the class of
semi-Riemannian manifolds (M, g) satisfying

∇
(
S − κ

2(n− 1)
g

)
(X,Y ;Z) = ∇

(
S − κ

2(n− 1)
g

)
(X,Z;Y ),(25)

for all X,Y, Z ∈ Ξ(M). (25) means that the tensor S − κ
2(n−1) g is a Codazzi tensor on

M . Semi-Riemannian manifolds of dimensions ≥ 4 fulfilling (25) are called manifolds
with harmonic Weyl tensor ([10], p. 440). We also say that (25) is a generalized Einstein
metric condition ([10], Chapter XVI). We note that (16) is also a condition of this type.
For a presentation of such conditions we refer to Chapter XVI of [10]. As we show in the
next section, some pseudosymmetry type curvature conditions give rise to new examples
of curvature conditions of this kind.

A semi-Riemannian manifold (M, g), n ≥ 3, is called a quasi-Einstein manifold if at
every point of M its Ricci tensor S has the following form:

S = α g + β w ⊗ w, w ∈ T ∗xM, α, β ∈ R.(26)

Evidently, Einstein manifolds is formed by a subclass of quasi-Einstein manifolds. Another
subclass of quasi-Einstein manifolds is formed by Ricci-simple manifolds, i.e. manifolds
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having the Ricci tensor of rank at most one. In addition, we mention that semisymmetric
Ricci-simple hypersurfaces in semi-Euclidean spaces were investigated in [21]. Examples
of such hypersurfaces are also given in [21]. We refer to [27] and [28] for a wider review
of results related to the above presentation.

We mention that if (26) is satisfied at x ∈ M − UH then the Weyl tensor C of a
hypersurface M vanishes at x or at this point the Ricci tensor S of M is proportional to
the metric tensor ([28], Lemma 4.1(ii)). Therefore we restrict our considerations to the
subset UH ⊂M .

Theorem 6.1 ([28], Theorem 5.1). Let M be a quasi-Einstein hypersurface in En+1
s ,

n ≥ 4. Then at every point x ∈ UH ⊂M the following three conditions are equivalent:

(i) R · S = 0, (ii) A(W ) = 0,

(iii) A3 = tr(A)A2 − ε κ

n− 1
A, ε = ±1, α =

κ

n− 1
,(27)

where the vector W is related to w by g(W,X) = w(X), X ∈ TxM , and w and α are
defined by (26). Moreover, if at every point x ∈ UH of M one of the above conditions
(i)-(iii) is fulfilled then α = κ

n−1 and R · C = Q(S,C) at x.

We also mention that the above result was applied to the construction of examples
of non-semisymmetric Ricci-semisymmetric quasi-Einstein (or non-quasi-Einstein) hyper-
surfaces in En+1

s , n ≥ 5 (see [19] and references therein).
We note that if (22) is satisfied on the subset U of a hypersurface M in En+1

s then
we have U ⊂ UH ⊂ M . At all points of the set M − U , at which S 6= 0 and C 6= 0, we
have the following relation ([22], Theorem 3.1): R · R = κ

n−1 Q(g,R). There also exist
non-semisymmetric manifolds satisfying (22) ([22]). Recently, hypersurfaces satisfying
(22) were investigated in [26]. The following was proved:

Theorem 6.2 ([26], Theorem 4.3). If M is a hypersurface in En+1
s (c), n ≥ 4, satis-

fying (22), then L = 1 and

R · S = 0, C · S = 0, S =
κ

n− 1
g + β ω ⊗ ω,

A3 = tr(A)A2 − ε κ

n− 1
A, ε = ±1, α =

κ

n− 1
, A(W ) = 0,

hold on the set UL ⊂ U ⊂ M of all points of U at which the associated function L is
nonzero, where the vector W is related to w by g(W,X) = w(X), X ∈ TxM , and w and
α are defined by (26).

7. Certain generalized Einstein metric conditions. Motivated by Theorem 1.1
we introduce a family of curvature conditions. First of all we note that on any Einstein
manifold (10) can be also presented in the form

R · C − C ·R =
1

n− 1
Q(S,R) =

1
n− 1

Q(S,C).(28)

In view of this, we can investigate curvature properties of non-Einstein and non-conform-
ally flat semi-Riemannian manifolds (M, g), n ≥ 4, satisfying one of the following condi-
tions: at every point of M the tensors R ·C −C ·R and Q(A, T ) are linearly dependent,
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where A = g or A = S and T = R or T = C. Thus we have the following relations related
to the above conditions:

R · C − C ·R = L1Q(g, C),(29)

R · C − C ·R = L2Q(g,R),(30)

R · C − C ·R = L3Q(S,C),(31)

R · C − C ·R = L4Q(S,R),(32)

where L1 is some function on UC , L2 some function on UR, L3 some function on U defined
in Section 1 and L4 some function on U defined in Section 5, respectively. Recently,
curvature properties of semi-Riemannian manifolds satisfying (29) - (32) are investigated
in [24], [27] and [37]. There are also other curvature conditions of this kind ([20], [39]).

Let (M, g), n ≥ 4, be a semi-Riemannian manifold. In view of Theorem 1.1, we restrict
our considerations to the subset U = US ∩ UC of M . It is clear that U ⊂ UR. The main
result related to (29) is given in the following

Theorem 7.1 ([27], Theorem 4.1). Let (M, g), n ≥ 4, be a semi-Riemannian mani-
fold fulfilling (29). Then R ·R = L1 Q(g,R) and C ·R = 0 on U ⊂M .

Corollary 7.1 ([27], Corollary 5.1). Let (M, g), n ≥ 4, be a semi-Riemannian man-
ifold fulfilling R · C = C ·R. Then R ·R = 0 and C ·R = 0 on U .

We also have certain inverse statements (see [27], Proposition 4.2 and Proposition 4.3).
Investigating the condition (30) we considered two cases: the quasi-Einstein case and

the non-quasi-Einstein case and we obtained the following results.

Theorem 7.2 ([24], Theorem 3.1). Let (M, g), n ≥ 4, be a semi-Riemannian mani-
fold satisfying (26) and (30). Then we have the following curvature identities on U :

S = β w ⊗ w, κ = 0, R · R = 0, C ·R = 0,
∑

X,Y,Z

w(X)C(Y, Z) = 0.

Theorem 7.3 ([24], Theorem 4.1). Let (M, g), n ≥ 4, be a non-quasi-Einstein semi-
Riemannian manifold fulfilling (30). Then on U the curvature tensor R is of the form
(14), where µ (µ− 1

n−2 ) = φη. Consequently, R ·R = 0 on U .

Propositions 3.2 and 4.2 of [24] are inverse statements to the above theorems.
Taking into account Theorem 7.2 and Theorem 7.3 we obtain

Theorem 7.4 ([24], Theorem 4.2). Let (M, g), n ≥ 4, be a semi-Riemannian mani-
fold fulfilling (30). Then R ·R = 0 on U .

Examples of Ricci-simple as well as non-quasi-Einstein semi-Riemannian manifolds
satisfying R ·R = 0 and C ·R = LQ(g,R) are given in [38]. Warped products satisfying
(30) are described in [24].

The conditions (31) and (32) will be investigated in subsequent papers. We also have
some partial results related to (32).

Theorem 7.5 ([37]). Let (M, g), n ≥ 4, be a Ricci-semisymmetric manifold fulfilling
(32). Then on U ∩ UL we have S(W,R(X,Y )Z) = κ

n−1 R(X,Y, Z,W ) and L4 = 1
n−2 .



192 M. BELKHELFA ET AL.

We also have the following inverse statement.

Proposition 7.1 ([37]). Let (M, g), n ≥ 4, be a semi-Riemannian manifold. If

S(W,R(X,Y )Z) =
κ

n− 1
R(X,Y, Z,W ),

then (M, g) is a Ricci-semisymmetric manifold fulfilling (32) with L4 = κ
n−2 .
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[27] R. Deszcz, M. Hotloś, and Z. S. entürk, On some family of generalized Einstein metric
conditions, Demonstratio Math. 34 (2001), 943–954.
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