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Abstract. We study the generalized Stokes resolvent equations in asymptotically flat layers,

which can be considered as compact perturbations of an infinite (flat) layer Ω0 = R
n−1 ×

(−1, 1). Besides standard non-slip boundary conditions, we consider a mixture of slip and non-

slip boundary conditions on the upper and lower boundary, respectively. We discuss the results

on unique solvability of the generalized Stokes resolvent equations as well as the existence of a

bounded H∞-calculus for the associated Stokes operator and some of its consequences, which

also yields an application to a free boundary value problem.

1. Introduction. Throughout this contribution Ωγ ⊂ Rn, n ≥ 2, denotes an asymp-

totically flat layer with C1,1-boundary, which is a domain bounded by two surfaces ∂Ω+
γ

and ∂Ω−
γ that get “close” to two parallel hyper-planes at infinity. More precisely,

Ωγ = {(x′, xn) ∈ R
n : γ+(x′) < xn < γ−(x′)},

where γ± ∈ C1,1 with γ± → ±1 and ∇γ±,∇2γ± → 0 as |x′| → ∞ and ∂Ω±
γ =

{(x′, γ±(x′)) : x′ ∈ Rn−1}.

We consider the generalized Stokes resolvent equations

(λ− ∆)u+ ∇p = f in Ωγ , (1.1)

div u = g in Ωγ , (1.2)

T+
j (u, p) = a+ on ∂Ω+

γ , (1.3)

u|∂Ω−
γ

= 0 on ∂Ω−
γ (1.4)

with two kinds of boundary conditions, j = 0 or j = 1, where

T+
0 (u, p) = u|∂Ω+

γ
, T+

1 (u, p) = (ν · S(u) − νp)|∂Ω+
γ
, S(u) = ∇u+ (∇u)T ,

and λ ∈ Σδ ∪ {0}.
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The case j = 0 corresponds to standard non-slip boundary conditions. The mixed

case j = 1 is important for application to free boundary value problems, see Section 6

below.

The structure of the article is as follows: First we present the results on unique solvabil-

ity of (1.1)-(1.4) in Section 2. Second we discuss the existence of a bounded H∞-calculus

of the (reduced) Stokes operator associated to (1.1)-(1.4). Since the corresponding proofs

use the calculus of pseudodifferential boundary value problems, we introduce the re-

duced Stokes equations in Section 3, which is an equivalent system to (1.1)-(1.4) and fits

well in the latter calculus. Moreover, in Section 4, we give a short introduction to the

theory of pseudodifferential boundary value problems, which was introduced by Boutet

de Monvel [12] and extended by Grubb [18] to a parameter-dependent calculus and by

Abels [6, 8, 9] to the case of non-smooth symbols. Then, in Section 5, we present the main

ideas and the structure of the proof that the (reduced) Stokes operators admit a bounded

H∞-calculus. It is based on an explicit construction of a parametrix to (1.1)-(1.4), which

is an “solution operator modulo lower order terms”. Finally, in Section 6, we discuss

some consequences of the bounded H∞-calculus, which are the maximal regularity of the

Stokes operators and the characterization of the domains of fractional powers. Moreover,

the maximal regularity is the basis for the proof of the short-time existence of the motion

of viscous surface waves in Lq-Sobolev spaces as discussed by Beale [11] and others in an

L2-setting.

2. Solvability of the Stokes resolvent equations. In the following Wm
q (Ω), m ∈ N0

denotes the standard Sobolev space based on the space of q-integrable functions Lq(Ω),

where Ω ⊆ R
n is a domain. Moreover, Wm

q,0(Ω) denotes the closure of C∞
0 (Ω) in the

Wm
q (Ω)-norm. Because of the mixed boundary conditions in the case j = 1, we also

introduce 0W 1
q (Ωγ) = {u ∈ W 1

q (Ωγ) : u|∂Ω+
γ

= 0} and 0W
−1
q (Ωγ) := (0W 1

q′(Ωγ))′ with
1
q

+ 1
q′ = 1. In order to get estimates uniform in the spectral parameter λ, we have to use

the following parameter-dependent norm of a ∈W
m− 1

q
q (∂Ω+

γ ), m ∈ N,

‖a‖q

m− 1
q

,q,λ
:=

∑

|α|≤m−1

(1 + |λ|)
(m−k)q

2 − 1
2 ‖a‖q

Lq(∂Ω+
γ )

+
∑

|α|=m−1

∫

∂Ω+
γ

∫

∂Ω+
γ

|Dαa(x) −Dαa(y)|q

|x− y|
n−1+ q

q′

dσ(x)dσ(y),

where dσ denotes the surface measure on ∂Ω+
γ . Finally,

Ẇ 1
q (Ω) =

{

u ∈ L
q
loc(Ω) : ∇u ∈ Lq(Ω)

}

and Ẇ−1
q,0 (Ω) := (Ẇ 1

q′(Ω))′.

Theorem 2.1. Let 1 < q < ∞ and λ ∈ C \ (−∞, 0). Then for every (f, g, a+) ∈

Lq(Ωγ)n × W 1
q (Ωγ) × W

2−j− 1
q

q (∂Ω+
γ )n with g ∈ Ẇ−1

q,0 (Ωγ) if j = 0 there is a unique

solution (u, p) ∈W 2
q (Ωγ)n × Ẇ 1

q (Ωγ) of (1.1)-(1.4). Moreover,

(1 + |λ|)‖u‖q + ‖∇2u‖q + ‖∇p‖q

≤ Cδ(‖f‖q + ‖∇g‖q + (1 + |λ|)‖g‖Ẇ
−1
q,0 (Ωγ) + ‖a+‖2− 1

q
,q,λ) (2.1)
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if j = 0 and

(1 + |λ|)‖u‖q + ‖∇2u‖q + ‖∇p‖q + ‖p|∂Ω+
γ
‖1− 1

q
,q,λ

≤ Cδ(‖f‖q + ‖∇g‖q + (1 + |λ|)‖g‖
0W

−1
q

+ ‖a+‖1− 1
q

,q,λ) (2.2)

if j = 1 both uniformly in λ ∈ Σδ ∪ {0}, where Σδ := {λ ∈ C \ {0} : | arg λ| < δ}.

The theorem is proved in [5] and [8] in detail. The proof consists of the following three

parts:

First the unique solvability in an infinite layer Ω0 = Rn−1 × (−1, 1) is proved. This

was done by Abels and Wiegner [10] in the case j = 0 and by Abels [3] in the case

j = 1. More precisely, in [10] it is shown that for j = 0, (1.1)-(1.4) is uniquely solvable

even for every λ ∈ C \ (−∞,−π2

4 ] with some modified estimates for λ close to −π2

4 .

Moreover, Abe and Shibata [1, 2] proved Theorem 2.1 in the case Ω0 = Rn−1 × (−1, 1),

j = 0, and g = 0. Because of the special geometry the solution of (1.1)-(1.4) can be

calculated explicitly using partial Fourier transformation, i.e., Fourier transformation in

the tangential variable x′ = (x1, . . . , xn−1). Then it remains to estimate the solution

operator, which acts like a Fourier multiplier operator in x′ and like an integral operator

in xn ∈ (−1, 1). This is done using the well-known Mikhlin multiplier theorem, cf. [3, 10]

for details.

Second the first part implies the unique solvability for asymptotically flat layers which

are “sufficiently” close to an infinite layer. This is done by a similar perturbation argument

as in Farwig and Sohr [14, Section 3].

Finally, by definition, an arbitrary asymptotically flat layers can be decomposed as

Ωγ = Ωγ0
∪ Ωb, where Ωγ0

is sufficiently close to Ω0 and Ωb is bounded, cf. Figure 1.

Ωγ

Ωγ0

|x′| ≤ R

Fig. 1. Choice of Ωγ0

Using this decomposition the Fredholm solvability of (1.1)-(1.4) and uniqueness of

the solutions in Ωγ can be shown by means of standard cut-off techniques as presented

in [14]. Finally, the parametrix construction done in [6] and discussed below implies the

unique solvability of (1.1)-(1.4) and the estimates of the solution for λ ∈ Σδ, |λ| ≥ R > 0.

Because of the continuity of the Fredholm index, this proves Theorem 2.1.

3. Reduced Stokes equations. The basis of the parametrix construction to (1.1)-

(1.4) using the calculus of pseudodifferential boundary value problems is the following

reduction, which goes back to Grubb and Solonnikov [20]. It is proved in [5, Section 3]
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that (1.1)-(1.4) are uniquely solvable (with the restriction λ 6= 0 if j = 0) if and only if

the reduced Stokes resolvent equations

(λ− ∆)u+Gj0u = fr in Ωγ , (3.1)

T ′
j
+
u = a+

r on ∂Ω+
γ , (3.2)

u|∂Ω−
γ

= 0 on ∂Ω−
γ , (3.3)

where

G00 = ∇KNν · (∆ −∇div)u|∂Ωγ
, G10u = ∇KDN

(

2∂νuν |∂Ω+
γ

ν · (∆ −∇div)u|∂Ω−
γ

)

,

T ′
0
+
u = u|∂Ω+

γ
, (T ′

1
+
u)τ = (ν · S(u))τ |∂Ω+

γ
, (T ′

1
+
u)ν = div u|∂Ω+

γ
,

are uniquely solvable in suitable Lq-Sobolev spaces, see [5, Section 3] for details. Here

τ denotes the tangential component and KN and KDN denote the Poisson operators

for the Laplace equation with Neumann and mixed Dirichlet-Neumann boundary con-

ditions, resp., i.e., ∆KNa = ∆KDNa = 0, ∂νKNa|∂Ωγ
a = a, KDNa|∂Ω+

γ
= a+, and

∂νKDNa|∂Ω−
γ

= a−. Moreover, the a priori estimates (2.1)-(2.2) are equivalent to

(1 + |λ|)‖u‖q + ‖∇2u‖q ≤ Cq,δ(‖fr‖q + ‖a+
r ‖2−j− 1

q
,q,λ). (3.4)

We will only present the main idea of the reduction in the case j = 1. Applying div and

ν · .|∂Ω−
γ

to the equation (1.1) and using the normal component of (1.3), the pressure

solves

∆p = div f − (λ− ∆)g in Ωγ ,

p|∂Ω+
γ

= 2∂νuν |∂Ω+ − a+
ν on ∂Ω+

γ ,

∂νp|∂Ω−
γ

= ν · (∆ −∇div)u|∂Ω−
γ

+ ν · f |∂Ω−
γ

+ ∂νg|∂Ω−
γ

on ∂Ω−
γ .

Hence we can split p = p1 + p2 such that p1 depends only on u and p2 depends only on

(f, g, a+). More precisely,

p1 = KDN

(

−a+
ν

ν · f |∂Ω−
γ

+ ∂νg|∂Ω−
γ

)

.

Hence u solves (3.1)-(3.3) with fr = f −∇p2 and ν · a+
r = div g|∂Ω+

γ
, (a+

r )τ = aτ , if (u, p)

is a solution of (1.1)-(1.4). Conversely, if u is a solution of the reduced system (3.1)-(3.3)

with (fr, ar) as above,

(λ− ∆) div u = div fr = (λ− ∆)g in Ωγ ,

div u|∂Ω+
γ

= ν · ar = div g|∂Ω+
γ

on ∂Ω+
γ ,

∂ν div u|∂Ω−
γ

= ν · fr|∂Ω−
γ

= ∂νg|∂Ω− on ∂Ω−
γ .

Hence div u = g since the latter system is uniquely solvable.

To (3.1)-(3.3) we naturally associate the reduced Stokes operator Aj0 = −∆ +Gj0 on

Lq(Ωγ)n with domain

D(Aj0) := {u ∈W 2
q (Ω)n : T ′

j
+
u = 0, u|∂Ω−

γ =0}.
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An important fact is that A00|Jq,0(Ω) = Aq, where Aq = −Pq∆ is the (usual) Stokes

operator with domain D(Aq) = W 2
q (Ωγ)n∩W 1

q,0(Ωγ)n∩Jq,0(Ω), Pq : Lq(Ωγ)n → Jq,0(Ωγ)

is the Helmholtz projection and

Jq,0(Ωγ) = {u ∈ Lq(Ωγ)n : div u = 0, ν · u|∂Ωγ
= 0},

cf. [5, 8] for the corresponding results in Ωγ .

Finally, we mention that the reduced system (3.1)-(3.3) fits well into the general

calculus of parameter-dependent pseudodifferential boundary value problems, cf. Sec-

tion 4 below. This was used in [20] to solve the nonstationary Navier-Stokes equations

in anisotropic L2-Sobolev spaces in bounded smooth domains locally in time for various

kinds of boundary conditions. Later this result was extended to Lq-Sobolev spaces, cf.

[17], and smooth exterior domains, cf. [19].

4. Pseudodifferential boundary value problems. In order to explain the para-

metrix construction used in the proof of the bounded H∞-calculus, cf. Theorem 5.1

below, we give a short introduction to the calculus of pseudodifferential boundary value

problems, also called Boutet de Monvel calculus.

Recall that by definition a smooth function p : Rn × Rn → C belongs to the symbol

class Sm
1,0(R

n × Rn), m ∈ Rn, if and only if for every α, β ∈ Nn
0

|∂β
x∂

α
ξ p(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| (4.1)

uniformly in x, ξ ∈ R
n. For given p ∈ Sm

1,0(R
n × R

n) the associated pseudodifferential

operator is defined as

p(x,Dx)f ≡ OP (p)f =
1

(2π)n

∫

Rn

eix·ξp(x, ξ)f̂(ξ)dξ, f ∈ S(Rn),

where f̂(ξ) = Fx7→ξ[f ] and F denotes the Fourier transformation. It is easy to observe

that most of the basic results on pseudodifferential operators as for example presented

in [21, Section 2] generalize to the case of operator-valued pseudodifferential symbols

p : Rn × Rn → L(X0, X1), where Xj , j = 0, 1 are arbitrary Banach spaces. The proofs

carry over literally except for the results on mapping properties in Bessel potential and

Sobolev spaces then Xj have to be Hilbert spaces. In the following Sm
1,0(R

n × R
n;X)

denotes the corresponding symbol classes defined as in (4.1) by replacing | · | by the norm

of a Banach space X.

The calculus of pseudodifferential operators was introduced by Boutet de Monvel [12]

and consists of operators modeling elliptic differential boundary value problems on man-

ifolds with boundary and their solution operators. It was extended by Grubb [18] to

parameter-dependent problems. In the following we will for simplicity restrict ourselves

to the case that the manifold is Rn
+. Then the calculus consists of Green operator a(x,Dx)

of the form

(

p(x,Dx)+ + g(x′, Dx) k(x′, Dx)

t(x′, Dx) s(x′, Dx)

)

:

S(R
n

+)N

×

S(Rn−1)M

→

S(R
n

+)N ′

×

S(Rn−1)M ′

,

where p(x,Dx)+ = r+p(x,Dx)e+ is a truncated pseudo-differential operator satisfying
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the transmission condition, r+f = f |Rn
+
, and e+g denotes the extension by 0 of a func-

tion g defined on Rn
+ to Rn. Moreover, k(x′, Dx), t(x′, Dx), and g(x′, Dx) are Poisson,

trace, singular Green operators, resp., and s(x′, Dx) is an (n− 1)-dimensional pseudodif-

ferential operator. It is useful to look at a(x,Dx) as an operator-valued pseudodifferential

operator a(x,Dx) = OP′(a(x, ξ′, Dn)), where OP′ denotes the operator associated to a

pseudodifferential symbol in x′, ξ′ ∈ Rn−1 and

a(x, ξ′, Dn) =

(

p(x, ξ′, Dn)+ + g(x′, ξ′, Dn) k(x′, ξ′, Dn)

t(x′, ξ′, Dn) s(x′, ξ′)

)

:

S(R+)N

×

CM

→

S(R+)N ′

×

CM ′

is called boundary symbol operator. We refer to [6, 18] for the precise definitions. For the

convenience of the reader we mention that

t(x′, ξ′, Dn)f =

∫ ∞

0

t̃(x′, ξ′, yn)f(yn)dyn k(x′, ξ′, Dn)a = k̃(x′, ξ′, xn)a

g(x′, ξ′, Dn)f =

∫ ∞

0

g̃(x′, ξ′, xn, yn)f(yn)dyn, a ∈ C
M , f ∈ S(R+)N ,

where k̃ ∈ Sm−1
1,0 (Rn−1 × Rn−1,S(R+)), t̃ ∈ Sm

1,0(R
n−1 × Rn−1,S(R+)), and g̃ ∈

Sm−1
1,0 (Rn−1 × R

n−1,S(R+)⊗̂S(R+)), m ∈ R. Here

f̃(x′, ξ′, xn) ∈ Sd
1,0(R

n−1 × R
n−1,S(R+))

:⇔ xl
n∂

l′

n f̃(x′, ξ′, xn) ∈ S
d+ 1

2−l+l′

1,0 (Rn−1 × R
n−1;L2(R+)) for all l, l′ ∈ N0

and Sd
1,0(R

n−1 × Rn−1,S(R+)⊗̂S(R+)) is defined similarly.

The reduced Stokes system fits naturally in this calculus. It is modeled by the bound-

ary symbol operators

aj,λ(ξ′, Dn) =

(

λ+ |ξ′|2 − ∂2
n + kj(ξ

′, Dn)tj(ξ
′, Dn)

t′j(ξ
′, Dn)

)

, j = 0, 1,

where

k0(ξ
′, Dn)a = −e−|ξ′|xn

(

iξ′

|ξ′|

−1

)

iξ′
T
a, k1(ξ

′, Dn)a = e−|ξ′|xn

(

iξ′

−|ξ′|

)

a,

t0(ξ
′, Dn)u = ∂nu

′(0), t1(ξ
′, Dn)u = 2∂nun(0),

t′0(ξ
′, Dn)u = u(0), t′1(ξ

′, Dn)u,=

(

iξ′un(0) + ∂nu
′(0)

iξ′ · u′(0) + ∂nun(0)

)

.

Here u′ = (u1, . . . , un−1). (To be precise, ξ′ 7→ |ξ′| has to be modified suitably in a

neighborhood of 0 in order to get a smooth dependence on ξ′ ∈ Rn−1.) It was shown

by Grubb and Solonnikov [20, Theorem 6.1] that aj,λ(ξ′, Dn) is parameter-elliptic for

λ = µ2eiθ, µ ∈ R, and arbitrary θ ∈ (−π, π) in the sense of [18, Definition 3.1.2.]. This

result implies that there is a c0 > 0 such that

aj,λ(ξ′, Dn) : H2
2 (R+)n → L2(R+)n × C

n

is bijective for all |ξ′| + |λ|
1
2 ≥ c0, λ ∈ Σδ, δ ∈ (0, π), c0 = c0(δ); the same is true
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if H2
2 (R+) and L2(R+) are replaced by S(R+). Moreover, aj,λ(ξ′, µ,Dn)−1 is again a

boundary symbol operator belonging to the calculus.

In order to construct a parametrix to (1.1)-(1.4) in a curved half-space Rn
γ =

{(x′, xn) ∈ Rn : xn > γ(x′)}, one has to analyze how the operators behave if con-

jugated with a coordinate transformation. It is easy to observe that, if p(x,Dx) is a

differential operator with principal part p0(x,Dx) and F : Rn → Rn is a diffeomor-

phism and (F ∗u)(x) := u(F (x)), then the principal part of F ∗p(x,Dx)F ∗,−1 is q0(x,Dx),

where q0(x, ξ) = p0(F (x), DxF (x)−T ξ). This statement generalizes to pseudodifferen-

tial operators, cf. [21, Section 2, Theorem 6.3]. Similarly, it can be shown that, using

F : Rn
+ → Rn

γ : x 7→ (x′, xn + γ(x′)), the reduced system on Rn
γ carries over to a system

on Rn
+, the principal part of which is given by

aj,λ(x′, ξ′, Dn) = U(x′)T aj,λ(A′(x′)ξ′, c(x′)Dn + d(x′))U(x′). (4.2)

Here aj,λ(ξ′, Dn) is the boundary symbol operator of the reduced Stokes system on R
n
+

defined above, U(x′) is an orthogonal matrix mapping the exterior normal on ∂Rn
γ onto

the exterior normal on ∂Rn
+, and A′(x′), c(x′), d(x′) are related to the Jacobian of F , cf.

[6, Section 5.3] for details.

Because of (4.2) and the invertibility of aj,λ(ξ′, Dn), aj,λ(x′, ξ′, Dn) is invertible for

|ξ′| + |λ|
1
2 ≥ c0 > 0, λ ∈ Σδ. Moreover, the results on the composition of parameter-

dependent Green operators tell us that the composition of two Green operators coincides

with the operator obtained by the product of their boundary symbol operators modulo

lower order terms. More precisely, this yields that, if bj,λ(x′, ξ′, Dn) = aj,λ(x′, ξ′, Dn)−1

for |ξ′| + |λ|
1
2 ≥ c0 > 0, then

aj,λ(x′, Dx)bj,λ(x′, ξ′, Dn) = OP ′(aj,λ(x′, ξ′, Dn)bj,λ(x′, ξ′, Dn)) +Rλ = I +R′
λ,

where ‖(Rλ, R
′
λ)‖L(Lq(Rn

+)) ≤ Cδ(1 + |λ|)−ε, ε > 0, λ ∈ Σδ, δ ∈ (0, π). Hence we can use

Rj,λf := F ∗,−1aj,λ(x′, Dx)F ∗

(

f

0

)

(4.3)

as parametrix to the reduced Stokes system in a curved half-space R
n
γ .

Finally, we note that the usual operator classes defined in [12, 18] require smooth

symbols. In particular, using the latter calculus, F : Rn
+ → Rn

γ and therefore ∂Rn
γ have

to be smooth. But in order to construct the parametrix assuming only a C1,1-boundary,

the calculus has to be generalized to symbols, which are Hölder continuous in the space

variable x. This was done partially in [6, 8], as far as needed to prove Theorem 5.1 below,

and in [9] in a more general treatment.

5. H∞-calculus of the reduced Stokes operator. Using the calculus of pseudodif-

ferential boundary value problems, it was proved in [6] that the usual Stokes operator in

the Dirichlet case and the reduced Stokes operator in the mixed case admit a bounded

H∞-calculus in the sense of McIntosh [22].

Theorem 5.1. Let 1 < q <∞ and let δ ∈ (0, π). Moreover, let Aq and A10 = −∆ +G10

be the (reduced) Stokes operators as defined in Section 3. Then Aq and A10 admit a
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bounded H∞-calculus with respect to δ on X = Jq,0(Ωγ) and X = Lq(Ωγ)n, resp. , i.e.,

h(A) =
1

2πi

∫

Γ

h(−λ)(λ+A)−1dλ, A = Aq, A10, (5.1)

is a bounded operator on X and

‖h(A)‖L(X) ≤ Cδ‖h‖∞ (5.2)

for every h ∈ H∞(δ), where H∞(δ) denotes the algebra of all bounded holomorphic func-

tions h : Σπ−δ → C and Γ is the negatively oriented boundary of Σδ.

Remark 5.2. The existence of bounded imaginary powers of the Stokes operator Aq

on an infinite layer Ω0 = R
n−1 × (−1, 1) was already proved in [7]. Because of the flat

boundary, the proof can be done only using Mikhlin multipliers, i.e., constant coefficient

pseudodifferential operators. Although the proof in [7] is formulated only for bounded

imaginary powers, it directly carries over to the more general case of a bounded H∞-

calculus.

Sketch of the proof. First of all, we note that (λ + A00)
−1|Jq,0(Ωγ) = (λ + Aq)

−1. Hence

in order to prove the theorem it is sufficient to construct an approximate resolvent Rj0,λ

such that

(λ+Aj0)
−1 = Rj0,λ + Sj,λ, j = 0, 1, (5.3)

where ‖Sj,λ‖L(X) ≤ C(1 + |λ|)−1−ε, ε > 0, and
∥

∥

∥

∥

∫

Γ

h(−λ)Rj0,λdλ

∥

∥

∥

∥

L(X)

≤ Cδ‖h‖∞, h ∈ H∞(δ). (5.4)

Here Rj0,λ is constructed explicitly with the aid of the calculus of parameter-dependent

pseudodifferential boundary value problems introduced in Section 4. More precisely,

Rj0,λ = ψ+R
+
j,λϕ+ + ψ−R

−
0,λϕ− + ψ0Pλϕ0,

where R±
j,λ, j = 0, 1, is the parametrix to the resolvent of the reduced Stokes operator

in the curved half-spaces Rn
γ± = {x ∈ Rn : ±xn > ±γ±(x′)} as defined in (4.3), Pλ =

OP((λ+ |ξ|2)−1) is the resolvent of −∆ on Rn, {ϕ+, ϕ−, ϕ0} is a partition of unity such

that ϕ± = 1 in a neighborhood of ∂Ω±
γ , and ψ∗ are suitable smooth functions such that

ψ∗ = 1 on suppϕ∗, ∗ = +,−, 0. Then the statements on compositions and the mapping

properties of Green operators (with Hölder continuous coefficients) yield that

(λ+Aj0)Rj0,λ = I + S′
j,λ,

where ‖S′
j,λ‖L(X) ≤ C(1 + |λ|)−ε, ε > 0, which implies (5.3). All remainder terms due

to localization and coordinate transformation are of lower order and do not change the

principal part. – In particular, this shows that (λ+Aj0)
−1 exists if |λ| ≥ R > 0, λ ∈ Σδ,

which is used in the proof of Theorem 2.1.

Finally, it remains to prove (5.4), which can be reduced to appropriate estimates on

the boundary symbol operators of R±
j,λ, cf. [6, Section 5.4] for details.

6. Consequences of theorem 5.1 and applications. Theorem 5.1 implies the ex-

istence of bounded imaginary powers Aiy, y ∈ R, of the Stokes and the reduced Stokes
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operator, resp., since hy(z) = ziy ∈ H∞(δ). More precisely,

‖Aiy‖L(X) ≤ Cδe
(π−δ)y, A = Aq, A10,

where δ ∈ (0, π) is arbitrary. Hence the well-known result due to Dore and Venni [13,

Theorem 3.2] and its extension by Giga and Sohr [16, Theorem 2.1] gives an important

application of this abstract property:

Theorem 6.1. Let 1 < p, q < ∞, 0 < T ≤ ∞, f ∈ Lp(0, T ;Xq), and let A and X = Xq

be as in Theorem 5.1. Then the Cauchy problem

u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = 0

has a unique solution u ∈W 1
p (0, T ;Xq) ∩ L

p(0, T ;D(A)). Moreover,

‖u′‖Lp(0,T ;Xq) + ‖Au‖Lp(0,T ;Xq) ≤ C‖f‖Lp(0,T ;Xq),

where C does not depend on T .

Therefore the Stokes operator Aq and the reduced Stokes operator A10 have maximal

regularity.

Moreover, by [15, Proposition 6.1] the bounded imaginary powers of the (reduced)

Stokes operators A = Aq, A10 implies that the domain of fractional powers D(Aα), α ∈

(0, 1), can be characterized as

D(Aα
q ) = (Jq,0(Ω),D(Aq))[α], D(Aα

10) = (Lq(Ω),D(A10))[α]

where (., .)[α] denotes the complex interpolation functor.

Using Theorem 6.1, the initial value problem for the motion of an “infinite ocean” of a

viscous fluid under the force of gravity, firstly studied in [11], can be solved in Lq-Sobolev

spaces. According to this problem the motion of the fluid is described as the solution of

the Navier-Stokes equations

∂tu+ (u · ∇)u− ∆u+ ∇p = −g0en with x ∈ Ω(t), t ∈ (0, T ), (6.1)

div u = 0 with x ∈ Ω(t), t ∈ (0, T ), (6.2)

T+
1 (u, p) = −P0ν with x ∈ ∂Ω(t)+, t ∈ (0, T ), (6.3)

u|∂Ω− = 0 on ∂Ω(0)− × (0, T ), (6.4)

u|t=0 = u0 in Ω(0) (6.5)

in a layer-like domain Ω(t) = {(x′, xn) ∈ Rn : γ−(x′, t) < xn < γ+(x′, t)} with a fixed

bottom below, i.e., ∂Ω(t)− = ∂Ω(0)−, where ∂Ω(t)± = {(x′, γ±(x′, t)) : x′ ∈ Rn−1} and a

free surface above. Here u0 is a given initial velocity, Ω(0) is the initial domain filled by the

fluid, g0 > 0 is the constant due to the acceleration of gravity, en the n-th canonical unit

vector, and P0 is the atmospheric pressure which is assumed to be constant. Moreover,

the velocity field u and the domain Ω(t) have to satisfy a kinematic relation: Let X(ξ, t),

t > 0, be the trajectory of the mass particle, i.e., X(ξ, t) solves

∂tX(ξ, t) = u(X(ξ, t), t), for t > 0, X(ξ, 0) = ξ.

Then X(., t) : Ω(0) → Ω(t) is bijective for all t > 0. Finally, we note that the effect of

surface tension is neglected.



18 H. ABELS

Beale [11] proved the short time existence of a unique solution of (6.1)-(6.5) in L2-

Sobolev spaces. The proof is done by passing to Lagrangian coordinates, i.e., considering

v(ξ, t) := u(X(ξ, t), t) and q(ξ, t) := p(X(ξ, t), t), and linearizing the transformed sys-

tem of (6.1)-(6.5), which is the nonstationary (generalized) Stokes system on Ω(0), i.e.,

(1.1)-(1.4) with λ replaced by ∂t and an additional initial condition. Then a fixed point

argument yields the unique solvability of (6.1)-(6.5) locally in time.

Based on Theorem 6.1, the proof can be adapted to Lq-Sobolev spaces for q > n. This

has the advantage that the regularity assumptions on the data can be reduced by using the

embedding W 1
q (Ω) →֒ L∞(Ω) for q > n instead of Wm

2 (Ω) →֒ L∞(Ω) for m > n
2 . Roughly

speaking, unique solvability of (6.1)-(6.5) can be proved for u0 ∈ W
2− 2

q
q (Ω(0))n, q > n,

satisfying the natural compatibility conditions, Ω(0) being an asymptotically flat layer

with ∂Ω(0)+ ∈W
1− 1

q
q , and sufficiently small T > 0, cf. [4] for details. In [11] the assump-

tion u0 ∈ Hr−1(Ω(0)) and ∂Ω(0)+ ∈ Hr− 3
2 with r > 3 is needed.
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