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Abstract. We consider a free boundary problem of a two-dimensional Navier-Stokes shear flow.
There exist a unique global in time solution of the considered problem as well as the global
attractor for the associated semigroup. As in [1] and [2], we estimate from above the dimension
of the attractor in terms of given data and the geometry of the domain of the flow. This research
is motivated by a free boundary problem from lubrication theory where the domain of the flow
is usually very thin and the roughness of the boundary strongly affects the flow. We show how
it can enlarge the dimension of the attractor. To this end we establish a new version of the
Lieb-Thirring inequality with constants depending on the geometry of the domain.

1. Introduction. We consider the problem of finite dimensionality of a strongly turbu-
lent boundary driven flow considered in lubrication theory. The two-dimensional domain
occupied by the flow is assumed to be periodic with a period cell 2 a thin (or elongated)
domain along the first coordinate direction (not necessarily just a rectangle), so that the
boundary 0f) consists of three relevant parts: the upper boundary I'y, the lower boundary
I'5, and the lateral boundary parts I';,. The velocity of the fluid satisfies a free boundary
condition on the upper boundary and non homogeneous boundary condition on the lower
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boundary. We show how the geometry of €2 may affect the dimension of the global attrac-
tor associated with the flow, by giving un upper bound on its dimension that depends
explicitly on the geometry of 2 and on the data. Our estimate reduces to one obtained
earlier in [5] or [10] when £ becomes an elongated rectangle.

There is a quickly growing literature devoted to better and better estimates of aver-
aged parameters and attractor dimension of a variety of flows. We mentioned in [1] a few
positions which are related to our research and some other to give a larger context. Our
result is a direct generalization of that in [1] and [10], see also [9].

This article is organized as follows. In section 2 we give a precise formulation of the
considered problem and recall a result on existence of a unique global in time solution
and the associated global attractor. Section 3 is devoted to estimating the time averaged
energy dissipation rate of the flow. In section 4 we prove a new anisotropic version of the
Lieb-Thirring inequality for functions defined on a non-rectangular domain. We use this
inequality in section 5 to give an upper bound of the global attractor dimension in terms
of data and geometry of the domain.

2. Formulation of the problem. We consider two-dimensional Navier-Stokes equa-
tions,

ug — vAu 4 (u.V)u + Vp =0, (2.1)

divu=0 (2.2)
in the channel
Qoo = {2 = (21,22) : —00 < 1 <00, 0< 3 < h(z1)},
where h is a function, positive, smooth, and L-periodic in z;. Let
D={r=(r1,22):0< 21 <L, 0<zo<h(z1)}

and 0 = Ty UT; UTy, where 'y and I'; are the bottom and the top, and ', is the
lateral part of the boundary of Q. We are interested in solutions of (2.1)—(2.2) in € which
are L-periodic with respect to x1. We assume

u.n =0, To(u)n=0 at Ty (2.3)

the first condition in (2.3) is the nonpenetration boundary condition, while the second
one means that the tangential component of the normal stress tensor o.n vanishes on I';.
The components of the stress tensor o are

ou;  Ou; .
ij = 2] 2] - K 1 <_ ) <_ 5
oi;(u) V( xj+ $z> PO i,7 <3

where §;; is the Kronecker symbol. Moreover, we assume

u = U061 = (U(), 0) at FO (24)

where Uy is a positive constant, and initial condition
u(x,0) =ug(z) for z € Q. (2.5)

The problem is motivated by a flow in an infinite (rectified) channel Q x (—oo, +00),
where I'; X (—00, +00) represents the outer cylinder, and I'g X (—00, +00) represents the
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inner, rotating cylinder. In the lubrication problems the gap h between cylinders is never
constant. We can assume that the rectification does not change the equations as the gap
between cylinders is very small with respect to their radii. When i = const, and the free
boundary condition (2.3) is replaced by

u=0 on Iy, (2.6)

problem (2.1), (2.2), (2.6), (2.4), (2.5) was intensively studied in several contexts, some
of them mentioned in [1] where the case h # const and the first derivative b’ # 0 was
studied. The problem we consider in this paper seems not to have been studied earlier.

In applications, suitable norms of A’ may characterize some particular feature of the
flow such as roughness of the surface of the outer cylinder, for example. It is expected
that the more rough the outer cylinder is, the more turbulent is behavior of the flow, and
the effect is the more observable the smaller is the gap between the cylinders.

These features of the flow can be deduced from our estimates of the dimension of the
global attractor, depending on geometry of the domain of the flow, expressed in terms
of the function h and its first derivative h’. In technical terms, the influence of geometry
of the domain shows up in the constants appearing in the new anisotropic version of the
Lieb-Thirring inequality we prove in this paper.

In our considerations we use the background flow method and homogenize the bound-
ary condition (2.4) by defining a smooth background flow, a simple version of the Hopf
construction, described in detail in section 3.

Let
u(zy, x2,t) = U(xa)er + v(z1, T2,1) (2.7)
with
U0)=U, U(h(z1))=0, U'(h(z1))=0, z1€(0,L). (2.8)
Then v is L-periodic in x; and satisfies
vy — VAU + (0.V)v + Uv,,, +(v)2U'e; + Vp =vU"eq (2.9)
dive =0 (2.10)
v=0, on Ty, wvn=0, 7ov)n=0 on I} (2.11)
and initial condition
v(z,0) = vo(z) = up(z) — U(x2)e;. (2.12)

By (v)2 we denote the second component of v.
Now, we define a weak form of the homogenized problem above. To this end we need
some notations. Let

V={velC®Qu)?: vis x-‘L-periodic, divv = 0, v, =0, and vy, =0},
V = closure of V in HY(Q) x H'(Q),
H = closure of V in L?(Q) x L*(Q).

We define scalar products

(u,v)z/ﬂu(x)v(a:)dx and [[u,v]] = (Vu, Vv)
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in H and V, respectively, and norms
1

] = (v,0)% and  [o]] = [[o,0])*.
We denote by B the bilinear form defined for (u,v) € V x V by
(B(u,v),w) = ((u- V)v,w) Yw eV,
and
a(u,v) = v(Vu, Vv).
Then the natural weak formulation of the homogenized problem (2.9)-(2.12) is as

follows.

PROBLEM 2.1. Find
veC([0,T); H)N L*0,T;V)

for each T > 0, such that
—[v(t), 0] +a(v(t), ©) + (B(v(t),v(t)), ©) = F(v(t), ©), (2.13)
forall® €V, and
v(z,0) = v (x)

where

F(Ua 9) = _a(gv @) - (B(f, U)v @) - (B(Uy 5)7 @)7 (214)
and & = Ue;y 1is a suitable background flow.

We have the following existence theorem.

THEOREM 2.1. There exists a unique weak solution of problem 2.1 such that for alln, T,
0<n<T,ve L*nT;H?*Q)), and for each t > 0 the map vy — v(t) is continuous
as a map in H. Moreover, there exists a global attractor for the associated semigroup
{S(t)}+>0 in the phase space H.
Proof. Cf. [10], see also [2].

In the next section we shall estimate the time averaged energy dissipation rate of the
flow.

3. Energy dissipation rate estimate. The aim of this section is to estimate the time
averaged energy dissipation rate per unit mass € of the flow u, the weak solution of
problem (2.1)—(2.5). We define

v 9 v 1 T 9
= i) = mmeT/uwmw. (3.1)

T—+o00
We estimate first the averaged energy dissipation rate of the homogenized flow v, and
then use the relation, cf. (2.7),

[[u@®)))* = +2/ U'(0) 152 dx+/ U |2dz. (3.2)

To estimate the right hand side of (3.2) we use equation (2.13). Taking © = v in
(2.13) and using the notation B(u,v,w) for ( (u,v),w), we obtain

1d, ., ~
ia[v} + a(v,v) + B(v,v,v) = F(v,v). (3.3)
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Since v = 0 on I'g and v.n = 0 on I'y, v is L-periodic in z1, and divv = 0, we have
B(v,v,v) =0, and
1d
2dt
Integrating the above inequality in ¢ on the interval (0,7"), dividing by T, and taking
lim sup of both sides we estimate the averaged energy dissipation rate of v. First, however,
we have to estimate carefully the term F(v,v) on the right hand side of (3.4). By (2.14),

[]? + v[[v]]* = F(v,0). (3.4)

F(v,v) = —a(§,v) — B(v,&,v). (3.5)
We have
la(€,v)| < w[[E]] - [[o]] < V[N + %[[v]]2~ (3.6)

To estimate the last term in (3.5) we use the following lemma.
LEMMA 3.1. For any n > 0 there exists a smooth extension
§ = &(x2) = Ulxz)er = (U(z2),0)
of the boundary condition for u, such that
|B(v,&,v)| < nlp])* forall veV.
Proof. Cf. [1], [2].

LEMMA 3.2. Let U be as in lemma 3.1. Then

1
/ [Ua) Pdardrs < 3 LhoU3e, (3.7)
Q
and )
4LUZ 1
/ \U' (22)|2da1day < % - (3.8)
Q

where hg = ming<z, <1, h(zy).
Proof. Cf. [1], [2].

Let hp = maxo<y, <z h(z1), and hpr/ho ~ 1. Then we can define the Reynolds
number of the flow u by Re = (hoUp)/v.

LEMMA 3.3. If Re > 1 then the time averaged energy dissipation rate per unit mass e(v)

for the flow v can be estimated as follows,
64L 64
e(v) < —US < —
W= Tar = 5

Finally, we can formulate the main theorem in this section.

Us.

THEOREM 3.1. For the Navier-Stokes turbulent flow u defined in section 2 with Re >> 1
the time averaged energy dissipation rate per unit mass € defined in (3.1) can be estimated

as follows:

3
€< Cﬂ7 (3.9)
ho

where C is a numerical constant.
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Proof. By (3.2) we have

W) < 201 +2 | Wk,
and then we use (3.8) to estimate the second term on the right hand side. m

Our estimate (3.9) has the same form as the usual estimate in turbulence theory of
the averaged energy dissipation rate for the Navier-Stokes boundary driven flow in a
rectangular domain [3], [4], [6], [10].

In section 5 we shall use the estimates of € to find an upper bound of the dimension
of the global attractor.

4. A new version of the Lieb-Thirring inequality. In the present study we prove a
generalization of the form of the Lieb-Thirring inequality obtained in [10] for a rectangular
domain.
Let
H' = {v € C®(0s)? : v is L-periodic in 1, v, =0, vy =0}
and
H*' = closure of H' in H'(Q) x H*(Q).
LEMMA 4.1. Let p; € H', j =1,...,m be a suborthonormal family in L?(Y). Then

/(Z% <012/\V%| + ogm + o3, (4.1)

where o1 = k1(1 + maxo<y, <z [P (21)]?), 02 = /@2(% + h—g),

o = KS/Q <Z((;1))>4(1 + 1 (21)Y)da,

and K1, ko, k3 are some absolute constants.

Proof. Let Q1 = (0,L) x (0,ho), and let ¢; € H (1), j = 1,...,m, be a family of

functions that are suborthonormal in L?(€;) in the sense that

m

) @fj/ wzwjdy<zsk, v € B,

3,j=1

We know ([10], Lemma 4.1) that for this famlly there exists an absolute constant Cj,

such that
) o 951%2 0 5
[ wealS ], (5) w-pe)
P 19512200\ 2
(Z/ﬂ (aﬁ) dy + — ) Z(;””) , (4.2)

Now, for our family ¢; defined in €2, we set

h(z1)
ho ’

wj(yl,yQ) = %‘(9517992)
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where
h h(z1), o
= min T =1, =ToT——.
0= i, M Yy L Y2 2h(:c1)
For = (z1,22) in Q, y = (y1,y2) is in 1, and the family ¢;, j = 1,...,m, in O has
the claimed properties. Changing variables in the above inequality and observing that

dy1dyz = dzidzo

ho
h(z1)
o (% h(xq) +o; B (x1) ) h(xl)%h/(xl)@
32/1 61'1 ho 12 hoh(Il) 61'2 h(xl) ’
O _ Opj |hai)

Oy Oz ho

with h(z1)/ho > 1, we obtain

Z d:c<C Z a+ b+a a% Qd_x+‘¢j‘2L2(Q) H
i 0 i 'u@ a2 72

(SR e

h(z) ) W(z) (1)
hO ’ 2 hoh(ﬂ?l)’ .

After simple calculations we get

(e ST ooy

where

When b’/ = 0, only the first two terms on the right hand side are not zero. We estimate
the additional terms as follows.

C ) C " 00\ 2\ N o\ h
O/Z 90Jg03/1d33<70 Q<;<8—ii>> (;wf) udx
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and
Co m 9 9 1 / m ) 2 (06)2 / 4
— E 0% | uide < — E 04 dx + m €.
3 /Q<J 1 j) 16 Q j=1 ’ 16 Q (Zl)d
Now,
; 9 ; / m 9 y 2\ 3 m 9 ; 2\ 3
s _tJ < _rJ _rJ
Co/ Z g‘ﬂxl 31 nxodr < Cy JE 1 s E 1 Dy pxodr
C() 2 2 i ()(pj 2 CO/ Z?(OJ 2
< — — — —
/u (xl)x2j§1< o dz + 5 E ) dz,
and

CO m 6(,0]‘ ) CO m ) 1 m atﬂj 2\ 1 )
=0 ') < 20 2 '}
5 /Q;wa%u Tadr < = Q(;¢J> \or, ) ) 1irads

J j=
Co 2\ 4 2 Co S 8% ?
< =2 - )
- 8 /(;(‘DJ)M zdr + 2 /QJZ:; Oxa de
1 N2 (Co)? Co [ <~/ p:\>
< — 2 8 4 =0 ) )
=16 Q(;“"J) v+ 5 /Q“ (w1)72dr + =5 /Q; o)

Applying the above inequalities in (4.4) and replacing x2 by h(z1) in some integrals we
obtain the elegant estimate

/ (Z @?) < C(/)IZ/(l + 1 (21)?)| Ve, * + Co (ﬁ + F) Z [pilL2(a)
Q=1 j=179 0/ j=1

+C’§’/Q<l;l’((§11))>4(l+h’(:cl)4)dx

whence, as
m
E |<Pj|L2(Q) =m,
j=1

(4.1) follows. m

5. Dimension estimate of the global attractor. We rewrite equation (2.13) for the
homogenized flow v in the short form
d
==L, ()=,
where, for all © € V,
(L(v(t)), ©) = —a(v(t), ©) = B(v(t),v(t), ) + F(v(t), ©)

and F is defined in (2.14). Now, to estimate from above the dimension of the global
attractor we follow the standard procedure, cf. e.g. [7], [8]. First, for an integer m > 1
and vectors {; € H, j = 1,...,m, we consider the corresponding problems linearized
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about the orbit v(t),

d
EUj :L/(’U)Uj, Uj(O):gj, for j:].,...7m (51)
where L'(v) is the Fréchet derivative of L at v = v(t), with
(L'(v)U;,©) = —a(U;,©) — B(v,U;,0) = B(Uj,v,0) (5.2)

- B(§7UJ7@) - B(UJ7§7@)
= —G(Uj, 9) - B(U, Uj, @) - B(Uj, u, @)
Let, for a particular time 7, ©; = ©,(7), j € IN be an orthonormal basis of H with
©1(7),...,0,,(7) spanning
Qm(T)H = Qm(Tv 00,81, - - 7£m)H = Span[UﬂT), cees Um(T)]a

Qm (7) being the orthogonal projector of H onto the space spanned by U;(7), j =
1,...,m, solutions of (5.1). We then have ©;(7) € V, j =1,...,m, for ae. 7 € R;.
The trace of L'(v(7)) 0 Qun(7) is

Tr(L'(v(r)) 0 Qu(r)) = D (L' (v())6; (1), ©5(7)). (5-3)

j=1
Let A be the global attractor for the homogenized flow v(7) = S(7)vg, and let
Gm = Hm_sup g, (T),

where

am(T) = Uitéasup{%/o Tr(L'(v(r) o Qm(T))dr : & € H,[§] < 1,5=1,... ,m}.

Then, the fractal dimension of the attractor A is less than or equal to the first nonnegative
integer mg for which ¢, <0, [7].
Now, our aim is to obtain estimate (5.7) and then inequality (5.8).

LEMMA 5.1. The following estimate holds:
Tr(L'(v) 0 Qm) < —v > _[[0;1 + |plp2(oy [ull; (5-4)
j=1

where

7j=1
Proof. From (5.2) and (5.3) we obtain
Z(L'(U)@)ja@j> <V, ;11 - ZB(@j,u, 9;)
<Y AOIF + [ vul(3 10, ds

whence (5.4) follows. m
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Now, in our estimates of the trace we use lemma 4.1. By this lemma and from

/Qp(x)da: =m

we have

Moreover,
v 2 2 1%
plL2 oy [lul] < E\P\Lz(g) + 5[[11]] < 3

by the second inequality in (5.5). Thus, by (5.4), (5.6),

m

, -V 2 Vo9 Vvos o1 2
< _Z E ) i} e
TT'(L (U) OQm) — 2 ‘7:1[[6]“ + 20_1m+ 20,1 + 21/[[11’]] )
and by (5.5) again, we fianally obtain
, —v 5 VO3 vos o1 2
< 772 770 4 22
TH(L(0(r)) © Qun(7)) < grom? + -+ 200 4 Fh ) (57)

From (5.7), recalling e defined in (3.1), we have

—v e vog = o1|Q]
m < ———m? 4+ —= —= 5.8
Qm = 201|Q|m + o1 me o1 + 2V2 ( )
Define
v e vosg = o01|Q]
@ 201‘Q|’ 01 ’ ¢ o1 2V2 ¢

We can write
gm < —am? + 2bm + c.

Let
b b+ Vb2 +ac

a
and let F(p) denote the integer part of p. We have my = E(p) + 1 if p # E(p), and
mo = p if p = E(p). Using the inequality /22 + 32 < v/2max{|z|,|y|} we can estimate

p by a simpler expression,
p<3max< —,4/— ¢-
a \a

Further, taking into account definitions of a, b, ¢, as well as estimate (3.9) of €, we obtain

Q2 .
p < 3max {02|Q , \/203|Q| + J%h—l(ReP}. (5.9)
0

From the above estimates we deduce the following theorem about strongly turbulent flows
in thin domains.
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THEOREM 5.1. Consider the Navier-Stokes flow u as described in section 2. Assume that
the domain ) is thin and that the flow is strongly turbulent, namely

h
TM <<1 and Re>>1. (5.10)

Then the fractal dimension of the global attractor Ansg for this flow can be estimated as
follows:

Lhy
h

2
dim(Ansg) < kmax{o2|Q], \/203|Q + 0’%( ) (Re)3. (5.11)

where o1 = k1(1 + maxo<a, <r |1 (21)]?), 02| := ka(F= + h%)\m,

S /Q (]Z((;ll))>4(l + 1 (21)")da,

and where Kk, k1, and k3 are some numeric constants. For a rectangular domain Q) =
(0,L) x (0, ho) we obtain, in particular,

L
dim(Ansg) < mh—O(Re)g’/Q. (5.12)

Proof. By (5.9), (5.11) follows. m

Estimate (5.12) was obtained in [5] for the case of homogeneous boundary condition
on the top part of the boundary. Estimate (5.11) is its direct generalization for more
general geometry of the flow domain. Observe that the estimate depends explicitly on
the first derivative h'.

6. Conclusions. In section 3 we estimated the time averaged energy dissipation rate of
the considered flow applying the background flow method. We used a version of Hopf’s
construction of the background flow and obtained the same estimate as that obtained
earlier for a rectangular domain by Doering and Constantin who used a background flow
suitable for the channel case, cf. [3], [4].

In section 4 we generalized an anisotropic version of the Lieb-Thirring inequality
obtained in [10], from rectangular to non-rectangular domains defined in section 2. This
inequality can be generalized further to include three dimensional domains.

In section 5 we provided an estimate of the dimension of the global attractor of the
considered flow, with constants given explicitly in terms of the data, including geometry
of the domain. In particular, for a rectangle, our estimate reduces to that obtained earlier,
cf. e.g. [5]. Inequality (5.11) agrees with our expectations about the behavior of strongly
turbulent shear flows in thin domains met in lubrication theory. It helps to understand
the influence of geometry of the flow and roughness of the boundary on the fluid behavior.
Moreover, inequality (5.9) serves as an estimate of the number of degrees of freedom of
turbulent flows not only in thin films.
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