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Abstra
t. We 
onsider a free boundary problem of a two-dimensional Navier-Stokes shear �ow.There exist a unique global in time solution of the 
onsidered problem as well as the globalattra
tor for the asso
iated semigroup. As in [1℄ and [2℄, we estimate from above the dimensionof the attra
tor in terms of given data and the geometry of the domain of the �ow. This resear
his motivated by a free boundary problem from lubri
ation theory where the domain of the �owis usually very thin and the roughness of the boundary strongly a�e
ts the �ow. We show howit 
an enlarge the dimension of the attra
tor. To this end we establish a new version of theLieb-Thirring inequality with 
onstants depending on the geometry of the domain.1. Introdu
tion. We 
onsider the problem of �nite dimensionality of a strongly turbu-lent boundary driven �ow 
onsidered in lubri
ation theory. The two-dimensional domaino

upied by the �ow is assumed to be periodi
 with a period 
ell Ω a thin (or elongated)domain along the �rst 
oordinate dire
tion (not ne
essarily just a re
tangle), so that theboundary ∂Ω 
onsists of three relevant parts: the upper boundary Γ1, the lower boundary
Γ2, and the lateral boundary parts ΓL. The velo
ity of the �uid satis�es a free boundary
ondition on the upper boundary and non homogeneous boundary 
ondition on the lower2000 Mathemati
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62 M. BOUKROUCHE AND G. ŁUKASZEWICZboundary. We show how the geometry of Ω may a�e
t the dimension of the global attra
-tor asso
iated with the �ow, by giving un upper bound on its dimension that dependsexpli
itly on the geometry of Ω and on the data. Our estimate redu
es to one obtainedearlier in [5℄ or [10℄ when Ω be
omes an elongated re
tangle.There is a qui
kly growing literature devoted to better and better estimates of aver-aged parameters and attra
tor dimension of a variety of �ows. We mentioned in [1℄ a fewpositions whi
h are related to our resear
h and some other to give a larger 
ontext. Ourresult is a dire
t generalization of that in [1℄ and [10℄, see also [9℄.This arti
le is organized as follows. In se
tion 2 we give a pre
ise formulation of the
onsidered problem and re
all a result on existen
e of a unique global in time solutionand the asso
iated global attra
tor. Se
tion 3 is devoted to estimating the time averagedenergy dissipation rate of the �ow. In se
tion 4 we prove a new anisotropi
 version of theLieb-Thirring inequality for fun
tions de�ned on a non-re
tangular domain. We use thisinequality in se
tion 5 to give an upper bound of the global attra
tor dimension in termsof data and geometry of the domain.2. Formulation of the problem. We 
onsider two-dimensional Navier-Stokes equa-tions,
ut − ν∆u+ (u.∇)u+ ∇p = 0, (2.1)

div u = 0 (2.2)in the 
hannel
Ω∞ = {x = (x1, x2) : −∞ < x1 <∞, 0 < x2 < h(x1)},where h is a fun
tion, positive, smooth, and L-periodi
 in x1. Let

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top, and ΓL is thelateral part of the boundary of Ω. We are interested in solutions of (2.1)�(2.2) in Ω whi
hare L-periodi
 with respe
t to x1. We assume
u.n = 0, τ.σ(u).n = 0 at Γ1; (2.3)the �rst 
ondition in (2.3) is the nonpenetration boundary 
ondition, while the se
ondone means that the tangential 
omponent of the normal stress tensor σ.n vanishes on Γ1.The 
omponents of the stress tensor σ are

σij(u) = ν

(

∂ui

∂xj
+
∂uj

∂xi

)

− pδij , 1 ≤ i, j ≤ 3;where δij is the Krone
ker symbol. Moreover, we assume
u = U0e1 = (U0, 0) at Γ0 (2.4)where U0 is a positive 
onstant, and initial 
ondition
u(x, 0) = u0(x) for x ∈ Ω. (2.5)The problem is motivated by a �ow in an in�nite (re
ti�ed) 
hannel Ω× (−∞,+∞),where Γ1 × (−∞,+∞) represents the outer 
ylinder, and Γ0 × (−∞,+∞) represents the
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ylinder. In the lubri
ation problems the gap h between 
ylinders is never
onstant. We 
an assume that the re
ti�
ation does not 
hange the equations as the gapbetween 
ylinders is very small with respe
t to their radii. When h = const, and the freeboundary 
ondition (2.3) is repla
ed by
u = 0 on Γ1, (2.6)problem (2.1), (2.2), (2.6), (2.4), (2.5) was intensively studied in several 
ontexts, someof them mentioned in [1℄ where the 
ase h 6= const and the �rst derivative h′ 6= 0 wasstudied. The problem we 
onsider in this paper seems not to have been studied earlier.In appli
ations, suitable norms of h′ may 
hara
terize some parti
ular feature of the�ow su
h as roughness of the surfa
e of the outer 
ylinder, for example. It is expe
tedthat the more rough the outer 
ylinder is, the more turbulent is behavior of the �ow, andthe e�e
t is the more observable the smaller is the gap between the 
ylinders.These features of the �ow 
an be dedu
ed from our estimates of the dimension of theglobal attra
tor, depending on geometry of the domain of the �ow, expressed in termsof the fun
tion h and its �rst derivative h′. In te
hni
al terms, the in�uen
e of geometryof the domain shows up in the 
onstants appearing in the new anisotropi
 version of theLieb-Thirring inequality we prove in this paper.In our 
onsiderations we use the ba
kground �ow method and homogenize the bound-ary 
ondition (2.4) by de�ning a smooth ba
kground �ow, a simple version of the Hopf
onstru
tion, des
ribed in detail in se
tion 3.Let

u(x1, x2, t) = U(x2)e1 + v(x1, x2, t) (2.7)with
U(0) = U0, U(h(x1)) = 0, U ′(h(x1)) = 0, x1 ∈ (0, L). (2.8)Then v is L-periodi
 in x1 and satis�es
vt − ν∆v + (v.∇)v + Uv,x1

+(v)2U
′e1 + ∇p = νU ′′e1 (2.9)

div v = 0 (2.10)
v = 0, on Γ0, v.n = 0, τ.σ(v).n = 0 on Γ1 (2.11)and initial 
ondition

v(x, 0) = v0(x) = u0(x) − U(x2)e1. (2.12)By (v)2 we denote the se
ond 
omponent of v.Now, we de�ne a weak form of the homogenized problem above. To this end we needsome notations. Let
Ṽ = {v ∈ C∞(Ω∞)2 : v is x1-‘L-periodi
, div v = 0, v|Γ0

= 0, and v.n|Γ1
= 0},

V = closure of Ṽ in H1(Ω) ×H1(Ω),

H = closure of Ṽ in L2(Ω) × L2(Ω).We de�ne s
alar produ
ts
(u, v) =

∫

Ω

u(x)v(x)dx and [[u, v]] = (∇u,∇v)
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tively, and norms
[v] = (v, v)

1

2 and [[v]] = [[v, v]]
1

2 .We denote by B the bilinear form de�ned for (u, v) ∈ V × V by
(B(u, v), w) = ((u · ∇)v, w) ∀ω ∈ V,and

a(u, v) = ν(∇u,∇v).Then the natural weak formulation of the homogenized problem (2.9)-(2.12) is asfollows.Problem 2.1. Find
v ∈ C([0, T ];H) ∩ L2(0, T ;V )for ea
h T > 0, su
h that

d

dt
[v(t),Θ] + a(v(t),Θ) + (B(v(t), v(t)),Θ) = F (v(t),Θ), (2.13)for all Θ ∈ V , and

v(x, 0) = v0(x)where
F (v,Θ) = −a(ξ,Θ) − (B(ξ, v),Θ)− (B(v, ξ),Θ), (2.14)and ξ = Ue1 is a suitable ba
kground �ow.We have the following existen
e theorem.Theorem 2.1. There exists a unique weak solution of problem 2.1 su
h that for all η, T ,

0 < η < T , v ∈ L2(η, T ;H2(Ω)), and for ea
h t > 0 the map v0 7→ v(t) is 
ontinuousas a map in H. Moreover, there exists a global attra
tor for the asso
iated semigroup
{S(t)}t≥0 in the phase spa
e H.Proof. Cf. [10℄, see also [2℄.In the next se
tion we shall estimate the time averaged energy dissipation rate of the�ow.3. Energy dissipation rate estimate. The aim of this se
tion is to estimate the timeaveraged energy dissipation rate per unit mass ǫ of the �ow u, the weak solution ofproblem (2.1)�(2.5). We de�ne

ǫ =
ν

|Ω| 〈[[u]]
2〉 = lim sup

T→+∞

ν

|Ω|
1

T

∫ T

0

[[u(t)]]2dt. (3.1)We estimate �rst the averaged energy dissipation rate of the homogenized �ow v, andthen use the relation, 
f. (2.7),
[[u(t)]]2 = [[v(t)]]2 + 2

∫

Ω

U ′(v)1,x2
dx+

∫

Ω

|U ′|2dx. (3.2)To estimate the right hand side of (3.2) we use equation (2.13). Taking Θ = v in(2.13) and using the notation B(u, v, w) for (B(u, v), w), we obtain
1

2

d

dt
[v]2 + a(v, v) +B(v, v, v) = F (v, v). (3.3)
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e v = 0 on Γ0 and v.n = 0 on Γ1, v is L-periodi
 in x1, and div v = 0, we have
B(v, v, v) = 0, and

1

2

d

dt
[v]2 + ν[[v]]2 = F (v, v). (3.4)Integrating the above inequality in t on the interval (0, T ), dividing by T , and taking

lim sup of both sides we estimate the averaged energy dissipation rate of v. First, however,we have to estimate 
arefully the term F (v, v) on the right hand side of (3.4). By (2.14),
F (v, v) = −a(ξ, v) −B(v, ξ, v). (3.5)We have

|a(ξ, v)| ≤ ν[[ξ]] · [[v]] ≤ ν[[ξ]]2 +
ν

4
[[v]]2. (3.6)To estimate the last term in (3.5) we use the following lemma.Lemma 3.1. For any η > 0 there exists a smooth extension

ξ = ξ(x2) = U(x2)e1 = (U(x2), 0)of the boundary 
ondition for u, su
h that
|B(v, ξ, v)| ≤ η[[v]]2 for all v ∈ V.Proof. Cf. [1℄, [2℄.Lemma 3.2. Let U be as in lemma 3.1. Then

∫

Ω

|U(x2)|2dx1dx2 ≤ 1

2
Lh0U

2
0 ε, (3.7)and

∫

Ω

|U ′(x2)|2dx1dx2 ≤ 4LU2
0

h0

1

ε
. (3.8)where h0 = min0≤x1≤L h(x1).Proof. Cf. [1℄, [2℄.Let hM = max0≤x1≤L h(x1), and hM/h0 ≃ 1. Then we 
an de�ne the Reynoldsnumber of the �ow u by Re = (h0U0)/ν.Lemma 3.3. If Re≫ 1 then the time averaged energy dissipation rate per unit mass ǫ(v)for the �ow v 
an be estimated as follows,

ǫ(v) ≤ 64L

|Ω| U
3
0 ≤ 64

h0
U3

0 .Finally, we 
an formulate the main theorem in this se
tion.Theorem 3.1. For the Navier-Stokes turbulent �ow u de�ned in se
tion 2 with Re >> 1the time averaged energy dissipation rate per unit mass ǫ de�ned in (3.1) 
an be estimatedas follows:
ǫ ≤ C

U3
0

h0
, (3.9)where C is a numeri
al 
onstant.



66 M. BOUKROUCHE AND G. ŁUKASZEWICZProof. By (3.2) we have
〈[[u]]2〉 ≤ 2〈[[v]]2〉 + 2

∫

Ω

|U ′|2dx,and then we use (3.8) to estimate the se
ond term on the right hand side.Our estimate (3.9) has the same form as the usual estimate in turbulen
e theory ofthe averaged energy dissipation rate for the Navier-Stokes boundary driven �ow in are
tangular domain [3℄, [4℄, [6℄, [10℄.In se
tion 5 we shall use the estimates of ǫ to �nd an upper bound of the dimensionof the global attra
tor.4. A new version of the Lieb-Thirring inequality. In the present study we prove ageneralization of the form of the Lieb-Thirring inequality obtained in [10℄ for a re
tangulardomain.Let
H̃1 = {v ∈ C∞(Ω∞)2 : v is L-periodi
 in x1, v|Γ0

= 0, v.n|Γ1
= 0}and

H1 = closure of H̃1 in H1(Ω) ×H1(Ω).Lemma 4.1. Let ϕj ∈ H1, j = 1, . . . ,m be a suborthonormal family in L2(Ω). Then
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

≤ σ1

m
∑

j=1

∫

Ω

|∇ϕj |2 + σ2m+ σ3, (4.1)where σ1 = κ1(1 + max0≤x1≤L |h′(x1)|2), σ2 = κ2(
1

L2 + 1
h2

0

),
σ3 = κ3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dx,and κ1, κ2, κ3 are some absolute 
onstants.Proof. Let Ω1 = (0, L) × (0, h0), and let ψj ∈ H1(Ω1), j = 1, . . . ,m, be a family offun
tions that are suborthonormal in L2(Ω1) in the sense that

m
∑

i,j=1

ξiξj

∫

Ω1

ψiψjdy ≤
m

∑

k=1

ξ2k, ∀ξ ∈ IRm.We know ([10℄, Lemma 4.1) that for this family there exists an absolute 
onstant C0,su
h that
∫

Ω1

(

m
∑

j=1

ψ2
j

)2

dy ≤ C0

( m
∑

j=1

∫

Ω1

(

∂ψj

∂y1

)2

dy +
|ψj |2L2(Ω1)

L2

)
1

2

×
( m

∑

j=1

∫

Ω1

(

∂ψj

∂y2

)2

dy +
|ψj |2L2(Ω1)

h2
0

)
1

2

, (4.2)Now, for our family ϕj de�ned in Ω, we set
ψj(y1, y2) = ϕj(x1, x2)

√

h(x1)

h0
,
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h0 = min

0≤x1≤L
h(x1), y1 = x1, y2 = x2

h0

h(x1)
.For x = (x1, x2) in Ω, y = (y1, y2) is in Ω1, and the family ψj , j = 1, . . . ,m, in Ω1 hasthe 
laimed properties. Changing variables in the above inequality and observing that

dy1dy2 =
h0

h(x1)
dx1dx2

∂ψj

∂y1
=

(

∂ϕj

∂x1

√

h(x1)

h0
+ ϕj

h′(x1)

2
√

h0h(x1)

)

+

√

h(x1)

h0

∂ϕj

∂x2

h′(x1)

h(x1)
x2,

∂ψj

∂y2
=
∂ϕj

∂x2

√

h(x1)

h0with h(x1)/h0 ≥ 1, we obtain
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

dx ≤ C0

( m
∑

j=1

∫

Ω

(

∂ϕj

∂x1
a+ ϕjb+ aµ

∂ϕj

∂x2
x2

)2
dx

a2
+

|ϕj |2L2(Ω)

L2

)
1

2

×
( m

∑

j=1

∫

Ω

(

∂ϕj

∂x2

)2

dx+
|ϕj |2L2(Ω)

h2
0

)
1

2 (4.3)where
a =

√

h(x1)

h0
, b =

h′(x1)

2
√

h0h(x1)
, µ =

h′(x1)

h(x1)
.After simple 
al
ulations we get

∫

Ω

(

m
∑

j=1

(ϕj)
2
)2

dx ≤ C0

2

m
∑

j=1

∫

Ω

((

∂ϕj

∂x1

)2

+

(

∂ϕj

∂x2

)2)

dx+ C0|ϕj |2L2(Ω)

(

1

L2
+

1

h2
0

)

+
C0

2

∫

Ω

m
∑

j=1

∂ϕj

∂x1
ϕjµdx+

C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ2dx+ C0

∫

Ω

m
∑

j=1

∂ϕj

∂x1

∂ϕj

∂x2
µx2dx

+
C0

2

∫

Ω

m
∑

j=1

ϕj
∂ϕj

∂x2
µ2x2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

µ2x2
2dx. (4.4)When h′ = 0, only the �rst two terms on the right hand side are not zero. We estimatethe additional terms as follows.

C0

2

∫

Ω

m
∑

j=1

∂ϕj

∂x1
ϕjµdx ≤ C0

2

∫

Ω

( m
∑

j=1

(

∂ϕj

∂x1

)2) 1

2 (

m
∑

j=1

ϕ2
j

)
1

2

µdx

≤ C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x1

)2

dx+
C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ2dx

≤ C0

2

∫

Ω

m
∑

j=1

(∂ϕj

∂x1

)2

dx+
1

16

∫

Ω

( m
∑

j=1

ϕ2
j

)2

dx+
(C0)

2

16

∫

Ω

µ4(x1)dx,
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C0

8

∫

Ω

( m
∑

j=1

ϕ2
j

)

µ2dx ≤ 1

16

∫

Ω

( m
∑

j=1

ϕ2
j

)2

dx+
(C ′

0)
2

16

∫

Ω

µ4(x1)dx.Now,
C0

∫

Ω

m
∑

j=1

∂ϕj

∂x1

∂ϕj

∂x2
µx2dx ≤ C0

∫

Ω

( m
∑

j=1

(

∂ϕj

∂x1

)2) 1

2

( m
∑

j=1

(

∂ϕj

∂x2

)2) 1

2

µx2dx

≤ C0

2

∫

Ω

µ2(x1)x
2
2

m
∑

j=1

(

∂ϕj

∂x1

)2

dx+
C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx,and
C0

2

∫

Ω

m
∑

j=1

ϕj
∂ϕj

∂x2
µ2x2dx ≤ C0

2

∫

Ω

(

m
∑

j=1

ϕ2
j

)
1

2

( m
∑

j=1

(

∂ϕj

∂x2

)2) 1

2

µ2x2dx

≤ C0

8

∫

Ω

(

m
∑

j=1

ϕ2
j

)

µ4x2
2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx

≤ 1

16

∫

Ω

(

m
∑

j=1

ϕ2
j

)2

dx+
(C0)

2

16

∫

Ω

µ8(x1)x
4
2dx+

C0

2

∫

Ω

m
∑

j=1

(

∂ϕj

∂x2

)2

dx.Applying the above inequalities in (4.4) and repla
ing x2 by h(x1) in some integrals weobtain the elegant estimate
∫

Ω

(

m
∑

j=1

ϕ2
j

)2

≤ C ′′
0

m
∑

j=1

∫

Ω

(1 + h′(x1)
2)|∇ϕj |2 + C0

(

1

L2
+

1

h2
0

) m
∑

j=1

|ϕj |L2(Ω)

+C ′′
3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dxwhen
e, as

m
∑

j=1

|ϕj |L2(Ω) = m,(4.1) follows.5. Dimension estimate of the global attra
tor. We rewrite equation (2.13) for thehomogenized �ow v in the short form
dv

dt
= L(v), v(0) = v0,where, for all Θ ∈ V ,

〈L(v(t)),Θ〉 = −a(v(t),Θ) −B(v(t), v(t),Θ) + F (v(t),Θ)and F is de�ned in (2.14). Now, to estimate from above the dimension of the globalattra
tor we follow the standard pro
edure, 
f. e.g. [7℄, [8℄. First, for an integer m > 1and ve
tors ξj ∈ H, j = 1, . . . ,m, we 
onsider the 
orresponding problems linearized



ATTRACTOR DIMENSION 69about the orbit v(t),
d

dt
Uj = L′(v)Uj , Uj(0) = ξj , for j = 1, . . . ,m (5.1)where L′(v) is the Fré
het derivative of L at v = v(t), with

(L′(v)Uj ,Θ) = −a(Uj ,Θ) − B(v, Uj ,Θ) −B(Uj , v,Θ) (5.2)
− B(ξ, Uj ,Θ) −B(Uj , ξ,Θ)

= −a(Uj ,Θ) −B(u, Uj ,Θ) −B(Uj , u,Θ).Let, for a parti
ular time τ , Θj = Θj(τ ), j ∈ IN be an orthonormal basis of H with
Θ1(τ ), . . . ,Θm(τ ) spanning

Qm(τ )H = Qm(τ, v0, ξ1, . . . , ξm)H = Span[U1(τ ), . . . , Um(τ )],

Qm(τ ) being the orthogonal proje
tor of H onto the spa
e spanned by Uj(τ ), j =

1, . . . ,m, solutions of (5.1). We then have Θj(τ ) ∈ V , j = 1, . . . ,m, for a.e. τ ∈ IR+.The tra
e of L′(v(τ )) ◦Qm(τ ) is
Tr(L′(v(τ )) ◦Qm(τ )) =

m
∑

j=1

(L′(v(τ ))Θj(τ ),Θj(τ )). (5.3)Let A be the global attra
tor for the homogenized �ow v(τ ) = S̃(τ )v0, and let
qm = lim

T→∞
sup qm(T ),where

qm(T ) = sup
v0∈A

sup

{

1

T

∫ T

0

Tr(L′(v(τ )) ◦Qm(τ ))dτ : ξj ∈ H, [ξj ] ≤ 1, j = 1, . . . ,m

}

.Then, the fra
tal dimension of the attra
torA is less than or equal to the �rst nonnegativeinteger m0 for whi
h qm0
≤ 0, [7℄.Now, our aim is to obtain estimate (5.7) and then inequality (5.8).Lemma 5.1. The following estimate holds:

Tr(L′(v) ◦Qm) ≤ −ν
m

∑

j=1

[[Θj ]]
2 + |ρ|L2(Ω)[[u]], (5.4)where

ρ(x) =
m

∑

j=1

|Θj(x)|2.Proof. From (5.2) and (5.3) we obtain
m

∑

j=1

(L′(v)Θj ,Θj) ≤ −ν
m

∑

j=1

[[Θj ]]
2 −

m
∑

j=1

B(Θj , u,Θj)

≤ −ν
m

∑

j=1

[[Θj ]]
2 +

∫

Ω

|∇u|
(

m
∑

j=1

|Θj(x)|2
)

dxwhen
e (5.4) follows.
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e we use lemma 4.1. By this lemma and from
∫

Ω

ρ(x)dx = mwe have
m2

|Ω| ≤ |ρ|2L2(Ω) ≤ σ1

m
∑

j=1

[[Θj ]]
2 + σ2m+ σ3. (5.5)Moreover,

|ρ|L2(Ω)[[u]] ≤
ν

2σ1
|ρ|2L2(Ω) +

σ1

2ν
[[u]]2 ≤ ν

2

( m
∑

j=1

[[Θj ]]
2 +

σ2

σ1
m+

σ3

σ1

)

+
σ1

2ν
[[u]]2 (5.6)by the se
ond inequality in (5.5). Thus, by (5.4), (5.6),

Tr(L′(v) ◦Qm) ≤ −ν
2

m
∑

j=1

[[Θj ]]
2 +

νσ2

2σ1
m+

νσ3

2σ1
+
σ1

2ν
[[u]]2,and by (5.5) again, we �anally obtain

Tr(L′(v(τ )) ◦Qm(τ )) ≤ −ν
2σ1|Ω|m

2 +
νσ2

σ1
m+

νσ3

σ1
+
σ1

2ν
[[u]]2. (5.7)From (5.7), re
alling ǫ de�ned in (3.1), we have

qm ≤ −ν
2σ1|Ω|m

2 +
νσ2

σ1
m+

νσ3

σ1
+
σ1|Ω|
2ν2

ǫ. (5.8)De�ne
a =

ν

2σ1|Ω| , 2b =
νσ2

σ1
, c =

νσ3

σ1
+
σ1|Ω|
2ν2

ǫ.We 
an write
qm ≤ −am2 + 2bm+ c.Let
p =

b+
√
b2 + ac

aand let E(p) denote the integer part of p. We have m0 = E(p) + 1 if p 6= E(p), and
m0 = p if p = E(p). Using the inequality √

x2 + y2 ≤
√

2 max{|x|, |y|} we 
an estimate
p by a simpler expression,

p ≤ 3 max

{

b

a
,

√

c

a

}

.Further, taking into a

ount de�nitions of a, b, c, as well as estimate (3.9) of ǫ, we obtain
p ≤ 3 max

{

σ2|Ω| ,
√

2σ3|Ω| + σ2
1

|Ω|2
h4

0

(Re)3
}

. (5.9)From the above estimates we dedu
e the following theorem about strongly turbulent �owsin thin domains.



ATTRACTOR DIMENSION 71Theorem 5.1. Consider the Navier-Stokes �ow u as des
ribed in se
tion 2. Assume thatthe domain Ω is thin and that the �ow is strongly turbulent, namely
hM

L
<< 1 and Re >> 1. (5.10)Then the fra
tal dimension of the global attra
tor ANSE for this �ow 
an be estimated asfollows:

dim(ANSE) ≤ κmax{σ2|Ω| ,

√

2σ3|Ω| + σ2
1

(

LhM

h2
0

)2

(Re)3. (5.11)where σ1 = κ1(1 + max0≤x1≤L |h′(x1)|2), σ2|Ω| := κ2(
1

L2 + 1
h2

0

)|Ω|,

σ3 = κ3

∫

Ω

(

h′(x1)

h(x1)

)4

(1 + h′(x1)
4)dx,and where κ, κ1, and κ3 are some numeri
 
onstants. For a re
tangular domain Ω =

(0, L) × (0, h0) we obtain, in parti
ular,
dim(ANSE) ≤ κ

L

h0
(Re)3/2. (5.12)Proof. By (5.9), (5.11) follows.Estimate (5.12) was obtained in [5℄ for the 
ase of homogeneous boundary 
onditionon the top part of the boundary. Estimate (5.11) is its dire
t generalization for moregeneral geometry of the �ow domain. Observe that the estimate depends expli
itly onthe �rst derivative h′.6. Con
lusions. In se
tion 3 we estimated the time averaged energy dissipation rate ofthe 
onsidered �ow applying the ba
kground �ow method. We used a version of Hopf's
onstru
tion of the ba
kground �ow and obtained the same estimate as that obtainedearlier for a re
tangular domain by Doering and Constantin who used a ba
kground �owsuitable for the 
hannel 
ase, 
f. [3℄, [4℄.In se
tion 4 we generalized an anisotropi
 version of the Lieb-Thirring inequalityobtained in [10℄, from re
tangular to non-re
tangular domains de�ned in se
tion 2. Thisinequality 
an be generalized further to in
lude three dimensional domains.In se
tion 5 we provided an estimate of the dimension of the global attra
tor of the
onsidered �ow, with 
onstants given expli
itly in terms of the data, in
luding geometryof the domain. In parti
ular, for a re
tangle, our estimate redu
es to that obtained earlier,
f. e.g. [5℄. Inequality (5.11) agrees with our expe
tations about the behavior of stronglyturbulent shear �ows in thin domains met in lubri
ation theory. It helps to understandthe in�uen
e of geometry of the �ow and roughness of the boundary on the �uid behavior.Moreover, inequality (5.9) serves as an estimate of the number of degrees of freedom ofturbulent �ows not only in thin �lms.A
knowledgements. Partial support from the EC �nan
ed network HYKE no. HPRN-CT-2002-00282 is gratefully a
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