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Abstract. We consider a generic scalar model for the Oseen equations in an exterior three-
dimensional domain. We assume the case of a non-constant coefficient function. Using a vari-
ational approach we prove new regularity properties of a weak solution whose existence and
uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some
facts and technical tools proved in the above mentioned paper, we give also a brief review of its
results and methods.

1. Introduction. The classical Oseen equations describe the velocity field and the as-
sociated pressure of flow of a viscous fluid past a body by a linearized version of the
incompressible Navier-Stokes equations around the velocity at infinity, see [12]. For a
compact body Q. and the exterior domain 2 = R3 \ €. the system of the Oseen equa-
tions can be written in the steady case as

(1.1) —vAv+kOiv+Vp=F inQ,
(1.2) V-v=G in ),
with the boundary conditions
v=0 on 0¥,
(1.4) v—0 as |z| — .
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F and G are given functions, v and k are some positive constants, respectively for the
kinematic viscosity and k = |v| assuming the constant velocity at infinity veo = U0l €1
given in the same direction as the first coordinate axis. It is well known that the Oseen
fundamental tensor exhibits various decay properties in various directions in R?. A com-
mon approach to study the asymptotic properties of the solutions to the Dirichlet problem
of the classical steady Oseen flow is to use convolutions with Oseen fundamental tensor
and its first and second gradients for the velocity (or with the fundamental solution of
Laplace equation for the pressure), see e.g. [4, 3, 8, 9, 7].

Various examples of flows around various obstacles lead us to an interesting variant
of equation (1.1):

(1.5) —vAv+kow+(a-V)v+Vp=F inQ.

The additional term here is (a - V)v, a is a concrete non-constant vector function, in the
form w x z for a rotating obstacle, see e.g. [5, 11]; in the form of a given “experimental”
velocity field for industrial applications [6] when it is impossible to ignore the nonlinear
term of the initial Navier-Stokes equations.

Let us introduce a generic scalar model of the equation (1.5) with a given non-constant
vector function a:

(1.6) —vAu+kdu+a-Vu=f inQ,
(1.7) u=0 on 0.,
(1.8) u—0 as |z] — oco.

As it is well known, in exterior domains, both convective operators k d; and a -V cannot
be treated as perturbations of lower order of the Laplacian. The study of this model takes
also its motivation from the work of Farwig [2]. In the case of a non-constant a(-) we
cannot follow it because we have no expression of the fundamental solution. So, in [10]
we choose an alternative i.e. a pure variational approach to prove the weak solvability
and uniqueness of a solution; this approach works under some appropriate conditions on
function a.

It is crucial to understand the anisotropic structure of the solutions near the infinity.
As a guide, to reflect the decay properties of the fundamental solution in the case a = 0,
Farwig in [2, 3] considers the weight function

(@) = (L+ e (1 + [a] —a1)”.
[ is the anisotropy exponent. We can always rescale the isotropic and anisotropic parts
of 3 in the form
ng =ng(56,¢)=(1+dr)*(1 +88)B,
0, >0, r=r(z) = |z, s=s(x) = |z| — x1.

The natural functional framework for studying the model (1.6)-(1.8) is the corresponding
weighted Sobolev spaces. The main results of this paper concern the regularity properties
of the weak solution.

The paper is organized as follows. Our notation is standard and requires little explana-
tions in Section 2. Section 3 is devoted to a review of results about existence and unique-
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ness of a weak solution to the problem (1.6)-(1.8) in anisotropically weighted Sobolev
spaces, and also to a brief description of the method used in the proof. The main results
about regularity properties of these solutions are proved using the variational method in
Section 4. The last Section 5 gives some additional regularity results for a wider range
of parameters «, , coming back to the case ¢ = 0 and using potential theory. Three ap-
pendices complete the paper, Appendix A to summarize elementary formulas and some
known results used in Sections 4 and 5, Appendix B to recall some known facts (see [2, 3])
we need in Section 5, Appendix C to discuss some open questions.

2. Basic notations. The domain ) is exterior to a body €, i.e. 2 = R\ Q,, we
assume ), to be compact, with non-empty interior containing the origin of the Cartesian
coordinate system and with a Lipschitz boundary 02.; we denote by m > 0 the distance
of 9, to the origin dist(0,9€,.). Let M > 0 be a real number such that BM c Q.

We need to denote the special sets: QFF = QN BT, Qp = QN Bg and ng = QrNQko,
where Bf = {2 € R%, |z| > R}, B = {2z € R% |z| < R} and Bj° = Bfo N By, for
positive numbers Ry < R.

Let L?(Q2; w) be the set of measurable functions f(-) on 2 such that

1/2
||f||2,Q;w = (\/Q |f|2’wd:ﬂ> < 0.

We will use the notation L? 5(€2) instead of L2(Q; ng) and || - fla,p or || - |2 [la,s
instead of || - || 12 (q; ng)- Let us deﬁne the weighted Sobolev space H!(Q; NGe 15" ) as the
set of functions u € L7, 5 (Q2) with the weak derivatives d;u € L7, 5 (Q2). The norm of
u € H(Q; 77,30a77ﬁ ') is given by

1/2
2 2
||u||H1(Q;n§g,nﬂ (/ |U‘ ngo dx +/ |V'U/| nal d$> .

As usual, H' (€% 152,15 ) will be the closure of C5°(2) in H'(€; 75", 13.).

For simplicity, we shall use the following abbreviations:
Li,ﬁ(Q) %nstead of  L*(%; ng);
|- Mg instead of || - ||L2 %ng)
o 1 .
H, 5(©) instead of ' (5 mg_ 1,77ﬂ)
Va,5(9) instead of  H' (Q; 77;3 ,nﬂ).

The notations H'(Qg), H*(Qp) are standard without weight. Concerning Va,5(9)

the weight functions will be taken with appropriate values for rescaling parameters 9, €.
In formulation of Theorem 3.2: 6 =e=1.

3. Background. The weak solvability of the problem (1.6)—(1.8) in V, () is es-
tablished in [10]. The starting point is a usual variational formulation restricted to a
bounded domain Q. An arbitrary function ® € H'(Qp) can be expressed in the form

d)ngo where ¢ cH' (Qr); we consider the following coercive continuous bilinear form on
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HY(Qp)xH" (Qp) for By > 0:

(3.1) Q1(u, @) :/ V'VU'V(fb'ngo)~dx+k/<91w(¢~7720)'d93
Qr Gr

+/QR(a-Vu) (¢~ngo) - dx.

The coercivity holds under appropriate conditions on div(ng,D a) to control a small
negative contribution of the third term in Q1 (u,u), but the main tool is the Friedrichs-
Poincaré type inequality: For § > 0 there are positive constants Ry, cg, ¢; depending on
a, 3, 8, € such that ¢ = O(e72+672) and ¢; = O(¢71671) for § and ¢ tending to zero
such that

[ullZ-1,5-1 < o [Vu| Qr, 13,5+ e [[Vu Q7 |2 5

for u EIEICIYB(Q) In particular, for 6 = 2¢ we get ||ulla—1,5-1 < ¢3 ||Vulla, 3, where
_ atp

3 — 25*57

co, ¢1 see [10, Lemma 2.3]. We have the following auxiliary result:

c B* = min(1, B). For the detailed proof and explicit expressions of constants

LEMMA 3.1. Let 0 < By < 1, f € L} 5 (Qr) and a € (CM(QR))2. Under appropriate

conditions on div(ng0 a), there exists up EﬁII(QR) , the unique weak solution of

(3.2) Qlur, @) = Qu(ur, o11,) = /Q f® da,

for all ® € H'(Qp) .

For the proof see [10, Lem. 3.2, Rem. 3.3|. Function up satisfies
(3.3) —v-Aug +k-0iug+a-Vug = f in Qpg,
(3.4) ur =0 on INg = 0NQ. U IBEg.

We can extend up by zero on Q\ Qg, say ug. Uniform estimates as R — oo are necessary
to justify the limit case and to find a weak solution to the problem (1.6)-(1.8). To get the
uniform boundedness of ur in V, 3(2) as R — oo we need some additional asymptotic
conditions on function a. It is also necessary to restrict the values of a/3 by some constant
y1 € (0,1). We get the existence and uniqueness theorem. In particular, we proved in [10,
Thm. 3.5, Lem. 3.7, Lem. 3.8, Thm. 3.9 1)|:

THEOREM 3.2. Let 0 < # < 1,0 < a <y - B, f € L2, 4(Q) and a € (CH(Q))3.
Let 9 = vo(r) be a nonnegative non-increasing continuous function defined on interval
[m, +00) with the limit lim,_, ;o Yo(r) = 0. Further, let K > 0,d > 0,0 < vy < v and
c € R such that in Q:

Vs _3/4-d
R

vl =

Then there exists a unique weak solution u € V, 3(Q) of the problem (1.6)-(1.8) such
that

(3.5) lulla—15 + IVulld s < ClUAR 18-

. 140 1
N1javar VO S o5 5 c<a-Vr <y(r)n,.
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REMARK 3.3. It follows from the proof of Theorem 3.2 that without the condition ¢ <
a-Vr it is still possible to prove the existence of a weak solution u € V,,, 3(2) to (1.6)-(1.8).
The additional assumption of the mentioned condition gives the uniqueness of a weak
solution in Vj g(2) D Vi, 5(9).

4. First regularity properties of solutions. In this section we derive some regularity
properties of the weak solution given by Theorem 3.2. First we would like to concentrate
on the regularity of the solutions near the boundary of the body Q..

Our bilinear form Q(-, -) is a particular case of general strongly elliptic form on a closed
subspace of H!(2g). So, the smoothness of every weak solution of uy to the equation
(3.2) follows from a general result (see e.g. [14, Thm. 6.C]), we have:

REMARK 4.1. ug, belongs to H*k(Qp,) if f € H*(Qg,) assuming the boundary 0Qg,
to be a C?**-manifold, and the given function a € C1**(Qg,), k € Ny. Moreover, there
is a constant C' > 0 depending on Ry and on a(-), not depending on f, such that

(4.1) [ull2, 245 < C [ fll2, %,

(Jlv]l2, x means here the norm in H*(Qg)). Let us mention that we will use inequality
(4.1) only for fixed bounded domains Qg,, e.g. R := 4 M.

We assume the following situation: Let Q. be of class C?** a € C'**(Qg) and

f € H¥(Qpg) for some R > M, k € Ny. Further let f € Liﬂ’ﬁ(Q) and all the other

conditions of Theorem 3.2 be satisfied, such that there exists a weak solution u; € V,, g(2)
of the problem (1.6)-(1.8).

Let t > 0 be given such that B¥~2! C Q, and yg be the function from C§°(R?) such
that yg = 1in Qr_o¢, and Yz = 0 in QF~*. For an arbitrary ¢ € C5°(£2) we have:

Qlur, 6) = /Qf b da.
So, we also have:
Qlus, Xr 8) = /Qf X 6 dz.

Adding to both sides —2v [, Vuy - Vxgr ¢ dz —v [quy ¢ A xgr dx +k [ u1 O1xr ¢ d
+ Joa-Vxr ¢ uy dx, we get:

Q(xgru1, ¢) = /Q(fXR_2VVU1'VXR_VU1 A XR) ¢dx

+/(k‘ uy O1Xr +a-Vxgr u1) ¢ dz,
Q

for an arbitrary ¢ € C§°(2), and so also for arbitrary ¢ € C§°(Qg). It is clear that
XR U1 € }OII(QR) is a weak solution of the problem with the right-hand side F' = f xpr
—2vVuy-Vxr —vu; Axgr +tkuy d1xr +a-Vxgui. From ygpu, € I;TI(QR) we can see
that F' € L?(Qg), and by Remark 4.1 xyg u; € H?(Q2g). Then, using repeatedly Remark
4.1 we get xg u; € H*2(QR). So, we proved the following theorem:

THEOREM 4.2. Let all the conditions of Theorem 3.2 be satisfied. Further let 0f). be of
class C*** a € C1*(QR) and f € H*(QR) for some k € Ny and R > M. Then the weak



144 S. KRACMAR AND P. PENEL

solution u of the problem (1.6)-(1.8) belongs to H**2(Qr_,), for arbitrary T > 0 such
that BM~7 C Q.

Therefore the local regularity near the boundary of the body depends only on local
properties of the right-hand side and on the local behavior of the function a.

The next theorem improves the estimate (3.5) from Theorem 3.2 for 9;u if function

a(-) has some additional properties. We now will study properties of the solution sep-
arately in the direction of axis x; and the directions of axes x5, r3, we introduce the
following notation: a.(z) = (az(x), az(x)), V*v = (02v, O3v).
THEOREM 4.3. Let all the conditions of Theorem 8.2 be satisfied (the condition which
ensures the uniqueness is not necessary here). Moreover, let a1 > —k+ &, |a.| < cany Sz
in Q for some k> 0, ¢, > 0. Then for every weak solution u of the problem (1.6)-(1.8)
we have O1u € La+1 5(§2), and there exists a constant C > 0 such that

(4.2) 101ullz 41,8 < CIf 12416

If additionally |a1| < c1 for some c¢1 > 0, then we have a - Vu € L2, 5(), Au €
Li+1,,8(9)7 and there exists a constant always denoted by C > 0 such that

(4.3) la - Vu, Aullf i s < Cllfllas s

Proof. Let R > 8M, ¢r = ¢r(r) € C§°([m,+00)) be a cut-off function such that
¢r(r) =0forr <2M orr > R, (BM C Q), ¢r(r) =1 for r € [3M, R/2] and non-
increasing in [R/2, R|. The cut-off function can be chosen such that —3/R < ¢, < 2/M.
Let @ = Pr(x) = ¢r(|z]). We have |[VPg(z)| < 3/R and |0:Pr| < 3/R for z € Q,
R/2 < |z| < R.
Because f € L? (), we have u € H (Q), and we may test the equation (1.6) by the

function (0; u)r]o‘+1 P2

(4.4) —1// Au (01u) ng"'lqﬁz dx + k/ (81u)277g+1¢>% dz
Q Q

+/ a-Vu(01u) ng‘HCI)?;z dx = / f(01u)n °‘+1 % dx.
Q Q

Writing equation (4.4) in the form I, + I + I, = Iy we will estimate the first and the
third terms on the left-hand side from below and the right-hand side from above:

I, = — 1// Au (01u) ngﬂ@% dx = V/ Vu V(01u 77ﬂ+1<I>2 ) dx
Q

= _K/ |Vu\2 o1 (n +1<I>2 dx—l—V/VuV H‘I’Z)al“dx

> __/ |VU‘ 81 +1(I)2 dx—04/ ‘V’U,| ngll;; ‘81’&‘ (I)% dx
—6v ‘V’U,| |a U| naJrl(I) dx_Q_V Vu@unourl(l) dzr
o ! M Jogy 0
>

—C5/|Vu| ng x—f/|8 u|277'3“+1 ®% dz,
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I, = /Qa Vu 01u nﬁH(I)Q dx
= /Qal (01u)? ngH(I)% dx + /Q(a*V*u) (O1u) ngﬂfbiz dx
> (-k+ n)/(a u)? 17““@2 dx — 1 / (01u)? 17““@2 dx

1 * o
[ 19 g ()] 9% da

k+3_"<’ (8 )2 a+1(I)2 d _ﬁ |v* |2 a¢)2 d
4 o 1u)" Mg R GAT ul Mg Pr ax,
Iy = /f(31u ot §2 dy < ~ /f2 ot ®2 dy + — 1 /(31u)2 ngH % dx.
Q 0

The terms containing 0 u can be absorbed by the second term I, in (4.4), other terms
can be estimated by the integral fQ f? 77"‘+1 dz. So, we get:

Ce
s Loyt < @ [ gt

Using Fatou’s lemma, we get for some ¢; > 0 :
/ (8 u)2 ,’704+1 diIJ < 07/ f2 a+1
Q3M

In a bounded domain e.g. 24,7, the estimate of me (01u)? n5+ dx is evident with
(3.5). Hence, we get (4.2).
We now can observe that a - Vu is bounded in L2, 5(f?). Indeed:

/Q(a - Vu)? ng T de < 2/Qa1 |Orul? 7T dw + 2/Q(ai ) [Vul® ng do

< Cs/ fzng“ dzx.
Q

Directly from the equation (1.6), we obtain the same property for Au. Therefore we
proved the estimates in (4.3). m

As a corollary of the previous theorem we get the estimate of the second order deriva-
tives:

COROLLARY 4.4. Let all conditions of Theorem 4.3 be satisfied. Then the following esti-
mate holds for some constant C' > 0:

(4.5) IXoV2ull2 i1 < CllfI2s1s:

where o is the characteristic function of any exterior domain B° with S > 0, such that
B% C Q.

Proof. As in the proof of the theorem, we will use the same cut-off function &z =
®r(x) = ¢r(|z|). Tt is enough to estimate xoVZu in QM. Following Farwig we observe
that for o, 6 € R

(4.6) IXoVZullat1,6 < C (I A ullar, g + [ Vtlla, g-1).
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Indeed, we have successively:

/ G e, Z|aau\ dz

1,j=1

= /( a+1¢>2)(Au dx—l—/VnaH(I)Q) Vu Audz
Q

—Z/@ aJFl(IJ2 O;ju - 0;05u dx

i,j=1

< /Q(Au)2 ngﬂdﬂc—i-cg/ nngll//; % |Vu| |Au| dx
1
+6/ - |Vu| |Au| ®g ngﬂ dx
Q2T

2
+ —/ [Vu| |Au| Pg ng‘H dx
M Jogy

3
a+1/2
+C1o/ 775+1;2 % |Vl Z |0;0;u| dx

1,j=1

3
1 a+1
—|—6/Q§/2 . [Vul g |0;0jul g 03" dx

ij*l

/ [Vul Z |0;0;u| ®r ngﬂ dx

i,5=1

< /(Au)z a+1 dx+09/ 77;+11//§ % |Vul |Aul dx+cll/Q|Vu| |Au| ®r ng dx
a+1/2 2 2 2 o
+ c12 775 172 Pr [Vul |V u| dx + c13 | |Vul- ‘V u| drng dv
Q
< 014/(Au)2 ng+1dx—|— %/ |Vu|2 NG—1 dx—!—clst/ ‘V2u|2 ngH @% dx.
Q Q Q

Taking ¢t < 1/(2¢14) and subtracting the last term of the right-hand side from left-hand
side, we get the inequality (4.6). m

THEOREM 4.5. Let the conditions of Theorem 3.2 be satisfied (the condition which ensures
the uniqueness is not necessary here). Further let 0. be of class C?, Vf € Li+2,g+1-
Moreover, let a; < c¢1 n°; and always |a.| < c.n® 1/2 in Q for some c1, ¢, > 0. Then
for every weak solution u of the problem (1.6)-(1.8) we have Vu € La 511(82), V2u €

La+17ﬁ+1, and there is constant C' > 0 such that

(4.7) IV2ullasr,p4+1 + [Vullaprr < C (Iflasrs + IV Flasz,p1)-

Proof. We will use the same cut-off function as in Theorem 4.3. Because f € H'(Q2R)
for an arbitrary R > M, and 9Q. € C?, we have u € H} (Q). Then we can multiply the

equation (1.6) by —V(Vu ngill %) and integrate over {:
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(4.8) —u/ VAuVu ngjrrll % dx + k‘/ VoiuVu ngill % dx
Q Q

+ /Q V(a-Vu)Vu ngill % dr = /QVf Vu ngill ®% dx.
We estimate the first term on the left-hand side, say I,:
I, = — V/QVAu Vu ngillq)% dx
=v /Q(AU)Q ngillqﬁ% dx +v /Q Au Vu V(ngillqﬁ%) dx
=v /Q(Au)2 77%1'11‘1)% dx
+v /Q AuVu Vngill ®% dr +v /Q Au Vu ngill V(®%) dx
By means of the Cauchy-Schwarz inequality, and by the choice of the function ®g(.), we

obtain
a+1

V 2
I, > v / (Au)2 ngillq)% dx — 1//2/ (Vu)2 % <I>2R dz
2 Jo Q Na11

1 2
+1 .
- 61//92/2 |Aul [Vu| ngi; 2®@p - dx — MU/%% |Aul [Vul| n57, 2R da.cr

Let us denote Ij, the second term on the left-hand side of (4.8), we have:

k o
lo= | (Twoogi oh) dr
k o k a
) /Q(VU)2 Oy O dv — 2 /Q (Vu)® 05 01(DF) do

k
> =5 [ (Tup ot o ds
Q
k a+1 1 2 k a+1

As a consequence of these estimates, using the definition (A.6), we get that there
exists a constant such that

v 1
L+l zg /Q(Au)2 g1 % da + 3 A(VU)2Fa+1,B+1(S,T; v) i O dz

e [ 1AVl 95, @,
QZ]VI

R/2
SIVIUQR

We recall in Appendix A how to use function F, g(s,; v), see Lemma A.2. Hence, if

n>1,0<5§i~§~%§“ and 6, v, k > 0, we obtain:

v
I, +1; > 5/(Au)2 N5 % d:cfcw/ |Au| [Vu| gy, Ordx
Q Q

—|—%/Q(Vu)2[<1—%)kée(ﬁ—a)s—(a+1)6k(1+%(a+1)5)] g % de.
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Using again the Cauchy-Schwarz inequality for the second integral with the respective
weight functions ngill and 772:11, an appropriate choice of the constants and the estimates
of Theorem 4.3 lead us to

v
(4.9) I,+1;, > Z/(Au)zngill@%dx +016/(Vu)2ng‘+1 @%dm—cn/ f277g‘+1 dx
Q Q Q

where c16 = £(1— 1) k6 (8 — o).

Coming back to (4.8), we take into account this estimate for I, + I}, and the following
one for the third term in (4.8),
(4.10) I, = /QV(a -Vu) Vu 772111 % dr > —% /Q(Au)2 772111‘1)?% dx

-9 [ (Vg W — e [ fagt e,
2 Q Q

therefore we get:
v (e} G (03 (03 «
g/Q(AU)Q%E@%{deFZﬁ/Q(VU)Q%HCI)%{dfS 019</Qf277ﬁ+1dx+/Q(Vf)2nﬁif dx>.

The end of the proof looks like the end of the proof of Theorem 4.3: Using the Fatou’s
lemma the previous estimate gives

2
a+1,6+1

2
+ {1V |

2 2
< oo (| F12 418 + VARG 42,811)5
and in the bounded domain it is clear from (3.5), (4.3) that
(4.12) | Au [Qqnr ||(21+17/3+1 + || Vu|Qun ||<217[3+1 < el flQ Hiﬂ,ﬁ-
With (4.11), (4.12), (4.6) and Remark 4.1, we get the inequality (4.7).

To complete the proof, it remains to justify the estimate from below of I, in (4.10):

I, = f/(qu) Aungill @%d:vf/(qu)Vu vngill % da
Q Q

(a11) | Au |0 |

—2/(a~Vu)Vu v@Rngilldx
Q

Y

= [ ol vl 12 3 0% = [ 197l 2] 31
a+1/2 * a+1/2
~ean( [ Jerl vl 1Vl w21 @+ [l 197l 9] 55 0 )

~ca( [ larl oral 1Val @rgs + [ a1Vl V0] @nss, ).
Q Q

Using the Cauchy-Schwarz inequality for these six integrals, choosing appropriate defini-
tions of the constants, and because of the assumptions on a1 and |a.|, we easily obtain
the announced estimate.g

COROLLARY 4.6. Let the conditions of Theorem 4.5 be satisfied, let |ai| < ¢1, |[Va;| <

cn:ig and |Va.| < cng'. Then for every weak solution u of the problem (1.6)-(1.8) we



REGULARITY RESULTS FOR A GENERIC MODEL EQUATION 149

have Voyu € L2 5 5,,(Q), xoV3u € L2 5 5.,(Q) and there is constant C > 0 such that
(4.13) IVOru, xoVullatz,s1 < C(Ifllaris + 1V lasz,p41)-

Proof. We proceed as in the proofs of Theorem 4.3 and Theorem 4.5: Weakly deriving
equation (1.6) by V

(4.14) —vAVu+k0Vu+V(a-Vu) =Vf
and testing this equation by Vo u ngif CID%, we get:

(4.15) — 1// VAuVoiu ngif % dx + k:/ Voiu Voru ngif % dx
Q Q

+ / V(a-Vu)Voru ngjrrf % dr = / VfVou ngif % du.
Q Q

The left-hand side of (4.15) can be written as J, + Ji + J,.

We have successively:

Jy= —v/2 / (Au)? 81(772‘1'% L) dr + 1// AuVoiu V(ngj_'f@%) dx
Q Q

-y / (Aw)? s t2 B2, di — w2 / (Au)? 272 0y(2,) da
Q Q

+ 1// AuVoiu Vngif @% dx + 1// AuVoiu 77%1'12 V@% dx
Q Q

> —024/(Au)2 ngii@% dx—625/ |Au| |VO1ul 7]2‘113522 Dp dx
Q Q
t
> —024/9(Au)2 775111‘1)?% dx — 6275/Q|V81u\2 ngif % dx
C25 2 _a+l
T Q(Au) ng Prdx
K 2
> a1+ 197 B nsv) 5 [ 1900 523 05 do

J, = / V(a101u + aV*u) Voiju ngilz % dx
Q
> / ay (Voyu)? ngif % da —/ la.| |[V?u| [VOyul ngif % da
Q Q
—/ |Vaq| |01u| |V ul ngif % dx —/ [Va| |[Viu| |VOrul ngif % da.
Q Q

Using the assumptions on a;, |a.|, |Vai| and |Va.|, we easily obtain

K 2 a
Tt Dt do = 5 [ VOl w5 O de = ear (1120 + IV 1B n00)

and then
K 2
3 [ 1900l 2 W < o (125 + 192 250,
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We have also
V(a . Vu) = 8ja1 811,(, + 8jak Bku + a1 8j81u + ag Bjﬁku,

where i,j € {1,2,3}, k € {2,3}. Then V(a-Vu) € Li+2,ﬁ+1(9)' So, from the equation
(4.14), we get also AVu € Li+2,,6+1(9)-

Use of relation (4.6) and Remark 4.1 completes the proof of (4.13). m

5. Other regularity properties. To get other regularity properties of solutions we
must refer to the results about strong solutions of the equation (1.6) with a = 0 derived
by the potential theory (see Farwig in [2, 3] and Appendix B with b =0 on 92.). Using
this approach we can extend the regularity results also on the case a@ > y; 0, and this
gives us the possibility to compare the regularity results derived by variational approach
and corresponding conditions on function a with results and conditions derived now.
Let the conditions of Theorem 3.2 and Theorem 4.3 be satisfied for the vector function
a(.) and let us denote by wu, the unique weak solution in V, g of our problem. Then
a-Vug € Li+1,ﬁ(ﬂ) : This fact is ensured by the conditions on a(.) in Q, |a1]| < ¢1, |as| <
Cy 7781/2, and for all f € Li+1,5(9> with «, 8 such that 0 < <1, 0< a <y, - B.
With F = f —a-Vu, € L2, 35(9), equation (1.6) looks like —v Au + kdju = F:
Its solvability and uniqueness follow from Appendix B, Theorem B.1, let ug , be the
strong solution. This solution ug , is at the same time the weak solution of our problem
in Vo, 3(£2). Using the uniqueness argument, we get u, = ug, 4. S0, we have a stronger
result for the second order derivatives of u = u, = ug o than in Theorem 4.3, we get:

IVullzg1,8 < CIfI241,-
2

Assuming once more our problem with a # 0 in . Let f € L7, 5 with «, 3 such
that 0 < a < § < 1, i.e. as in Appendix B, Theorem B.1, but with non-negative «;
when o > 310, for all ¢ € (0, y18), we have f € LiJrLB C LzlﬁJrlit”B. Further let
the conditions of Theorem 3.2 and Theorem 4.3 be satisfied for a(.), and let us denote
always by u, the unique weak solution in V;,, s5_; (€2). From Theorem 4.3 it follows that
O1uq € L§1ﬁ+17t,,6 (Q) and Vu, € L;ﬁft,ﬁ (). Assuming stronger additional conditions
on a(.) in

lar] < eng?y aw] < g 7Y,

where ¢ = o — y1 0+ t, we get a - Vu, € LiJrLB(Q).

Let us consider again F' = f —a - Vu,, and ug 4 the strong solution of the problem
rewritten in the previous form, see Appendix B, Theorem B.1. This solution ug , is at
the same time the weak solution of our problem in V,, g, 3(Q2). Using the uniqueness
argument, we get u, = ug, - S0, also in this case we have for the second order derivatives
of u =ug =ug,q:

||V2u||i+1ﬁ <C Hf”iﬂ,ﬁ

This implies the following result:

THEOREM 5.1. Let Q C R? be an exterior domain with boundary of class C?. Further
let 0 <a<pB <1, fell,3Q),andac (C(Q))? has all properties formulated in
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Theorem 3.2. Let additionally the following assumptions be satisfied in €):

jar] < eimg?y o] < caumy 2,
where q = {a B y(;’ﬁ Tt Z Z i Zig for some t € (0, y18). Then there exists a strong
solution u € Vo 5(Q) N HE.(Q) of the problem
(5.1) —vAu+kOu+a-Vu=f in Q,
(5.2) u=0 on 0,
(5.3) u—0 as |z] — o0
such that

lulla—y5 + IVullZ g + 1014, a- Vu, V2ullZiy 5 < ClFIZ s
Analogously, using Theorem B.2 and Theorem B.3 the following results can be derived:

THEOREM 5.2. Let Q C R? be an exterior domain with boundary of class C®. Further let
0<a<p<l,fel?, s(Q), Vfe La+2 5+1(82), and a € (CY(Q))? has all properties
formulated in Theorem 3.2. Let additionally the following assumptions for a(.) be satisfied
in Q:

—1/2}

1/2— —12
jar| < e minfny ©, 7”12 2o iy,

|a‘*( )‘ < Cx mln{?? ’ ,1/2
1/2 —
|va1‘ < CT_ 1;23 ‘VCL*| S 077_1/2

— t, 1 >
where q = {a y(l)’ﬂ th ZZ 3 ; zlg for some t € (0, y18). Then there exists a strong

solution u of the problem (5.1)-(5.8) such that u € L% _, 5(Q), Vue L2 5,,(Q), Vu e
LaJrl’BJrl( ), O1Vu € LaJr2 511(82), Viu € LaJr2 541(82). And there is a constant C' > 0
such that

lulla—1,5 + IVllZ, g1 + IV2ullags, gy + 101V, V2ulZ s g4
< C(If2s1, 8 + IV 22, 1)-
THEOREM 5.3. Let Q C R? be an exterior domain with boundary of class C>. Further let
0<a<pB<l, fell4(),0fell,  z9),andac (CM(Q))? has all properties
formulated in Theorem 3.2. Let additionally the following assumptions for a(.) be satisfied
in Q:
x| <erngts  au(@)] < e min{ng 777, g,

Orar] < engty  [Oran] < eng

a—y B+t if azyf
h =
= {0 L
solution u of the problem (5.1)-(5.3) such that u € L2, 5(Q), Voiu € L2, 5(Q),
Rue L 3 5(Q), VPOue L2, 5 5(Q). And there is a constant C > 0 such that

IVOLulla 2, 5 + 107w, V2Oiulzys g < CUF s + 100513, 0)-

THEOREM 5.4. Let Q2 C R3 be an exterior domain with boundary of class C3. Further let
O0<a<B<l, fell, s, V€Ll iss1(R),01f €Ll ;5(Q),andac (CH(Q))>

for some t € (0, y13). Then there exists a strong
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has all properties formulated in Theorem 8.2. Let additionally the following assumptions
for a(.) be satisfied in Q:

. —1/2 . —1/2—q —1/2
ol < v min {ng?, 12}, Jau(@)] < e mingng V2 072,
Oraa] < emgt, [Via] < eny,
—3/2 X _
D1 <eng®? Vi <ent,
_ ] >
where q = {a np+t, Z_f @z yf for some t € (0, y13). Then there exists a strong
0, if a<yf

solution w of the problem (5.1)-(5.8) such that u € L2, 5(Q), Voiu € L2 5 5,,(9),
Ru e L2, 5 5(Q), VPoue L2, 5 5(Q). And there is a constant C > 0 such that

lulla—y, s + IVllZ, gin + IVZul2g, pra + 100V, Vil s g0
107w, V2Orulfys 5 < CUF a1 s + IV llara, g1 + 101 fass, 5)-

Appendix A. Obviously we have the explicit expressions:

or T; —s
aiT:axi—?, 818—7,
Vr.-Vr=1, VS~V7":§, Vs-Vs:2—S,
T r
2 2
Ar=—- As=—,
T r
x
(A.1) 81ng{a-5(1+6-s)71ﬂ e(146-7)= }nﬁ b
(A.2) Oing ={a-0(1+e-s)+pB-e(l+0- r)}—'nﬁ 1 =23,
(A.3) Vng={a-0(1+e-s) - Vr+8-e(l+6-7)-Vs} g~ b
2 l14+e-s s 14+6-r a—1/2
A4 & = 252 2 _ 2 2.2 . /272
(A.4) |V775‘ {a ) (1+6~r>+ aﬁ&er-i- (%€ (1+5 S) } (77571/2),

o _ of 1+¢e-s s
(A.5) Anﬁ—{a(a 1)6 <1—|—5- +2a555r

1+6-r

+26(6—-1)e <1 .

Because (nﬂ)_lis locally integrable, then, by Hélder’s inequality, it follows that
L2 5(Q) C L}, (Q). Tt thus makes sense to talk about weak derivatives of functions
in Li 5(€2).

Let us mention that nj belongs to the Muckenhoupt class Ay of weights in R3 if
—1< g < 1land —3 < a+ 3 < 3. The following proposition is proved exactly in the same
way as in the non-weighted case (see R. A. Adams [1, pp. 45-46]), when 7§ € Ao.

1 1
) +2a4(1 +€-s);+2ﬁ€(1+5-r);} ngll

LEMMA A.1. Let Q C R® be open set and NG, NG, € As. Then HY NGes 15, ) and
Jin (€ 7’6 7775 1) are Banach spaces, more precisely Hilbert spaces equipped with the scalar
product

Bo 7751

(s V) g1 (2, 5%, al)z/u-v-ngg-dm+/VU-Vv-ng2l-dx.
Q Q
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Let us define a function F,, g(s,r; v) by the relation:

Vn% 2
71/‘ 775‘
s
The following lemma gives the estimate of F(s,r; ) from below.

(A.6) Fop(s,mv)- 773:11 —koing

LEMMA A.2. Let0§a<ﬁ,n>1,0<€§i-§-ﬁﬁ%& and d,v,k > 0. Then
1

(A7) Fap(s,riv)— (1;) ~k~6~5~(ﬂa)~32a5k<1+%a6>

for all >0 and s € [0,2r].

For the proof see [10, Lem. 3.1].

Appendix B. The formulations of theorems used in Section 5. The respective poten-
tial theory using the fundamental solution was done in [3]. The results was proved for
the Oseen system. Due to the identical properties of fundamental solutions one can get
analogous theorems also for the model equation. In this section we shall use the following
notation:

HE(Q) = {ve HE(Q), ve H (Qg) forall R> M}
We used the following theorems in Section 5:

THEOREM B.1 (Farwig). Let Q C R® be an exterior domain with boundary of class C?.
Further let o, B € R be such that 0 < |a| < 8 < 1. Then for all F € LiJrl)B(Q) and all
boundary values b € H3/2(0Q) there is a unique strong solution u € L2 5(QNHE.(Q)

of the problem:

(B.1) —vAu+kdu=F in
(B.2) u=>b onoQ
(B.3) u—0 as |z|— o0

There is a constant ¢ > 0 independent of F' and b such that
lulla=1, 5+ IVulla, 5 + 1016, VZullasr, 5 < (| Fllat1, 5+ Bl /2 a0)-
For the proof see [3, Th. 5.6, Rem. 2.9].

THEOREM B.2 (Farwig). Let Q C R? be an exterior domain with boundary of class C3.
Further let o, B € R be such that 0 < |a| < 8 < 1. Then for all F € LZ+17B(Q), vF e

L(21+275+1(Q) and all boundary values b € H°/?(0NY) there is a unique strong solution u of

the problem (B.1)-(B.3) such that u € Liilyﬁ(ﬁ), Vu € Li’ﬂJrl(Q), V3u e LiJrl’BJrl(Q),

O Vu € Li+2)5+1(9), Viu € Li+2’ﬂ+1(ﬂ). There is a constant ¢ > 0 independent of F
and b such that

lulla—1,5 + IVulla, g41 + IVullasr, g1 + 01 VU, VPullata, p41
< c[|Fllatr, 8+ IVEllate, g1 + [0l 5/2(00))-
For the proof see [3, Th. 5.7 (ii)].
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THEOREM B.3 (Farwig). Let Q C R? be an exterior domain with boundary of class C3.
Further let o, 8 € R be such that 0 < |a| < 8 < 1. Then for all F € Liﬂ,ﬁ(Q),
OF € L2, 3 5(Q) and b= 0. Then the solution u of the problem (B.1)-(B.3) satisfies

IVO1ullate, s + 107w, V20rullats, g < c(Flat1, s + [01F [lats, 5)-
For the proof see [2, Th. 3.9 (i)].

Appendix C. In this section we would like to mention formal connections between our
case and the the modified Oseen equations with some open questions. Let us assume for
simplicity the case 2 = R3. The modified Oseen equations (1.5), (1.2) can be formally
written in the form

—vA+kd+a-V, v ul | F
© e LB Ele)
where L, = — Z?,j:l 0;a; 0ju; and G = =V - F+ (—v A+k01k+a-V)G. As usual we

take the divergence of equation (1.5) to determine pressure p.
In the case a = 0 we have also L,u = 0 therefore (C.1) is reduced to

Vv A+kO +a-V \Y U F
C.2 ’ = .
© I AN LY
As we can see, the first three equations of the system are scalar and depend only on p:
(03) 7VAUZ+]€81U1+(1VUZ:FZ*81P, ’L:1,2,3

Given the F and G we solve the equation — A p = G and then (C.3), each equation
being one model scalar model equation with a = 0. We can see that the case a # 0 is
essentially different, and the question how to modify the mentioned procedure in the case
a # 0 is still open.

Acknowledgement. The authors gratefully acknowledge and appreciate the hospitality
of the Institute of Mathematics of the Polish Academy of Sciences and the University in
Toulon. The first author is supported by grant 201/05/0005 from the Grant Agency of
the Czech Republic, partly supported by grant IAA2120201/02 from the Academy of
Sciences of the Czech Republic and by the project MSM 6840770010 of the Ministry of
Education of the Czech Republic.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] R. Farwig, A variational approach in weighted Sobolev spaces to the operator —/\ + 0/
in exterior domains of R®, Mathematische Zeitschrift 210 (1992), 449-464.

[38] R. Farwig, The stationary exterior 3-D problem of Oseen and Navier-Stokes equations in
anisotropically weighted Sobolev spaces, Mathematische Zeitschrift 211 (1992), 409-447.

[4] R. Finn, Estimates at infinity for stationary solution of Navier—Stokes equations, Bull.
Math. de la Soc. Sci. Math. de la R.P.R. 3 (51) (1959), 387—418.

[5] T. Hishida, The Stokes operator with rotation effect in exterior domains, Analysis 19
(1999), 51-67.



[6]
[7]
18]

9
[10]
11]
12]
113]

[14]

REGULARITY RESULTS FOR A GENERIC MODEL EQUATION 155

J.-L. Impagliazzo, Résolution des équations de Navier-Stokes compressibles a l'aide de la
méthode de décomposition, Thése de doctorat de I’Université de Toulon et du Var, 1997.
T. Kobayashi and Y. Shibata, On the Oseen equation in the three-dimensional exterior
domains, Math. Ann. 310 (1998), 1-45.

S. Kraémar, A. Novotny and M. Pokorny, Estimates of three dimensional Oseen kernels
in weighted LP spaces, in: Applied Nonlinear Analysis, Plenum Publishers/Kluwer Aca-
demic, London-New York, 1999, 281-316.

S. Kra¢mar, A. Novotny and M. Pokorny, Estimates of Oseen kernels in weighted LP
spaces, J. Math. Soc. Japan 53 (2001), 59-111.

S. Kraémar and P. Penel, Variational properties of a generic model equation in exterior
3D domains, Funkcial. Ekvac. 47 (2004), 499-523.

S. Nedasova, Asymptotic properties of the steady fall of a body in a viscous fluid, Mathem.
Models and Appl. 27 (2004), 1969-1995.

C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akad. Verlagsge-
sellschaft M.B.H., Leipzig, 1927.

D. Smith, Estimates at infinity for stationary solutions of the N.S. equations in two di-
mensions, Arch. Rat. Mech. Anal. 20 (1965), 341-372.

R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman Pub-
lishing, San Francisco, 1979.



