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Abstract. We give the L,-L, estimate for the Stokes semigroup in a perturbed half-space and
some global in time existence theorems for small solutions to the Navier-Stokes equation.

1. Background. The non-stationary Stokes system is given by the equations:

©) {ﬁt—Aa’+Vw:ﬁ divi =0, in (0,T) x ©,

ﬁ'an =0, ﬁlt:O =a

with unknown velocity @ = T (uy, . .., u,) and pressure 7 (scalar function) in some domain
Q C R" (n > 2), whose boundary is denoted by 92 and assumed to be a C*! hypersurface
at least. Here and hereafter, T M means the transposed M and n-vectors of functions are
denoted by letters with arrow. If we define the spaces J,(€2) and G,(2) by the relations:

Jp(€2) = the closure of {# € C3° ()" | divd =0 in Q} in L,(Q2)",

Gp(Q) ={Vm € Lp()" | ™ € Lp1oc()},
we know the unique decomposition (so called Helmholtz decomposition)
(HD) Ly()" = Jp() © Gp(Q)

with a linear continuous projection P : L,(2)" — Jp(2) for many types of domains
(cf. Fujiwara and Morimoto [18], Farwig and Sohr [16], [17], Galdi [19], Miyakawa [32],
Simader and Sohr [37] and references therein). Then, we can define the Stokes operator
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A by

(SO) A=P(-A)

with definition domain:

(SD) D,(A) = {ii € J,() NW2(Q)" |, = O}.

Having the Stokes operator A in hand, the non-stationary Stokes equation (S) can be
formulated as an ordinary differential equation in the Banach space J,(€2):

(0) @'(t) + Ad(t) = Pf(t), @(0)=a.

Hence, the question is whether A generates an analytic semigroup. Through the Laplace
transform, this question is related to the resolvent estimate:

(R) AN+ A) Tl oy + 1O+ 4) ] < Cep

Fllz, o

for Ne X, ={ze€ C\ {0} ||argz| <7 — e} with some € € (0,7/2), where 1 < p < c0. In
fact, once obtaining (R), we have the representation formula:

W2(Q)

(Rp) T(H)f = — / MO+ AN, Feq Q)

2ms
where I' = {A =¢e¥s | s > eJU{A=e"Ys|s> e} U{\=ee® | -0 < 5 < 0} with some
6 € (n/2,7) and € > 0, which combined with (R) implies not only the generation of the
analytic semigroup {T'(t)}+>0 by A but also the semigroup estimates:
(SE) IT(#)all,, @ < Cpelall
1T ()all < Cpet™ |l

wﬁan —

Lp(Q)?

for any t > 0 (cf. Pazy [33]).

Concerning the references for (R), when ©Q = R", since the Helmholtz projection
commutes with the Laplacian, the resolvent estimate (R) is reduced to that for the
Laplacian. The case of the half-space 2 = R’} was settled by McCracken [30], where

R?_:{z:(xl,...,xn)€R|xn>0},

and the case of bounded domains by Giga [20] and Solonnikov [38]. The case of exterior
domains was treated by Borchers and Sohr [7], Farwig and Sohr [16], Borchers and Varn-
horn [9] and Varnhorn [42]. When € is a perturbed half-space which is a domain such
that QN B =R"? N B~ for some R > 0 where B? = {z € R" | |z| > R}, (R) was proved
by Farwig and Sohr [16]. The case of cones in R? was settled by Deuring [15]. The case
of aperture domains was settled by Farwig and Sohr [17]. The case of infinite layers like
R"™1 x (—1,1) was settled by Wiegner [5] and Abe and Shibata [1] and [2]. The case of
the asymptotically flat layer was settled by Abels [4].
To obtain L,-L, estimates:

_n(1_1 =

(1) IT (@)l @ < Cpget™ 3G a], o
_n(1_1\_1 _,

2) INT(®)al,, 0 < Cpget™ 2G04, ..
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fort >0and 1 < p < qg< oo (p# o0, ¢g# 1), we combine (SE) with the Sobolev
inequality:

3) [[ul

provided that 0 < j < m, 1 < p < 0o, m—j—n/p is not non-negative integer, j/m < a <1
and 1/q = j/n+1/p—am/n > 0. The estimates (1) and (2) play an important role in the
study of Navier-Stokes equation. In fact, by using the Stokes semigroup, we can reduce
the Navier-Stokes equation:

{ﬁt+(ﬁ~V)ﬁ=V7T+Aﬁ, divi =0 in (0,T) x O
0,

—»| _
UBQ -

< CV™|

Wg(ﬂ) — LP(Q)” HLP(Q) + || HLP(Q)

(NS)

Ultmo = @

to the integral equation:

(1) a(t) = T(t)a — /O T(t — s)P((i(s) - V)i(s)) ds,

where we have set

(v V)w = ((Zvj )w1,...,(zn;vjaj)wn), 9; = 0/0dx;,

Jj=

for the vectors of functions 7 = 7'(

v1,...,0,) and @ = T(w1,...,w,). Employing the
argument due to Kato [24] and using (1) and (2) we can prove the locally in time
existence theorem of (I). More precisely, we see that for any initial data @ € J,(Q)
there exists a time to > 0 such that the integral equation (I) admits a unique solution
i(t) € CO([0,t0), Jn(Q)) with Vi(t) € C°((0,t0), Ln()) (cf. Giga and Miyakawa [21]).

However, in proving a globally in time existence of solutions to (I) at least with small
initial data as well as in the study of time-asymptotic behaviour, we have to show (1)
and (2) without e“’. To show this, we need more precise analysis of (A+ A)~! near A = 0.
That A = 0 is in the resolvent set was derived in the bounded domain case by Giga [20]
and Solonnikov [38], and in the infinite layer case by Abe and Shibata [2], which implies
that (1) and (2) hold, replacing e by e~“* with some constant ¢ > 0.

When 2 = R™, applying the Young inequality to the concrete solution formula, we
have (1) and (2) without e, namely

(4) |71, < Cpgt 2G73) Vit >0,

Il e
1

- —n(l_1)_1
(5) HVT(t)a”Lq(Q) S vaqt 2 (p Q) 2 “a”Lp(Q)’ Vit > O’
for 1 <p <q<oo(p# o0, q#1). When Q = R}, applying the Fourier multiplier
theorem to the concrete solution formula obtained by Ukai [41] and using the Sobolev
inequality:

(6) V7] < CIV™ul}

ey < ¢ el

provided that 0 < j <m, 1 < p < o0, m—j—n/p is not non—negatlve integer, j/m < a <1

and 1/g=j/n+1/p—am/n >0, we have (4) and (5) for 1 <p<g<oo (p# o0, q#1)
(cf. Borchers and Miyakawa [8] and Desch, Hieber and Priiss [14]).
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When Q is an exterior domain, (4) holds for 1 < p < ¢ < 0o (p # 00, ¢ # 1) but
(5) holds only for 1 < p < ¢ < n (¢ # 1). This result was first proved by Iwashita [23]
forl<p<g<ooin(4)and 1 <p < g <nin (5) when n > 3. The refinement of his
result was done by the following authors: Chen [10] (n = 3, ¢ = 00), Shibata [35] (n = 3,
g = 00), Borchers and Varnhorn [9] (n = 2, (4) for p = ¢), Dan and Shibata [11], [12]
(n = 2), Dan, Kobayashi and Shibata [13] (n = 2, 3), and Maremonti and Solonnikov [31]
(n > 2). Especially, that Iwashita’s restriction: ¢ < n in (5) is unavoidable was shown by
Maremonti and Solonnikov [31].

When  is an aperture domain, Abels [3] proved (4) for 1 < p < ¢ < oo and (5) for
1 < p<g<nwhenn >3 ; and Hishida [22] proved (4) for 1 < p < ¢ < oo and (5) for
1<p<g<n(¢#1)and 1 <p<n<g<oowhenn>3.

Moreover, (I) was solved globally in time for small initial data in J, () by using (4)
and (5) in the following papers: Kato [24] in the whole space case; Ukai [41] and Borchers
and Miyakawa [8] in the half-space case; Iwashita [23] and Dan and Shibata [11] in the
exterior domain cases; Abe and Shibata [2] in the infinite layer case; Hishida [22] in the
aperture domain case.

In this paper, we report on the results about (4) and (5) and the related topics in
the perturbed half-space cases. And also, we report on some results on the Navier-Stokes
flow in the perturbed half-space case. The detailed proofs of the results stated below are
found in the papers due to Kubo and Shibata [28] and [29].

2. Notation. Before stating our main theorem precisely, we outline our notation used
throughout the paper. If X is a subset in the complex number field C or functional space,
then X" denotes the n-th product:

X"={(z1,...,zp) |z; € X, j=1,...,n}.
If X be a subset of C, then X \ (—o0,0] is defined by
X\ (=00,0l =X \{z+i0€C| -0 <z<0}.

Given an n-vector of functions v = T'(vy,...,v,) and point x = (z1,...,7,) € R" we set
—/ T !
=" (v, . 0n-1), ' =(x1,...,Tpo1)-

The dot - stands for the usual inner products both of R” and of R*~!. Given R > 0, we
set

Br={zeR"||z| <R}, B®={xeR"||z| >R}, B} =DBrnRY}.

For the differentiation, we use the symbols:

(63 — (63 gy, — n
Ogu=07"--- 05w for a = (a1,...,an) € Ny,
’
O u =08 - 00Tt for o = (ay,..., 1) € Ng ™!,
7 ’ ’
0% = T(0%uy,...,0%,), 0% ="(0%u1,...,0%uy,)

where Ny = NU {0} and N is the set of all natural numbers, and moreover we set

Viu= (0% | |a| =), Vu=V'u, Vid="(Viu,...,Viu,).
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Sobolev spaces of vector-valued functions are used as well as of scalar functions. Thus,

given a domain D in R™, | - || denotes the usual L, norm on D and we set

Lp(D)

n m
HUHW;?;”(D) = Z ||amau”Lp(D)7 ”ﬁHLP(D) = Z ||uj||Lp(D)’ ”ﬁ”vv;,n(n) = Z|‘uj|‘W£”(D)'
j=1 j=1

la|<m
L,(D) denotes the usual L, space on D and C§°(D) the set of all functions in C*°(R")
whose support is compact and contained in D. Moreover, we set

Ly, r(D)={ue€ L,(D) | u(z) =0 for = & Br},
ITIOC(E) = {’LL € Lp,loc(b) ‘ 8?“ € Lp,loc(ﬁ)a |O“ < m}’
W,y (D) = {u € Lyic(D) | dju € Ly(D), j=1,...,n},

P
Wi (D) = {u € Ly(D) | 8%u € Ly(D),]a] < m}.
By C4,p,.. we denote the constants depending on the quantities A, B, .... For two

Banach spaces X and Y, Z(X,Y) denotes the set of all bounded linear operators from
X into Y. &/ (U, X) denotes the set of all X-valued holomorphic functions defined on
U.={z€C||z| <e€}. BC(I; X) and C¥(I; X) denote the set of all X-valued bounded
continuous functions and C* functions defined on I, respectively.

3. Main results about Stokes flow in the perturbed half-space. In this section,
we will state our main results concerning the Stokes system (S) in the half-space and the
perturbed half-space, which is defined as follows.

DEFINITION 1. (1) The half-space R} is defined by
RY = {2z = (z1,...,2,) €R" | z,, > 0}.
(2) Let © be a domain in R™. We call  a perturbed half-space if there exists a number
R > 0 such that
(7) QnBH =R? N B~
As we already stated in section 1, when €2 is a perturbed half-space, Farwig and
Sohr [16] proved the Helmholtz decomposition (HD) and the resolvent estimate (R) on

Q. Therefore, we know that the Stokes operator (SO) with domain (SD) generates the
analytic semigroup {T'(t)}+>0 on J,(£2). Then, we have the following theorem.

THEOREM 1. Let Q be a perturbed half-space in R™ (n > 2) whose boundary O is a O
hypersurface. Then, the Stokes semigroup {T'(t)}+>0 satisfies the following two estimates:

= _n(1_ 1 =
8) 1T, 0 < Cogt™ EF"D i, 0,

= _n(1_1\_1 _,
9) IVT ()], 0 < Coqt™23)73]d|

foranyae J,(),t>0and 1 <p<g<oo (p#oo,qg#1).

Lp(Q)?

The main step in our proof of Theorem 1 is to show the following local energy decay
estimate.

THEOREM 2. Let Q be a perturbed half-space in R™ (n > 2) whose boundary O is a O+
hypersurface. Let 1 < p < oo and R be a number such that (7) holds. Then, the Stokes
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semigroup {T(t)}1>0 satisfies the following estimate:

(10) 1077 (1) P < Cppt™

Wg(smBR) — Lp ()

foranyt>1, j €Ny and d € L, ().
If we consider the Stokes system in the half-space:
(11) U — AT+ Vr =0, divi=0 in (0,00) x R,

7 =0, @m0 =0,

xp=0

then we know by Ukai [41] and Borchers and Miyakawa [8] that the solution ¢ of (11)
satisfies the L,~L, estimate:

(12) 156 < Crat™ 2Bl

. _n(l_1)_1 =
(13) IVEO, ay, < Cpat™ 267D 72B,,

forany ¢t >0and 1 <p<¢g<oo (p# o0, q#1). Since

15l < Cg||VI)|

LP(B;) -
as follows from the boundary condition: ¥], _, = 0, using (13) and Theorem 2, we have

LP(B;)

- —n 1.,
(14) 1T Pl 2 p,y < Crrt™ 22l 0

for any @ € L,(Q2) and ¢ > 1. Combining (12), (13) and (14) by the cut-off technique
and following the argument due to Hishida [22, the proof of Theorem 2.1}, we can show
Theorem 1.

In order to prove Theorem 2, we need some precise information about solutions to
the resolvent problem in R’ :

(15) A=A)G+Vo=7F, divii=0 inR",

@, _, =0,

2o

which is stated in the following two theorems.

THEOREM 3. Let R(\) and II(X) denote the solution operators of (15) which are defined
by
@ =RV =" (RN f.-.. . RaN)f) and 6 =1\ F
for e C\ (—00,0]. Let R >0, 1 < p < 0o and set
By r =L (Lpr(RY)", W] (BE))
for 5 =1,2. Then there exist operators Gf()\) € W(Ul/w,%gﬂ), k=1,2,3,j=1,...,n
and GE(\) € B} g, k=1,2,3 such that

<A>f GYNF+ (A2 log VG2 f + G3(N),
f

(16) T
IO0F = M- GLO)F+ (VF log VG2 F+ G2 (),
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in B, when n > 2 and n is even; and

Ry(Nf = A2GHNF+ (AT log VG2 F+ G2,

)= AEGLO)f+ (AT log G2 (W) F + G2,

n BE when n > 3 and n is odd, provided that A € Uy /16 \ (—00,0] and fe L, r(Q).

THEOREM 4. Let 1 < p < 00, 0 < e < w/2, and let R(\) and II(X\) be the operators given
in Theorem 8 for A € C\ (—00,0]. Let X, be the set in C defined by

(17)

(18) Y. ={AeC\{0} | |argA| < 7 —€}.
Then, there exist operators R(0) € £ (Ly r(RY)", W; loc (R)™) and I1(0) € Z (L (R )",
WZ} loc(R™)) which satisfy the following three conditions:
(i) Given f e L, r(R%), 7= R(0)f and 6 = T1(0) f satisfy the equation:
(19) ~AT+VO=f, divi=0 R}, @, _, =0.

(i)

1, =
Wl(B+) L (B+) = p7R7E|>\|4||f||LP(LR")

IR\ f = R(0) | + [T f = L) £
<

for any f € Ly r(RY) and X € X with |A|
independent off and \.

1/16, where Cp.Rr,e 15 a constant

(iii)
RO)F1@)] < Cprlel ™" DN Fll,,
VIRO)F1(@)] < Cprlal™ " VIF e
1) f1@)] < Cprlel™ "N F L,

for any f € Ly r(R%) and © € R™ with |x| > 2v2R, where Cp g is a constant
independent off and x.

Constructing a parametrix of the resolvent problem in a perturbed half-space, we can
derive from Theorem 3 and Theorem 4 that the resolvent operator (A 4+ A)~! has the
expansion formula of the same type near A = 0 in the space Z(L, r(Q)", WZ(Q2N Bgr)")
as in the half-space case, which is applied to (Rp) implies Theorem 2. The detailed proof
of Theorems 1 and 2 is given in Kubo and Shibata [29] and that of Theorems 3 and 4
in Kubo-Shibata [28]. The fundamental idea of the proofs of Theorems 1 and 2 by using
Theorems 3 and 4 goes back to a paper due to Shibata [34].

4. The Navier-Stokes flow in a perturbed half-space. Following the arguments
due to Kato [24], Kozono [25], Hishida [22] and Wiegner [43] and using Theorem 1 we
can show the following theorem.

THEOREM 5. Let n > 2. There exists a constant 6 = 6(2,n) > 0 with the following
property: if @ € J"(2) satsifies ||d|| < 0, then the integral equation

Ln ()

a(t) = T(t)d — /0 T(t — s)P((i(s) - V)i(s))ds
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admits a unique strong solution ii(t) € BC([0,00); J,(2)) with Vii(t) € C°((0,00); L, (Q2)).
Moreover as t — oo,

J@(D)ll,, @ = ot 5%)  for n<r<oo,
Va0 = ot F3)  for n<r<oo.
THEOREM 6. Let n > 2. There exists a constant n = n(Q,n) € (0, ] with the following
property: if @ € L1() N J,(Q) satisfies ||d]| < n, then the solution u(t) obtained in
Theorem 5 satisfies the estimates:
[T, = O "=7/2)  for1 <r < oo,

V@), @, = O ""#/272)  for 1 <r <o,

Ln (Q)

as t — oo.

5. On the periodic solution of the Navier-Stokes equation in the perturbed
half-space. We can show that if the incompressible fluid in the perturbed half-space
is governed by the periodic external force, the Navier-Stokes equations have a periodic
strong solution with the same period as the external force. Let 2 be a domain in R™(n >
3). Let us consider the following Navier-Stokes equations in :
ou -
a%‘_murﬁ-vmvﬁ:f, reQ teR,
(NSP) divi=0, z€Q, teR,
ﬁ|aQ =0.
Applying the projection operator P, to both sides of the first equation of (NSP), we

have

di )
(E) o+ Avii+ P, (il Vi) = P,f

on J,(Q) for t € R. The above (E) can be further transformed to the following integral
equation:

t t

(I-E) iu(t) = / T(t—s)P.f(s)ds — / T(t—s)P.((4-V)i(s))ds.
— 00 — 00

Concerning the external force f, we impose the following assumption:

AsSUMPTION 1. Let the exponents r and ¢ be such as 2 < r <n, § < ¢ < n. When

n > 4, we assume that
(20) f'e BOM; Ly(Q)N L))

for 1 <p, ¢ <oowithl/r+2/n<1/p,1/g<1/ <1/q+1/n.
When n = 3, we assume that

—

(21) P, f(s) = Ayg(s) (s € R) with some g € BC(R; D(A;))

for 1 < p < min(r, ¢) and 6 > 0 satisfying 3/2p+ > max(1+3/2r,1/2+3/2¢) and that
f € BC(R; Ly())

for 1/g <1/ <1/q+1/3.
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Using the method due to Kozono and Nakao [26], we can show the following two
theorems in the perturbed half-space case.

—

THEOREM 7. Let Q and f satisfy Assumption 1. Suppose that f(t) = f(t + w) for all
t € R with some w > 0. Then there is a constant n = n(n,r,q,p,¢,0) > 0 such that if

— —

sup [ B, f(5)ll,, ) +sup [ Pef(s)]l,, ) <1 when n =4,
s€R seR

—

sup ‘|§(8)‘|Lp(ﬂ) + sup ||P€f(s)||L,(n) <1 when n =3,
seR seR i

we have a periodic solution @ of (I-E) with the same period w as f i the class
BC(R; J-(Q)) with Vi € BC(R; Lq(£2)).

Such a solution U is wunique within this class provided supcp |/u(s)]|
sup,ep || Vi(s) is sufficiently small.

_|_

Ly (2)

||Lq(ﬂ)

THEOREM 8. In addition to the hypotheses of Theorem 7, let us assume furthermore that
f s a Holder continuous function on R with values in L, (). Then the periodic solution
i given by Theorem 7 has the following additional properties:

(i) @€ BC(R; Ju(Q)) N CHR; Jn(Q2));
(ii) @(t) € D(A,) for allt € R and A, @ € C°(R; J,(Q));
(i) o satisfies (E) in J,(Q) for allt € R.
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