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Abstract. We investigate the inviscid limit for the stationary Navier-Stokes equations in a two
dimensional bounded domain with slip boundary conditions admitting nontrivial inflow across
the boundary. We analyze admissible regularity of the boundary necessary to obtain convergence
to a solution of the Euler system. The main result says that the boundary of the domain must
be at least C'?-piecewise smooth with possible interior angles between regular components less
than 7.

1. Introduction. In this note we investigate a model of a two dimensional stationary
flow of a viscous incompressible fluid. The motion is governed by the steady Navier-Stokes
equations in a two dimensional bounded domain

v-Vo—div T(v,p) =0 in £, (1.1)
diveo=0 in Q, '

where v = (v!,v?) is the velocity of the fluid, p the pressure and T(v,p) is the stress

tensor
T(v,p) = vD(v) — pld, (1.2)

where v is the constant positive viscous coefficient and Id the identity matrix; D(v) is
the deformation tensor and

D(v) = Vo + (V0)T = {v}; + v}y, (1.3)
where the comma denotes differentiation.
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As a supplement to equations (1.1) we take the slip boundary conditions

n-T(,p)-7+vfv-7=0 on 9IQ,

v-n=d on 01, (1.4)

where f is the friction function which in general must be nonnegative, n and 7 are the
normal and tangent vectors to the boundary and d describes the inflow/outflow data. By
(1.1)2 we require the following compatibility condition:

ddo = 0. (1.5)
a0

An investigation of the above system has been done in [6], where the inviscid limit
of solutions to (1.1)-(1.4) has been studied. The results say that we are able to find a
suitable subsequence of solutions v = v"#, where v” denote a solution to (1.1)-(1.4) with
viscous coefficient v, such that it converges to a solution of the Euler system

v-Vo+Vp=0 in
div v =0 in 0 (1.6)
n-v=d on Of.

The connection between these two systems is a consequence of properties of the slip
boundary conditions (1.4). Let us recall that for the Dirichlet boundary data, which are
the most popular in models from the mathematical part of fluid mechanics, we cannot find
a good estimate for solutions to the steady Navier-Stokes equations and we are not able
to prove any results concerning the inviscid limit. It is possible only for the evolutionary
equations [2, 5, 10, 11 and 12]. One point which should be underlined is that system (1.6),
and even its evolutionary version, is under-completed. This follows from inhomogeneity
of the boundary data (1.6)3 which implies nonuniqueness of the Euler system, because of
its hyperbolic character. To keep uniqueness there is a need to describe the vorticity at
a part of the boundary, where d < 0. More precise analysis of the Euler system one can
find in [13, 14, 15].

That is the reason the more precise analysis of system (1.1)-(1.4) seems to be interest-
ing and worthwhile to investigate. Results from [6] work only for regular domains, i.e. the
boundary 02 is C-piecewise smooth and interior angles between smooth components are
/2. In the present paper we want to generalize this result to a larger class of domains.

The evolutionary case of our issue for the Navier-Stokes equations with slip boundary
conditions has been investigated in [1]. The three dimensional version of the problem has
been studied in [16, 17].

Throughout the paper we assume that the domain € is simply connected and C?-
piecewise smooth. Moreover we admit a finite number of irregular points and we denote
them by

N ={ws,...,wn,}. (1.7)

Additionally angles between smooth elements for each vertex wy must be of positive
measure. We exclude cases when the angle is zero. By 6 we denote the angle at vertex
wg and by assumptions we have

0<01,92,...,0N0 < 2w and Hmax:{Hl,...,GNo}. (18)
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Moreover we restrict our attention to domains such that for each £k = 1,..., Ny there
exists a neighborhood Uy, of wy such that 2 N is a sector of angle 6. This assumption
is important to control singularities which may appear at vertex wy.

An example of the domain can be illustrated by the following picture.

Wi41

WN,

Fig. 1

To explain properties of system (1.1)-(1.4) we construct a reformulation of the system.
Assuming existence of sufficiently smooth solutions to problem (1.1)-(1.4) we reformulate
the system using the vorticity of the velocity which in the two dimensional case is a scalar
function.

Introduce the vorticity of the velocity field
a=rotv= U721 - 11)12. (1.9)
We obtain the following reformulation of problem (1.1)-(1.4)

v-Va—vAa=0 in

a=02x—flv-t—2d, on 900N (1.10)

and
rotbv=a in €,
diveo=0 in (1.11)
n-v=d on Of.

To obtain (1.10); we take the rotation of (1.1);. Boundary condition (1.10)s follows
from (1.4) by differentiation of (1.4)2 with respect to the length parameter of the curve 99
which we denote by s (see [8-Appendix]). To clarify the statement of boundary condition
(1.10)2 we specify the meaning of the quantity d ;. We will assume that d € W1 (99),
however by the character of condition (1.4)s we should not treat this inclusion in the
regular sense. The differentiation is well defined only on smooth components of boundary
99, hence we generalize space WL (9Q) as a sum of functions from WL defined in each
regular component of J€2. Then d ¢ can be treated as a regular function belonging to the
L.-space defined on boundary 0f).
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Since we are interested in the inviscid limit, our considerations should be realized on
the level of weak solutions. We should not use only information about solutions connected
with higher regularity, because it depends on the viscous coefficient.

We introduce the following definition of solutions to problem (1.1)-(1.4).

DEFINITION 1.1. We say that v is a weak-+ solution to problem (1.1)-(1.4) if and only if
veC(Q), divv=0,

a=10tv € Lx(Q), n-vlpa =d (1.12)
and
99
/ v-Voadr + 1// alApdr — 1// (2x— flv-T—2d4)=—do =0 (1.13)
Q Q o0 T on

for ¢ € W{(Q2) N {ploa = 0}.
As in [6] we will study our system under a geometrical constraint. To specify this
condition we introduce the following quantity.
DEFINITION 1.2. Let €2 be sufficiently regular, then we introduce
Yoo (2) = V7|0 (1.14)
where 7 is the weak solution to the following problem

Ar=1 in
=0 on Of).

The weak solution is unique, however for a certain class of irregular domains {2 the

(1.15)

quantity Y. (2) may be infinite.

For domains with regular boundaries we state the following result from [6-Theorems
1.3 and 1.4].

THEOREM 1.1. Let v >0, f € Loo(0) and d € WL (0Q). Additionally we assume that

1700 () (2x = Hll L0 < 1, (1.16)

where Yo () is given by (1.14) and x is the curvature of OX); then there exists at least
one solution to (1.1)-(1.4) in the sense of Definition 1.1 such that

[rot v’ || L. ) < Mlldllw a0), (1.17)

where M is independent of v. Additionally there exists a subsequence {rot v"*} for v, — 0
such that
rotv’* = rotvg weakly-+x in Loo(S2), (1.18)

where vg is a solution to the Euler system (1.6) such that
[rotve| L. ) < Mldlwy o0)- (1.19)

In our paper we want to consider the irregularity of the boundary. To keep the well
posedness of the weak formulation it is enough to assume that the boundary 99 is C2-
piecewise smooth. Nevertheless this assumption seems to be insufficient. Considering (2
as a polygon, the curvature is zero almost everywhere, however convex and non convex
examples of this type of domains seem to have not the same properties - see the picture
below.
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Fig. 2

We want to define admissible irregularity of the boundary. For this purpose we pre-
scribe an approximation of the original problem by suitable globally smooth approxima-
tion of the original domain. We introduce the following definition.

DEFINITION 1.3. A domain Q is called admissible if and only if it is C2-piecewise smooth
and there exists a friction function f; such that the geometrical constraint is fulfilled, i.e.

700 (©20) (2x0 — fo)llL (002) < 15 (1.20)

and there exists a sequence of domains {2, and friction functions f. such that

12Xe = fell o 00) < 12x0 — follLo09); (1.21)
and
Qe —Qy and fc— fo as e —0, (1.22)
where convergence (1.22) is defined as follows
[Q0\ Q| + |2\ Q| — 0 as €—0,
[090 \ 0| + |02 \ Q9] — 0 as €—0, (1.23)

I|(fe = fo)lacenas.

where | - | denotes the Lebesgue measure of two and one dimensional sets, respectively.

Lo(@non) — 0 as  e—0,

The main result of the present paper is the following generalization of Theorem 1.1.
Throughout the paper we always assume that a < 1.

THEOREM 1.2. Let 0 < a < 7/0max — 1 and 0Q be C%-piecewise smooth and suppose
interior angles between smooth elements are less than 7 and condition (1.16) is fulfilled
by the domain Q. Then there exists at least one weak-+ solution to problem (1.1)-(1.4)
such that

a € Lo() and veCN). (1.24)

Moreover there exists a smooth approximation of problem (1.10) such that the approxi-
mation sequence tends to the original solution and the following bound is valid

[rotv|L. @) + [vllce@) < Mld|lw a0, (1.25)

where M 1is independent of viscosity coefficient v.
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The above result extends Theorem 1.1 on a larger class of domains. However nontrivial
angles can restrict regularity of velocity (v € C™/%max=1(Q) only) which is a consequence
of appearance of singular solutions to the elliptic problem in nonsmooth domains. Also
it clarifies the sense of boundary condition (1.10)5 for piecewise smooth 99.

A consequence of Theorem 1.2 is the following result concerning the inviscid limit for
solutions of (1.1)-(1.4).

THEOREM 1.3. Let assumptions of Theorem 1.2 hold and {v¥,a”} be a solution given by
Theorem 1.2. Then there exists a subsequence {Vg }reN

vy, — 0 for k — 400 (1.26)
such that
v — vp strongly in C*%(Q), (1.27)
o't — rotvg  weakly-+ in Loo(Q) '

as k — oo for § > 0, where vg is a solution to the Euler system (1.6) and the following
bound is valid
[rotvel. ) + lvellca) < Mlldllwz (a0)- (1.28)

Theorem 1.3 follows from Theorem 1.2 and the proof in our case is the same as in [6,
section 4], hence we omit it here.

The paper is organized as follows. In section 2 we consider admissible singularities of
the boundary. Next we prove the a priori bound for the solutions. And in Section 4 we
show Theorem 1.2.

Throughout the paper we try to use the standard notations [4, 9].

2. Admissible points of irregularity. The first step in the proof of Theorem 1.2 is
a construction of an approximation sequence for the original domain ). In this section
we concentrate our attention on one part of the geometrical constraint. We examine the
quantity
2Xe = fe- (2.1)
We introduce the following construction of the approximation for a given domain €.
The definition of a collection {2 will be prescribed by an image of a homeomorphism of
domain €2y. We find a map

®.:R? - R? (2.2)
such that
(ﬁe(QO) = Qe (23)
and
D (0Q0) = 09.. (2.4)
Moreover, let
Ne= | B(wi,2e), (2.5)
i=1,...,No

where w; are irregular point of the boundary and B(w;,¢€) denote balls with centers in
w; and radii equal to €. Then

0 \ Ne (2.6)
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is regular as a submanifold in R? and we require that
Pclpq,\w, = id. (2.7)
Now we investigate neighborhoods of irregular points. Looking at Fig. 2 we divide the
considerations into two cases.
First we consider points between smooth parts with interior angles greater than .
Thus our domain is concave.

Q Qe

</

Fig. 3 Fig. 4

Let us consider an approximation for this sector described by a diffeomorphism ..
Taking into account restriction (2.7) we obtain the following possibility of a shape of
domain ..

By the elementary properties we see that in a neighborhood of vertex w; any approx-
imation will have the following behavior at the limit near the examined point

infy. —» —oco as € —0. (2.8)

Since the friction function must be nonnegative there is no possibility to fulfill the geomet-
rical constraint. Quantity (2.1) will be negative and unbounded. Tt follows that irregular
points cannot describe concave corners.

The second case consists of points between two smooth elements of the boundary with
interior angles less than 7.

We choose the following approximation of this sector describing by Fig. 6 below.
Remembering about (2.7) we obtain.

Fig. 5 Fig. 6

By the properties of the above construction we are able to choose such map ®. that
the curvature of 9. satisfies the following inequality

Xelo.nB(wy,e) > 0 (2.9)
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The singularity at point wj causes that for any approximation in the neighborhood of
wy, the curvature of the boundary blows up, i.e.

sup xe — +oo as € — 0. (2.10)

However, by the properties of this sector, (2.9) and (2.10) we are able to choose the
following friction function

Xe on 896 N B(wk, 6)
fe=14 max{xe, fo(P(:))} on 90 N (B(wg,2e)\ B(wg,¢€)) (2.11)
fO on 8(26 \ B(wk, 26)
This setting makes it possible to omit the irregular part, because
(2Xe — fe)|Bwp,e) = 0. (2.12)

The above considerations lead to the following result. If the domain €2y possesses only
irregular points with angles less than 7, then we are able to find a construction such the
approximation will satisfy the following estimate

12xe = fello9.) < 12x0 — follL.9920) (2.13)

for any € > 0. Inequality (2.13) can be fulfilled, hence convex corners will stay in our
investigation.
Additionally our construction guarantees that

Q.CQ and Q\N =Q. \ N, (2.14)

for ¢ — 0.
In the next steps of our technique (2.14) will be important, because we will be able
to examine the approximation in the original domain (2.

3. A priori bound. In this part we want to show the a priori bound for solutions to
system (1.10)-(1.11) as well to control the behavior of quantity v, (£2) for domains with
irregular boundaries.

Taking the vorticity system (1.10) we are able to apply the maximum principle and
get the following bound

oz @) < 112x = fllow oo [vllc@) + 2lld. s Lo 09)- (3.1)

Since estimate (3.1) follows from the integration by parts, we need to require only the
Lipschitz continuity of the boundary which is satisfied by our basic assumptions. For
details we refer to [6 and 7].

To prove Theorem 1.2 we concentrate on possible singularities of solutions to system
(1.11) coming from influences of boundary angles. As we will see the highest regularity
of solutions v will be bounded by factor 7/0,,4, — 1 where 0,4, is given by (1.8).

The next step is to examine the elliptic system (1.11). The problem we split into two
systems

rot v; =0, rot vy =a in
div v, =0, divvea=0 in (3.2)
n-vy =d, n-vo=0 on 09,
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where v is the solution to (1.11) is given by the following sum
v = vy + V9. (3.3)

The solvability of the first system from (3.2) is analogical to the second one, thus first we
concentrate our study on the last one only.

By (3.2)2 we find a stream function which describes the velocity as follows
V2 = (=03, ¢, =0, $). (3.4)
Also by the boundary condition (3.2)3 and (3.4) we observe that

d
n- vy = £¢):0, (3.5)

and since the function ¢ is given up to a constant and the domain is simply connected
we may choose zero value at the boundary. Thus the second system from (3.2) takes the
following form

Ap=a in Q,

$p=0 on O9. (36)

To close the estimation begun by (3.1) we need the following result for solutions to
(3.6)

IVolle@) < veo (el @) (3.7)

The above estimate is obvious as we consider a domain with regular boundary. How-
ever if the boundary possesses nontrivial corners, the solution may develop singularities.
Let us consider a model case for a domain being a sector described by angle 6.

Fig. 7

For the above domain we consider the following system

AUV =0 in S,
=0 on 05 (3:8)
Elementary considerations yield explicit solutions to problem (3.8) as follows
U = Uy (x) = ¥/ sin (kr /0¢) (3.9)
for k=1,2,..., where r = /2% + 22 and ¢ =arc tan(z2/z1).
To analyze the structure of weak solution to (3.6) we need the following result [3]
which will control singularities created by corners.
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THEOREM 3.1. Let 0 < a < 1 and Q be defined as for problem (1.1)-(1.4), then the weak
solution to system (3.6) has the following form
No K;

¢=0d¢r+ Z Z bikn; Vi, (3.10)
i=1 k=1
where ¢pr € CT(Q), Wi are described by @y, from (3.9) with the origin at w; and 1; are
standard localizers of neighborhoods of w;. In particular

¢r, V) € H'(Q) (3.11)
fori=1,....Nyandk=1,... K;.
Theorem 3.1 will be applied as follows. We want to show that for a certain a > 0 we
are able to restrict angles of corners such that the singular part of function ¢ vanishes,
i.e. all coefficients b; in (3.10) are zero.

First we note that since ¢ is a weak solution, hence V¢ € Ly(2) which by (3.11)
implies also that VW% € Ly(Q). The last statement is valid if

PPl e Ly (), (3.12)
where r; = |z — w;|; which holds if (dim Q = 2)
kr/0 >0 for ke N\ {0}. (3.13)

This restriction describes K; as a function of angle 6;.
The next step is to analyze the regularity C1+¢(£)). We want to show that all functions
U, belong to C'T® and b, are zero, which in our case is equivalent to the following
inequality
kr/0 > 1+ a. (3.14)

By the analysis in section 2 we have already removed from our investigation angles greater
than 7. It follows that we examine only 6; < 7, so in particular, for £ = 1, we have
/0> 1+ a. (3.15)
It follows that number a has to be less or equal 7/0,,4, — 1 - see (1.8). Then function ¥,
from (3.9) would belong to C'™®, which implies that b, = 0. We conclude that ¢ = ¢r
in the studied case.
Thus, the solutions have no singular parts and we can consider all cases for a <
7T/ Omaz — 1.
It is worthwhile to underline that for interior angles greater than 7 we have the
following inequality
/0 < 1. (3.16)

It follows that expansion (3.10) is not trivial since
U, ¢ CHreQ) (3.17)

for any a > 0. Thus we would obtain a restriction on factor a, however considerations
from section 2 excluded this case.

A result of the above considerations can be stated as the following theorem.
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THEOREM 3.2. Let 0 < a < m/0pmax — 1, Q be defined as in Theorem 1.2 and f € Lo ().
Then there exist finite numbers o, (2) and v% (Q) such that the weak solution to problem
Au=F in
’ 1
u=0 on 01, (3.18)

fulfills the following estimates
IVulle@) € Yoo (VI F Il )

(3.19)
Vullce) < YLEONFL ()

As a corollary of Theorem 3.2 we obtain the estimate for solutions to the second

problem from (3.2). By (3.19) we conclude the following bounds
Vo < Q)||a ,
H 2“0(9) > %;( )|| ”LOO(Q) (3.20)
[Vuzllce @) < 15 (Dllallz. @)

Now we return to the first system from (3.2). To solve it we need the following ele-
mentary result.

PROPOSITION 3.1. Let Q fulfill conditions as in Theorem 1.2. If d € WL (Q) and condi-
tion (1.5) is fulfilled then there exists a vector field V' such that

Ve WiL(9Q), IVIwe @ < clldlwz oa), n-Vl]gq = d. (3.21)

The above proposition one can treat as a compatibility condition on datum d. We
may just assume existence of field V' satisfying (3.21).
Proposition 3.1 reduces our system to the following one

rot u=—-rotV in
divu=—-divV in Q, (3.22)
n-u=70 on 09,

putting the following form of the solutions

and V is the field given by Proposition 3.1.
We want to reduce (3.22) to the second system from (3.2). For this purpose we intro-
duce a scalar function z defined as the solution to the following problem

Az=—divV in Q
g—z =0 on Of).

By properties of V' and condition (1.5) the compatibility condition to system (3.24) is
fulfilled. Thus we are able to obtain the next simplification of system (3.22) which reads

(3.24)

rot w=—-rotV in
divw=0 in (3.25)
n-w=>0 on 01,

where the solution to (3.22) has the following form
u=w+ Vz. (3.26)



180 P. B. MUCHA

For system (3.25) the theory [3] gives an analogical result as Theorem 3.1 for system
(3.6), hence we have shown that the first system from (3.2) can be reduced to the second
one, because

v =V +Vz+w. (3.27)

By the above considerations we conclude that
[villc@) < Koo (D)[1d]lwz (80
[v1llca() < K& (Dld]lwr @0
for finite Koo () and k2 () for 0 < a < 7/Opmaz — 1.

The analysis of system (3.2), bounds (3.20), (3.28) and form (3.3) leads to the following
estimate for solutions to problem (1.11)

(3.28)

[vlle@) < Yoo (D)l Lo (@) + Koo lldllwe a0),

(3.29)
[vllca@) < Vo@Dl + rSlldlws, o)
Combining (3.29); with (3.1) we obtain the desired bound
oz < (1 =Yoo (D12l 00) T Blldllwa a0, (3.30)
provided
Yoo (V12X 2. (20) < 1. (3.31)

The a priori estimate from Theorem 1.2 is proved.

4. Approximation. In this part we prove Theorem 1.2. We will construct a sequence
of approximations for the formulation given by Definition 1.1. By (2.14) we are able to
formulate the approximation on the whole domain 2 restricting only the supports of test
functions.

For given ¢ > 0 we define approximation of solutions.

DEFINITION 4.1. A pair {v., a.} we call a approzimative solution for problem (1.1)-(1.4)
if and only if
ve € C*(Q), divv. =0,

(4.1)
e =10t ve € Lop(Q), n-velog =d
and
_ _ _ _ dpe
Ve - Voeaedr +v | acApedr —v [ ((2xe — fe)Ve - T—2d s)=—do =0 (4.2)
Q Q o0 on
for any ¢. € W(Q) such that
supp ¢ C Qe (4.3)
(see section 2); and
Ve = Vela,, Qe =aclo, and alg\g, =0. (4.4)

Definition 4.1 describes the weak formulation to the following system
U - Va, —vAa, =0 in €.,
o — (2Xe — f)ve-T—2d s on 0Q.NIQ, (4.5)
10 on 9Q.\ 99,
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This setting is correct, since by (2.12) we have

2Xe — fe=0 on 00NN/ (4.6)
Thus we control the behavior of boundary data in irregular points. Moreover « is given
by the following trivial extension

o — ae for x € Q,
10 for 2eQ)\Q,

and vector v, fulfills the following system

(4.7)

rot v = a, in Q,
diveoe=0 in Q, (4.8)
n-ve=d on Of),
remembering that
Te = Velq. - (4.9)

Considerations from section 3 lead to the following estimate for solutions to the cou-
pled system (4.5)-(4.8)
el @) + [velleae) < Blldllw aa), (4.10)
where B is independent of parameter € and 0 < @ < 7/0pq. — 1.
Bound (4.10) finishes a part of the proof concerning the construction of the approxi-
mation and starts consideration about the convergence of the approximation sequence.

Since {ve, e }eso are defined on the whole © and information given by (4.10) is inde-
pendent of ¢ we are able to find a subsequence {v,,, ae, }72, such that

er — 0 as k — 4oo (4.11)
and
Ve, — Vs strongly in C?79(Q),
(4.12)
O, — e weakly-x in L ()
fro 0 > 0, where v, and «, fulfills the following bound
sl @) + lvsllce @) < Blldllwz, a0)- (4.13)

Now we show that {v,, .} fulfills Definition 1.1. For this purpose we take ¢ € W2(Q)N
{#]oa = 0} and consider the following quantities connected with formula (4.2)

L(vs, o, ) = / v*ch)a*derV/ a*Agbd:vfl// ((2Xff)v*~7'72d,s)%da. (4.14)
Q Q o0 on
It is required to show that for any ¢ as in (1.13) the following identity holds
L(vs, o, ¢) = 0. (4.15)

First, let us note that for any fixed § > 0 we are able to find a function ¢, € WZ(12)
such that
supp ¢, C £, (4.16)

where Q, is defined as in (4.3); and
¢ — bollwz@) < 6. (4.17)
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Hence by the form of (4.14) we have

L(U*) Qe ¢> = L(U*7 Qs ¢o’) + L(U*7 Qs ¢ - ¢0’) (418>
By (4.14) and bound (4.13) we easily show the following estimate
| L(vi, sy @ — dg)| < 6. (4.19)

It follows that we concentrate our attention on the first term of the r.h.s. of (4.18).
For any €, such that 0 < ¢, < o we have

L(U*7 01*7 ¢o’) = L(Uea aEa ¢o’> + (L(U*a Oé*, ¢0’) - L(UE? aE’ (bU)) * (42())
By properties of pair (v, ,ac,) and Definition 4.1 we see that if o > ¢, then
L(Uék’aéka¢a) =0. (421)
To analyze the second term of the r.h.s. of (4.21) we recall (4.14). First we note that
/ (0 — e ) Apodr — 0 as k — 400 (4.22)
Q
which follows from (4.12),; moreover if o > 2¢;, by (4.5)2 the next term can be treated
as follows
_ 99
v [(2Xe, — fer)Vep - T — (2x — [l - 7] =——do — 0 as k— +oo (4.23)
a0 on

by (4.12)1, (4.16) and (2.12) for o > 2¢.
The last term is connected to the nonlinearity from the equation. We have

/Q(v*V¢ga* — v Voo )dr = /

V. Voo (0 — ae)da + / (v —ve)Vooaedr. (4.24)
Q

Q
The first term of the r.h.s. of (4.24) satisfies

/ V.V, (ax — ac)dz — 0 as k — 400 (4.25)
Q
by (4.12)2 and the second one of the r.h.s. of (4.24) satisfies
/(v* — v )Vo,acdr — 0 as k — 400 (4.26)
Q
by (4.12);. Thus by (4.22), (4.23), (4.25) and (4.26) we conclude
L(vs, s, 5) =0 (4.27)
for any o > 0.
By (4.19) and (4.27) we proved
(o0 6)| < 5 (4.28)

for any ¢ > 0, hence we show identity (4.15). Theorem 1.2 is proved.
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