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Abstra
t. We investigate the invis
id limit for the stationary Navier-Stokes equations in a twodimensional bounded domain with slip boundary 
onditions admitting nontrivial in�ow a
rossthe boundary. We analyze admissible regularity of the boundary ne
essary to obtain 
onvergen
eto a solution of the Euler system. The main result says that the boundary of the domain mustbe at least C

2-pie
ewise smooth with possible interior angles between regular 
omponents lessthan π.1. Introdu
tion. In this note we investigate a model of a two dimensional stationary�ow of a vis
ous in
ompressible �uid. The motion is governed by the steady Navier-Stokesequations in a two dimensional bounded domain
v · ∇v − div T(v, p) = 0 in Ω,div v = 0 in Ω,

(1.1)where v = (v1, v2) is the velo
ity of the �uid, p the pressure and T(v, p) is the stresstensor
T(v, p) = νD(v) − pId, (1.2)where ν is the 
onstant positive vis
ous 
oe�
ient and Id the identity matrix; D(v) isthe deformation tensor and

D(v) = ∇v + (∇v)T = {vi
,j + vj

,i}i,j=1,2, (1.3)where the 
omma denotes di�erentiation.2000 Mathemati
s Subje
t Classi�
ation: 76D09, 76D03, 76B03.Key words and phrases: invis
id limit, Navier-Stokes equations, Euler system, slip boundary
onditions, nonsmooth and singular boundaries.The paper is in �nal form and no version of it will be published elsewhere.
[169]



170 P. B. MUCHAAs a supplement to equations (1.1) we take the slip boundary 
onditions
n · T(v, p) · τ + νfv · τ = 0 on ∂Ω,

v · n = d on ∂Ω,
(1.4)where f is the fri
tion fun
tion whi
h in general must be nonnegative, n and τ are thenormal and tangent ve
tors to the boundary and d des
ribes the in�ow/out�ow data. By

(1.1)2 we require the following 
ompatibility 
ondition:
∫

∂Ω

d dσ = 0. (1.5)An investigation of the above system has been done in [6℄, where the invis
id limitof solutions to (1.1)-(1.4) has been studied. The results say that we are able to �nd asuitable subsequen
e of solutions v = vνk , where vν denote a solution to (1.1)-(1.4) withvis
ous 
oe�
ient ν, su
h that it 
onverges to a solution of the Euler system
v · ∇v + ∇p = 0 in Ω,div v = 0 in Ω,

n · v = d on ∂Ω.

(1.6)The 
onne
tion between these two systems is a 
onsequen
e of properties of the slipboundary 
onditions (1.4). Let us re
all that for the Diri
hlet boundary data, whi
h arethe most popular in models from the mathemati
al part of �uid me
hani
s, we 
annot �nda good estimate for solutions to the steady Navier-Stokes equations and we are not ableto prove any results 
on
erning the invis
id limit. It is possible only for the evolutionaryequations [2, 5, 10, 11 and 12℄. One point whi
h should be underlined is that system (1.6),and even its evolutionary version, is under-
ompleted. This follows from inhomogeneityof the boundary data (1.6)3 whi
h implies nonuniqueness of the Euler system, be
ause ofits hyperboli
 
hara
ter. To keep uniqueness there is a need to des
ribe the vorti
ity ata part of the boundary, where d < 0. More pre
ise analysis of the Euler system one 
an�nd in [13, 14, 15℄.That is the reason the more pre
ise analysis of system (1.1)-(1.4) seems to be interest-ing and worthwhile to investigate. Results from [6℄ work only for regular domains, i.e. theboundary ∂Ω is C2-pie
ewise smooth and interior angles between smooth 
omponents are
π/2. In the present paper we want to generalize this result to a larger 
lass of domains.The evolutionary 
ase of our issue for the Navier-Stokes equations with slip boundary
onditions has been investigated in [1℄. The three dimensional version of the problem hasbeen studied in [16, 17℄.Throughout the paper we assume that the domain Ω is simply 
onne
ted and C2-pie
ewise smooth. Moreover we admit a �nite number of irregular points and we denotethem by

N = {w1, . . . , wN0
}. (1.7)Additionally angles between smooth elements for ea
h vertex wk must be of positivemeasure. We ex
lude 
ases when the angle is zero. By θk we denote the angle at vertex

wk and by assumptions we have
0 < θ1, θ2, . . . , θN0

< 2π and θmax = {θ1, . . . , θN0
}. (1.8)



ADMISSIBLE IRREGULARITY 171Moreover we restri
t our attention to domains su
h that for ea
h k = 1, . . . , N0 thereexists a neighborhood Uk of wk su
h that Ω∩Uk is a se
tor of angle θk. This assumptionis important to 
ontrol singularities whi
h may appear at vertex wk.An example of the domain 
an be illustrated by the following pi
ture.
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Fig. 1To explain properties of system (1.1)-(1.4) we 
onstru
t a reformulation of the system.Assuming existen
e of su�
iently smooth solutions to problem (1.1)-(1.4) we reformulatethe system using the vorti
ity of the velo
ity whi
h in the two dimensional 
ase is a s
alarfun
tion.Introdu
e the vorti
ity of the velo
ity �eld
α = rot v = v2

,1 − v1
,2. (1.9)We obtain the following reformulation of problem (1.1)-(1.4)

v · ∇α − ν∆α = 0 in Ω,

α = (2χ − f)v · τ − 2d,s on ∂Ω
(1.10)and rot v = α in Ω,div v = 0 in Ω,

n · v = d on ∂Ω.

(1.11)

To obtain (1.10)1 we take the rotation of (1.1)1. Boundary 
ondition (1.10)2 followsfrom (1.4) by di�erentiation of (1.4)2 with respe
t to the length parameter of the 
urve ∂Ωwhi
h we denote by s (see [8-Appendix℄). To 
larify the statement of boundary 
ondition
(1.10)2 we spe
ify the meaning of the quantity d,s. We will assume that d ∈ W 1

∞(∂Ω),however by the 
hara
ter of 
ondition (1.4)2 we should not treat this in
lusion in theregular sense. The di�erentiation is well de�ned only on smooth 
omponents of boundary
∂Ω, hen
e we generalize spa
e W 1

∞(∂Ω) as a sum of fun
tions from W 1
∞ de�ned in ea
hregular 
omponent of ∂Ω. Then d,s 
an be treated as a regular fun
tion belonging to the

L∞-spa
e de�ned on boundary ∂Ω.



172 P. B. MUCHASin
e we are interested in the invis
id limit, our 
onsiderations should be realized onthe level of weak solutions. We should not use only information about solutions 
onne
tedwith higher regularity, be
ause it depends on the vis
ous 
oe�
ient.We introdu
e the following de�nition of solutions to problem (1.1)-(1.4).Definition 1.1. We say that v is a weak-∗ solution to problem (1.1)-(1.4) if and only if
v ∈ C(Ω), div v = 0,

α = rot v ∈ L∞(Ω), n · v|∂Ω = d
(1.12)and

∫

Ω

v · ∇φαdx + ν

∫

Ω

α∆φdx − ν

∫

∂Ω

((2χ − f)v · τ − 2d,s)
∂φ

∂n
dσ = 0 (1.13)for φ ∈ W 2

1 (Ω) ∩ {φ|∂Ω = 0}.As in [6℄ we will study our system under a geometri
al 
onstraint. To spe
ify this
ondition we introdu
e the following quantity.Definition 1.2. Let Ω be su�
iently regular, then we introdu
e
γ∞(Ω) = ‖∇π‖C(Ω), (1.14)where π is the weak solution to the following problem
∆π = 1 in Ω,

π = 0 on ∂Ω.
(1.15)The weak solution is unique, however for a 
ertain 
lass of irregular domains Ω thequantity γ∞(Ω) may be in�nite.For domains with regular boundaries we state the following result from [6-Theorems1.3 and 1.4℄.Theorem 1.1. Let ν > 0, f ∈ L∞(∂Ω) and d ∈ W 1

∞(∂Ω). Additionally we assume that
‖γ∞(Ω)(2χ − f)‖L∞(∂Ω) < 1, (1.16)where γ∞(Ω) is given by (1.14) and χ is the 
urvature of ∂Ω; then there exists at leastone solution to (1.1)-(1.4) in the sense of De�nition 1.1 su
h that
‖rot vν‖L∞(Ω) ≤ M‖d‖W 1

∞
(∂Ω), (1.17)where M is independent of ν. Additionally there exists a subsequen
e {rot vνk} for νk → 0su
h that

rot vνk ⇀ rot vE weakly-∗ in L∞(Ω), (1.18)where vE is a solution to the Euler system (1.6) su
h that
‖rot vE‖L∞(Ω) ≤ M‖d‖W 1

∞
(∂Ω). (1.19)In our paper we want to 
onsider the irregularity of the boundary. To keep the wellposedness of the weak formulation it is enough to assume that the boundary ∂Ω is C2-pie
ewise smooth. Nevertheless this assumption seems to be insu�
ient. Considering Ωas a polygon, the 
urvature is zero almost everywhere, however 
onvex and non 
onvexexamples of this type of domains seem to have not the same properties - see the pi
turebelow.
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Ω

Ω

Fig. 2
We want to de�ne admissible irregularity of the boundary. For this purpose we pre-s
ribe an approximation of the original problem by suitable globally smooth approxima-tion of the original domain. We introdu
e the following de�nition.Definition 1.3. A domain Ω0 is 
alled admissible if and only if it is C2-pie
ewise smoothand there exists a fri
tion fun
tion f0 su
h that the geometri
al 
onstraint is ful�lled, i.e.

‖γ∞(Ω0)(2χ0 − f0)‖L∞(∂Ω) < 1; (1.20)and there exists a sequen
e of domains Ωǫ and fri
tion fun
tions fǫ su
h that
‖2χǫ − fǫ‖L∞(∂Ω) ≤ ‖2χ0 − f0‖L∞(∂Ω); (1.21)and
Ωǫ → Ω0 and fǫ → f0 as ǫ → 0, (1.22)where 
onvergen
e (1.22) is de�ned as follows

|Ω0 \ Ωǫ| + |Ωǫ \ Ω0| → 0 as ǫ → 0,

|∂Ω0 \ ∂Ωǫ| + |∂Ωǫ \ ∂Ω0| → 0 as ǫ → 0,

‖(fǫ − f0)|∂Ω0∩∂Ωǫ
‖L∞(∂Ω0∩∂Ωǫ) → 0 as ǫ → 0,

(1.23)

where | · | denotes the Lebesgue measure of two and one dimensional sets, respe
tively.The main result of the present paper is the following generalization of Theorem 1.1.Throughout the paper we always assume that a < 1.Theorem 1.2. Let 0 < a ≤ π/θmax − 1 and ∂Ω be C2-pie
ewise smooth and supposeinterior angles between smooth elements are less than π and 
ondition (1.16) is ful�lledby the domain Ω. Then there exists at least one weak-∗ solution to problem (1.1)-(1.4)su
h that
α ∈ L∞(Ω) and v ∈ Ca(Ω). (1.24)Moreover there exists a smooth approximation of problem (1.10) su
h that the approxi-mation sequen
e tends to the original solution and the following bound is valid

‖rot v‖L∞(Ω) + ‖v‖Ca(Ω) ≤ M‖d‖W 1
∞

(∂Ω), (1.25)where M is independent of vis
osity 
oe�
ient ν.



174 P. B. MUCHAThe above result extends Theorem 1.1 on a larger 
lass of domains. However nontrivialangles 
an restri
t regularity of velo
ity (v ∈ Cπ/θmax−1(Ω) only) whi
h is a 
onsequen
eof appearan
e of singular solutions to the ellipti
 problem in nonsmooth domains. Alsoit 
lari�es the sense of boundary 
ondition (1.10)2 for pie
ewise smooth ∂Ω.A 
onsequen
e of Theorem 1.2 is the following result 
on
erning the invis
id limit forsolutions of (1.1)-(1.4).Theorem 1.3. Let assumptions of Theorem 1.2 hold and {vν , αν} be a solution given byTheorem 1.2. Then there exists a subsequen
e {νk}k∈N

νk → 0 for k → +∞ (1.26)su
h that
vνk → vE strongly in Ca−δ(Ω),

ανk → rot vE weakly-∗ in L∞(Ω)
(1.27)as k → ∞ for δ > 0, where vE is a solution to the Euler system (1.6) and the followingbound is valid

‖rot vE‖L∞(Ω) + ‖vE‖Ca(Ω) ≤ M‖d‖W 1
∞

(∂Ω). (1.28)Theorem 1.3 follows from Theorem 1.2 and the proof in our 
ase is the same as in [6,se
tion 4℄, hen
e we omit it here.The paper is organized as follows. In se
tion 2 we 
onsider admissible singularities ofthe boundary. Next we prove the a priori bound for the solutions. And in Se
tion 4 weshow Theorem 1.2.Throughout the paper we try to use the standard notations [4, 9℄.2. Admissible points of irregularity. The �rst step in the proof of Theorem 1.2 isa 
onstru
tion of an approximation sequen
e for the original domain Ω0. In this se
tionwe 
on
entrate our attention on one part of the geometri
al 
onstraint. We examine thequantity
2χǫ − fǫ. (2.1)We introdu
e the following 
onstru
tion of the approximation for a given domain Ω0.The de�nition of a 
olle
tion Ωǫ will be pres
ribed by an image of a homeomorphism ofdomain Ω0. We �nd a map

Φǫ : R2 → R
2 (2.2)su
h that

Φǫ(Ω0) = Ωǫ (2.3)and
Φǫ(∂Ω0) = ∂Ωǫ. (2.4)Moreover, let

Nǫ =
⋃

i=1,...,N0

B(wi, 2ǫ), (2.5)where wi are irregular point of the boundary and B(wi, ǫ) denote balls with 
enters in
wi and radii equal to ǫ. Then

∂Ω0 \ Nǫ (2.6)



ADMISSIBLE IRREGULARITY 175is regular as a submanifold in R
2 and we require that

Φǫ|∂Ω0\Nǫ
= id. (2.7)Now we investigate neighborhoods of irregular points. Looking at Fig. 2 we divide the
onsiderations into two 
ases.First we 
onsider points between smooth parts with interior angles greater than π.Thus our domain is 
on
ave.

Ω

Fig. 3
&%
'$

Ω
ǫ

Fig. 4Let us 
onsider an approximation for this se
tor des
ribed by a di�eomorphism Φǫ.Taking into a

ount restri
tion (2.7) we obtain the following possibility of a shape ofdomain Ωǫ.By the elementary properties we see that in a neighborhood of vertex wk any approx-imation will have the following behavior at the limit near the examined point
inf χǫ → −∞ as ǫ → 0. (2.8)Sin
e the fri
tion fun
tion must be nonnegative there is no possibility to ful�ll the geomet-ri
al 
onstraint. Quantity (2.1) will be negative and unbounded. It follows that irregularpoints 
annot des
ribe 
on
ave 
orners.The se
ond 
ase 
onsists of points between two smooth elements of the boundary withinterior angles less than π.We 
hoose the following approximation of this se
tor des
ribing by Fig. 6 below.Remembering about (2.7) we obtain.

Ω

Fig. 5 ��
��

Ω
ǫ

Fig. 6By the properties of the above 
onstru
tion we are able to 
hoose su
h map Φǫ thatthe 
urvature of ∂Ωǫ satis�es the following inequality
χǫ|∂Ωǫ∩B(wk,ǫ) ≥ 0. (2.9)



176 P. B. MUCHAThe singularity at point wk 
auses that for any approximation in the neighborhood of
wk the 
urvature of the boundary blows up, i.e.

sup χǫ → +∞ as ǫ → 0. (2.10)However, by the properties of this se
tor, (2.9) and (2.10) we are able to 
hoose thefollowing fri
tion fun
tion
fǫ =







χǫ on ∂Ωǫ ∩ B(wk, ǫ)

max{χǫ, f0(Φǫ(·))} on ∂Ωǫ ∩ (B(wk, 2ǫ) \ B(wk, ǫ))

f0 on ∂Ωǫ \ B(wk, 2ǫ)

(2.11)This setting makes it possible to omit the irregular part, be
ause
(2χǫ − fǫ)|B(wk,ǫ) ≡ 0. (2.12)The above 
onsiderations lead to the following result. If the domain Ω0 possesses onlyirregular points with angles less than π, then we are able to �nd a 
onstru
tion su
h theapproximation will satisfy the following estimate

‖2χǫ − fǫ‖L∞(∂Ωǫ) ≤ ‖2χ0 − f0‖L∞(∂Ω0) (2.13)for any ǫ > 0. Inequality (2.13) 
an be ful�lled, hen
e 
onvex 
orners will stay in ourinvestigation.Additionally our 
onstru
tion guarantees that
Ωǫ ⊂ Ω and Ω \ Nǫ = Ωǫ \ Nǫ (2.14)for ǫ → 0.In the next steps of our te
hnique (2.14) will be important, be
ause we will be ableto examine the approximation in the original domain Ω.3. A priori bound. In this part we want to show the a priori bound for solutions tosystem (1.10)-(1.11) as well to 
ontrol the behavior of quantity γ∞(Ω) for domains withirregular boundaries.Taking the vorti
ity system (1.10) we are able to apply the maximum prin
iple andget the following bound

‖α‖L∞(Ω) ≤ ‖2χ − f‖L∞(∂Ω)‖v‖C(Ω) + 2‖d,s‖L∞(∂Ω). (3.1)Sin
e estimate (3.1) follows from the integration by parts, we need to require only theLips
hitz 
ontinuity of the boundary whi
h is satis�ed by our basi
 assumptions. Fordetails we refer to [6 and 7℄.To prove Theorem 1.2 we 
on
entrate on possible singularities of solutions to system(1.11) 
oming from in�uen
es of boundary angles. As we will see the highest regularityof solutions v will be bounded by fa
tor π/θmax − 1 where θmax is given by (1.8).The next step is to examine the ellipti
 system (1.11). The problem we split into twosystems rot v1 = 0, rot v2 = α in Ω,div v1 = 0, div v2 = 0 in Ω,

n · v1 = d, n · v2 = 0 on ∂Ω,

(3.2)



ADMISSIBLE IRREGULARITY 177where v is the solution to (1.11) is given by the following sum
v = v1 + v2. (3.3)The solvability of the �rst system from (3.2) is analogi
al to the se
ond one, thus �rst we
on
entrate our study on the last one only.By (3.2)2 we �nd a stream fun
tion whi
h des
ribes the velo
ity as follows

v2 = (−∂x2
φ,−∂x1

φ). (3.4)Also by the boundary 
ondition (3.2)3 and (3.4) we observe that
n · v2 =

d

ds
φ = 0, (3.5)and sin
e the fun
tion φ is given up to a 
onstant and the domain is simply 
onne
tedwe may 
hoose zero value at the boundary. Thus the se
ond system from (3.2) takes thefollowing form

∆φ = α in Ω,

φ = 0 on ∂Ω.
(3.6)To 
lose the estimation begun by (3.1) we need the following result for solutions to(3.6)

‖∇φ‖C(Ω) ≤ γ∞(Ω)‖α‖L∞(Ω). (3.7)The above estimate is obvious as we 
onsider a domain with regular boundary. How-ever if the boundary possesses nontrivial 
orners, the solution may develop singularities.Let us 
onsider a model 
ase for a domain being a se
tor des
ribed by angle θ.

θ

S

Fig. 7For the above domain we 
onsider the following system
∆Ψ = 0 in S,

Ψ = 0 on ∂S.
(3.8)Elementary 
onsiderations yield expli
it solutions to problem (3.8) as follows

Ψ = Ψk(x) = rkπ/θ sin (kπ/θϕ) (3.9)for k = 1, 2, . . ., where r =
√

x2
1 + x2

2 and ϕ =ar
 tan(x2/x1).To analyze the stru
ture of weak solution to (3.6) we need the following result [3℄whi
h will 
ontrol singularities 
reated by 
orners.



178 P. B. MUCHATheorem 3.1. Let 0 < a < 1 and Ω be de�ned as for problem (1.1)-(1.4), then the weaksolution to system (3.6) has the following form
φ = φR +

N0
∑

i=1

Ki
∑

k=1

bikηiΨ
i
k, (3.10)where φR ∈ C1+a(Ω), Ψi

k are des
ribed by Φk from (3.9) with the origin at wi and ηi arestandard lo
alizers of neighborhoods of wi. In parti
ular
φR, Ψi

k ∈ H1(Ω) (3.11)for i = 1, . . . , N0 and k = 1, . . . , Ki.Theorem 3.1 will be applied as follows. We want to show that for a 
ertain a > 0 weare able to restri
t angles of 
orners su
h that the singular part of fun
tion φ vanishes,i.e. all 
oe�
ients bik in (3.10) are zero.First we note that sin
e φ is a weak solution, hen
e ∇φ ∈ L2(Ω) whi
h by (3.11)implies also that ∇Ψi
k ∈ L2(Ω). The last statement is valid if

r
kπ/θi−1
i ∈ L2(Ω), (3.12)where ri = |x − wi|; whi
h holds if (dim Ω = 2)

kπ/θ > 0 for k ∈ N \ {0}. (3.13)This restri
tion des
ribes Ki as a fun
tion of angle θi.The next step is to analyze the regularity C1+a(Ω). We want to show that all fun
tions
Ψk belong to C1+a and bk are zero, whi
h in our 
ase is equivalent to the followinginequality

kπ/θ ≥ 1 + a. (3.14)By the analysis in se
tion 2 we have already removed from our investigation angles greaterthan π. It follows that we examine only θi < π, so in parti
ular, for k = 1, we have
π/θ ≥ 1 + a. (3.15)It follows that number a has to be less or equal π/θmax − 1 - see (1.8). Then fun
tion Ψ1from (3.9) would belong to C1+a, whi
h implies that b1 = 0. We 
on
lude that φ = φRin the studied 
ase.Thus, the solutions have no singular parts and we 
an 
onsider all 
ases for a ≤

π/θmax − 1.It is worthwhile to underline that for interior angles greater than π we have thefollowing inequality
π/θ < 1. (3.16)It follows that expansion (3.10) is not trivial sin
e

Ψ1 ∈/ C1+a(Ω) (3.17)for any a > 0. Thus we would obtain a restri
tion on fa
tor a, however 
onsiderationsfrom se
tion 2 ex
luded this 
ase.A result of the above 
onsiderations 
an be stated as the following theorem.



ADMISSIBLE IRREGULARITY 179Theorem 3.2. Let 0 < a ≤ π/θmax−1, Ω be de�ned as in Theorem 1.2 and f ∈ L∞(Ω).Then there exist �nite numbers γ∞(Ω) and γa
∞(Ω) su
h that the weak solution to problem

∆u = F in Ω,

u = 0 on ∂Ω,
(3.18)ful�lls the following estimates

‖∇u‖C(Ω) ≤ γ∞(Ω)‖F‖L∞(Ω),

‖∇u‖Ca(Ω) ≤ γa
∞(Ω)‖F‖L∞(Ω).

(3.19)

As a 
orollary of Theorem 3.2 we obtain the estimate for solutions to the se
ondproblem from (3.2). By (3.19) we 
on
lude the following bounds
‖∇v2‖C(Ω) ≤ γ∞(Ω)‖α‖L∞(Ω),

‖∇v2‖Ca(Ω) ≤ γa
∞(Ω)‖α‖L∞(Ω).

(3.20)Now we return to the �rst system from (3.2). To solve it we need the following ele-mentary result.Proposition 3.1. Let Ω ful�ll 
onditions as in Theorem 1.2. If d ∈ W 1
∞(Ω) and 
ondi-tion (1.5) is ful�lled then there exists a ve
tor �eld V su
h that

V ∈ W 1
∞(Ω), ‖V ‖W 1

∞
(Ω) ≤ c‖d‖W 1

∞
(∂Ω), n · V |∂Ω = d. (3.21)The above proposition one 
an treat as a 
ompatibility 
ondition on datum d. Wemay just assume existen
e of �eld V satisfying (3.21).Proposition 3.1 redu
es our system to the following onerot u = −rotV in Ω,div u = −divV in Ω,

n · u = 0 on ∂Ω,

(3.22)

putting the following form of the solutions
v1 = u + V (3.23)and V is the �eld given by Proposition 3.1.We want to redu
e (3.22) to the se
ond system from (3.2). For this purpose we intro-du
e a s
alar fun
tion z de�ned as the solution to the following problem

∆z = −div V in Ω,
∂z
∂n = 0 on ∂Ω.

(3.24)By properties of V and 
ondition (1.5) the 
ompatibility 
ondition to system (3.24) isful�lled. Thus we are able to obtain the next simpli�
ation of system (3.22) whi
h readsrot w = −rotV in Ω,div w = 0 in Ω,

n · w = 0 on ∂Ω,

(3.25)

where the solution to (3.22) has the following form
u = w + ∇z. (3.26)
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al result as Theorem 3.1 for system(3.6), hen
e we have shown that the �rst system from (3.2) 
an be redu
ed to the se
ondone, be
ause
v1 = V + ∇z + w. (3.27)By the above 
onsiderations we 
on
lude that

‖v1‖C(Ω) ≤ κ∞(Ω)‖d‖W 1
∞

(∂Ω),

‖v1‖Ca(Ω) ≤ κa
∞(Ω)‖d‖W 1

∞
(∂Ω)

(3.28)for �nite κ∞(Ω) and κa
∞(Ω) for 0 < a ≤ π/θmax − 1.The analysis of system (3.2), bounds (3.20), (3.28) and form (3.3) leads to the followingestimate for solutions to problem (1.11)
‖v‖C(Ω) ≤ γ∞(Ω)‖α‖L∞(Ω) + κ∞‖d‖W 1

∞
(∂Ω),

‖v‖Ca(Ω) ≤ γa
∞(Ω)‖α‖L∞(Ω) + κa

∞‖d‖W 1
∞

(∂Ω).
(3.29)Combining (3.29)1 with (3.1) we obtain the desired bound

‖α‖L∞(Ω) ≤ (1 − γ∞(Ω)‖2χ‖L∞(∂Ω))
−1B‖d‖W 1

∞
(∂Ω), (3.30)provided

γ∞(Ω)‖2χ‖L∞(∂Ω) < 1. (3.31)The a priori estimate from Theorem 1.2 is proved.4. Approximation. In this part we prove Theorem 1.2. We will 
onstru
t a sequen
eof approximations for the formulation given by De�nition 1.1. By (2.14) we are able toformulate the approximation on the whole domain Ω restri
ting only the supports of testfun
tions.For given ǫ > 0 we de�ne approximation of solutions.Definition 4.1. A pair {vǫ, αǫ} we 
all a approximative solution for problem (1.1)-(1.4)if and only if
vǫ ∈ Ca(Ω), div vǫ = 0,

αǫ = rot vǫ ∈ L∞(Ω), n · vǫ|∂Ω = d
(4.1)and

∫

Ω

v̄ǫ · ∇φǫᾱǫdx + ν

∫

Ω

ᾱǫ∆φǫdx − ν

∫

∂Ω

((2χǫ − fǫ)v̄ǫ · τ − 2d,s)
∂φǫ

∂n
dσ = 0 (4.2)for any φǫ ∈ W 2

1 (Ω) su
h that
supp φǫ ⊂ Ωǫ (4.3)(see se
tion 2); and

v̄ǫ = vǫ|Ωǫ
, ᾱǫ = αǫ|Ωǫ

and α|Ω\Ωǫ
= 0. (4.4)De�nition 4.1 des
ribes the weak formulation to the following system

v̄ǫ · ∇ᾱǫ − ν∆ᾱǫ = 0 in Ωǫ,

ᾱǫ =

{

(2χǫ − fǫ)v̄ǫ · τ − 2d,s on ∂Ωǫ ∩ ∂Ω,

0 on ∂Ωǫ \ ∂Ω,

(4.5)
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orre
t, sin
e by (2.12) we have
2χǫ − fǫ ≡ 0 on ∂Ωǫ ∩ Nǫ/2. (4.6)Thus we 
ontrol the behavior of boundary data in irregular points. Moreover αǫ is givenby the following trivial extension
αǫ =

{

ᾱǫ for x ∈ Ωǫ,

0 for x ∈ Ω \ Ωǫ,
(4.7)and ve
tor vǫ ful�lls the following systemrot vǫ = αǫ in Ω,div vǫ = 0 in Ω,

n · vǫ = d on ∂Ω,

(4.8)remembering that
v̄ǫ = vǫ|Ωǫ

. (4.9)Considerations from se
tion 3 lead to the following estimate for solutions to the 
ou-pled system (4.5)-(4.8)
‖αǫ‖L∞(Ω) + ‖vǫ‖Ca(Ω) ≤ B‖d‖W 1

∞
(∂Ω), (4.10)where B is independent of parameter ǫ and 0 < a ≤ π/θmax − 1.Bound (4.10) �nishes a part of the proof 
on
erning the 
onstru
tion of the approxi-mation and starts 
onsideration about the 
onvergen
e of the approximation sequen
e.Sin
e {vǫ, αǫ}ǫ>0 are de�ned on the whole Ω and information given by (4.10) is inde-pendent of ǫ we are able to �nd a subsequen
e {vǫk

, αǫk
}∞k=0 su
h that

ǫk → 0 as k → +∞ (4.11)and
vǫk

→ v∗ strongly in Ca−δ(Ω),

αǫk
⇀ α∗ weakly-∗ in L∞(Ω)

(4.12)fro δ > 0, where v∗ and α∗ ful�lls the following bound
‖α∗‖L∞(Ω) + ‖v∗‖Ca(Ω) ≤ B‖d‖W 1

∞
(∂Ω). (4.13)Now we show that {v∗, α∗} ful�lls De�nition 1.1. For this purpose we take φ ∈ W 2

1 (Ω)∩

{φ|∂Ω = 0} and 
onsider the following quantities 
onne
ted with formula (4.2)
L(v∗, α∗, φ) =

∫

Ω

v∗∇φα∗dx+ν

∫

Ω

α∗∆φdx−ν

∫

∂Ω

((2χ−f)v∗·τ−2d,s)
∂φ

∂n
dσ. (4.14)It is required to show that for any φ as in (1.13) the following identity holds

L(v∗, α∗, φ) = 0. (4.15)First, let us note that for any �xed δ > 0 we are able to �nd a fun
tion φσ ∈ W 2
1 (Ω)su
h that supp φσ ⊂ Ωσ, (4.16)where Ωσ is de�ned as in (4.3); and

‖φ − φσ‖W 2

1
(Ω) ≤ δ. (4.17)
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e by the form of (4.14) we have
L(v∗, α∗, φ) = L(v∗, α∗, φσ) + L(v∗, α∗, φ − φσ). (4.18)By (4.14) and bound (4.13) we easily show the following estimate

|L(v∗, α∗, φ − φσ)| ≤ cδ. (4.19)It follows that we 
on
entrate our attention on the �rst term of the r.h.s. of (4.18).For any ǫk su
h that 0 < ǫk < σ we have
L(v∗, α∗, φσ) = L(vǫ, αǫ, φσ) + (L(v∗, α∗, φσ) − L(vǫ, αǫ, φσ)) . (4.20)By properties of pair (vǫk

, αǫk
) and De�nition 4.1 we see that if σ ≥ ǫk, then
L(vǫk

, αǫk
, φσ) = 0. (4.21)To analyze the se
ond term of the r.h.s. of (4.21) we re
all (4.14). First we note that

∫

Ω

(α∗ − αǫk
)∆φσdx → 0 as k → +∞ (4.22)whi
h follows from (4.12)2; moreover if σ ≥ 2ǫk by (4.5)2 the next term 
an be treatedas follows

ν

∫

∂Ω

[(2χǫk
− fǫk

)v̄ǫk
· τ − (2χ − f)v∗ · τ ]

∂φσ

∂n
dσ → 0 as k → +∞ (4.23)by (4.12)1, (4.16) and (2.12) for σ ≥ 2ǫk.The last term is 
onne
ted to the nonlinearity from the equation. We have

∫

Ω

(v∗∇φσα∗ − vǫ∇φσαǫ)dx =

∫

Ω

v∗∇φσ(α∗ − αǫ)dx +

∫

Ω

(v∗ − vǫ)∇φσαǫdx. (4.24)The �rst term of the r.h.s. of (4.24) satis�es
∫

Ω

v∗∇φσ(α∗ − αǫ)dx → 0 as k → +∞ (4.25)by (4.12)2 and the se
ond one of the r.h.s. of (4.24) satis�es
∫

Ω

(v∗ − vǫ)∇φσαǫdx → 0 as k → +∞ (4.26)by (4.12)1. Thus by (4.22), (4.23), (4.25) and (4.26) we 
on
lude
L(v∗, α∗, φσ) = 0 (4.27)for any σ > 0.By (4.19) and (4.27) we proved
|L(v∗, α∗, φ)| ≤ cδ (4.28)for any δ > 0, hen
e we show identity (4.15). Theorem 1.2 is proved.A
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