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Abstract. In the paper [13], we give the full system of equations modelling the motion of a

fluid/viscoelastic solid system, and obtain a differential model similar to the so-called Oldroyd

model for a viscoelastic fluid. Moreover, existence results in bounded domains are obtained. In

this paper we extend the results in [13] to unbounded domains. The unique solvability of the

system of equations is established locally in time and globally in time with so-called smallness

restrictions. Moreover, existence of a weak solution is treated.

1. Introduction. The Navier-Stokes equations

ρ(∂tu+ u · ∇u) −∇ · (µ(∇u+T ∇u) − pI) = ρf,
(1.1)

∇ · u = 0,

where u is the velocity, p the pressure, ρ the density (constant), µ the viscosity (constant)

and f the body force, are essentially the simplest equations describing the motion of a fluid,

and they are derived under a quite simple assumption, namely, the existence of a linear

local relation between tangential part of stress tensor T and strain rateD(u) = ∇u+∇uT ,

i.e. T = µD(u).

Physically it is assumed that the constituent particles of the fluid are too small for

their dynamics to interact substantially with macroscopic motion. These fluids are called

Newtonian fluids. We notice that the mathematical theory of this model is far from

complete.

2000 Mathematics Subject Classification: 35Q30, 76A05, 76D03.

Key words and phrases: two-phase problem, viscoelastic material, Oldroyd model, local and
global solution, weak solution.

The paper is in final form and no version of it will be published elsewhere.

[209]



210 R. SALVI

But, the Newtonian model is inadequate for fluids having a much complex chemical

structure. In some materials stress increases with shear rate (shear-thickening). In most

other fluids the opposite behavior takes place, the stress decreases with the increase

of the stress rate (shear-thinning). This behavior is due to the progressive orientation of

molecules in the motion direction. For these fluids the viscosity is considered not constant,

but shear rate dependent, in particular, a nonlinear power type dependence is considered.

Anyway, by far, the most widely studied class of non-Newtonian fluids is that of

viscoelastic fluids, namely, fluids with memory; see [3], [7], [8], [10]. These fluids present

two typical features: stress relaxation and creep. The first phenomenon is the progressive

rather than instantaneous stress decay when the fluid deformation suddenly vanishes. The

second effect, dual to the former, consists in a nonlinear increasing deformation, though

the fluid undergoes a constant stress. It turns out that a general constitutive law for these

fluids does not exist. The choice of a model follows from rheological considerations and

from accordance to experimental data. The differential models considered in literature

are based on the empirical model of Maxwell that incorporate in one equation simplest

shear law of viscous fluids and that of elastic solid.

In [13] we consider the motion of a continuum medium consisting of two components,

namely a viscous incompressible fluid and viscoelastic particles. (In engineering science

the system of fluid/elastic solid is commonly used to simulate a visco-elastic fluid). Using

the theory developed in [6], [9], [12], [13], we give the full system of equations modelling the

motion of the fluid/solid system, and we obtain a model like the so-called Oldroyd model.

According to the scale size of the particles, we deduce two models. The discontinuous

model is obtained using as order parameter the characteristic function of the region filled

with the particles. The continuous model is obtained using as order parameter the volume

concentration of the particles. Moreover, an existence theory is developed in bounded

domains.

In this paper, we extend the results in [13] to a generic unbounded domain. Under

regularity of the data, we prove some local and, for small data, global (in time) existence

results . Then, assuming that initially the elastic solid is in stressed state, we prove the

existence of a weak and of a weak-measure solution. Finally, an alternative model is

considered.

The paper is organized as follows.

In section 2 we give notation, preliminary results and we present the systems of

equations deduced in [13]. In section 3 we state the existence results. In sections 4 and 5

the existence theorems are proved.

2. Preliminaries.

2.1. Notation and functional spaces. Let Ω denote an open set in Rm. ∂Ω or Γ denotes

the boundary of Ω. Moreover, it is assumed that Ω is a smooth domain of class Ck with

k a positive integer. Furthermore, we assume that the unit normal vector field n(x) with

x ∈ ∂Ω is outward pointing on ∂Ω. If it is necessary we consider also an extension of

n to a neighborhood of Ω̄. If k ≥ 2, in each point of x ∈ ∂Ω, we can define the mean

curvature H.
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To simplify the discussion, we do not distinguish in our notation whether the functions

are R-, Rm-valued or tensors, and c denotes a constant. We define C∞
0 (Ω) to be the linear

space of infinitely differentiable functions with compact supports in Ω. Now let (C∞
0 (Ω))′

denote the dual space of C∞
0 (Ω), the space of distributions on Ω. We denote by 〈·, ·〉 the

duality pairing between (C∞
0 (Ω))′ and C∞

0 (Ω).

Let α = (α1, . . . , αn) ∈ Nn and set |α| =
∑n

i=1 αi. We set

∂

∂xi
= ∂xi

Dα = ∂
|α|
x

α1

1
,...,xαn

n
,

∇ = (∂x1
, . . . , ∂xm

) the gradient operator and ∇· the divergence operator.

We denote by C∞
0 the linear space of divergence free functions of C∞

0 . For any s, q,

s ≥ 0, q ≥ 1, W̃ s,q(Ω) denotes the Sobolev space of order s on Lq(Ω). Further the norm

on W̃ s,q(Ω) is denoted by |||φ|||s,q.

When q = 2, W̃ s,2(Ω) is usually denoted by H̃s(Ω) and we drop the subscript q = 2

when referring to its norm. H̃s(Ω) is a Hilbert space for the scalar product

(((u, v)))s =
∑

|α|≤s

∫

Ω

DαuDαvdx.

In particular, in L2(Ω), we write the scalar product (u, v) and the norm |v|2. Furthermore,

we define W̃ s,q
0 (Ω) to be the closure of C∞

0 (Ω) for the norm ||| · |||s,q.

We denote by W̃−s,q′

(Ω) the dual space of W s,q
o (Ω) and ||| · |||−s,q′ denotes its norm

where q′ satisfies 1/q + 1/q′ = 1.

Let us introduce the following spaces of divergence-free functions. We denote by

Ṽ s = {v|v ∈ H̃s
0(Ω),∇ · v = 0}.

Moreover, we define Hs(Ω) a Hilbert space for the scalar

((u, v))s =
∑

|α|=s

∫

Ω

DαuDαvdx.

V s is the closure of C∞
0 (Ω) for the (semi-)norm ‖ · ‖s = ((·, ·))s. We set V 1 = V and

V 0 = H. Moreover, P denotes the projection operator from L2 onto H.

In general the norm in the space L is denoted ‖ · ‖L
Throughout the paper we need the following propositions.

Proposition 2.1 (Gagliardo-Nirenberg). Let Ω ⊂ Rn be an open set and sufficiently

regular. The multiplicative inequality,
∑

|α|=r

|Dαφ|q ≤ c|φ|1−θ
q1

(

∑

|α|=l

|Dαφ|q2

)θ

,(2.1)

for 1 ≤ q1, q2 ≤ ∞, 0 ≤ r ≤ l,

n

q
− r = (1 − θ)

n

q1
+ θ

(

n

q2
− l

)

,
r

l
≤ θ ≤ 1,

holds with the following exceptions:

a) if r = 0, l < n
q2

, and q1 = ∞ and Ω unbounded, we assume in addition that or

φ→ 0 as x→ ∞ or φ ∈ Lp for some p > 0;
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b) if 1 < q1 <∞ and l− r− n
q2

is a non-negative integer, then (2.1) does not hold for

θ = 1.

The next proposition, due to Heywood [4], is based on a regularity theorem of Cat-

tabriga [2].

Proposition 2.2. Let Ω be an open set of R3 with boundary uniformly of class C3. Then

|D2v|2 ≤ c(|Av|2 + |∇v|2),
|∇v|3 ≤ c(|Av|1/2

2 |∇v|1/2
2 + |∇v|2),

sup
x∈Ω

|v(x)| ≤ c(|Av|2 + |∇v|2),

with v ∈ H2∩V and A = −P∆ is the Stokes operator and c depends only on the regularity

of ∂Ω but not on the ”size” of ∂Ω or Ω.

2.2. Convergence of domains. For any measurable set Ω ∈ Rm, the characteristic func-

tion χΩ ≡ χ is defined as usual by χ(x) = 1 if x ∈ Ω and = 0 if x ∈ Ωc (Ωc = Rm \Ω). If

the Lebesgue measure of Ω is finite, then χ ∈ L1(Rm). Let us consider the gradient ∇χ
as a distribution in Rm defined by

〈∇χ, φ〉 = −
∫

Ω

∇ · φdx,

for any φ ∈ C∞
0 (Rm) . Using the well-known Stokes formula, we get

〈∇χ, φ〉 = −
∫

Γ

φ · ndΓ = −〈∗γn, φ〉,

that is the gradient of χ takes the form

∇χ = −∗γn.

Here Γ denotes the boundary of Ω and γ is the trace operator : Ck(Ω) → Ck(Γ) and
∗γ denotes its transposed operator. Further we have

∗γ ∈ (Ck−1
0 (Rm))′,

for any k ≥ 1. In general ∇χ is an element of (Ck(Ω))′. We remark that if Ω ∈ C1, then

χ ∈ W̃ s,q(Rm) for s < 1/q, 1 ≤ q <∞.

In addition to the above notation we introduce the shape functional

J(Ω) = meas(Γ) =

∫

Γ

dΓ,

when the integral makes sense. The functional J(Ω) can be extended to the following

class of non-smooth measurable domains.

A measurable set E ⊂ Rm is said to have the finite perimeter P(E) provided that

meas(E) <∞ and

P(E) = sup
φ

{
∫

E

∇ · φdx|φ ∈ C1
0 (Rm),max

x
|φ(x)| <∞

}

<∞.

The class of measurable sets with finite perimeters has been introduced by Caccioppoli.

If E ∈ C2, we have

P(E) =

∫

E

∇ · ndx = J(Ω).
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Now we introduce the char-topology. Let D be a bounded domain of R3. Let

Ch(D) = {χ ∈ L2(D)|χ(1 − χ) = 0 a.e. in D},
the family of characteristic functions of measurable subsets of R3. A char-topology can

be defined on the family of measurable subsets of D and in particular for O(D) (open

sets of D) by the L2-metric

dch(Ω1,Ω2) =

∫

D

|χΩ1
− χΩ2

|dx.

A classical result states that the L2-unit ball is weakly compact in the L2-topology.

This statement does not give the compactness in the space of domains. To obtain a

strong compactness result, we consider the measurable sets in D with finite generalized

perimeter.

The main result concerning the generalized perimeter is the next one; see [15].

Proposition 2.3. Let {Ωn} be sequence of measurable sets in D, with P (Ωn) ≤ c.

Then there exists a subsequence {Ωn} and a measurable set Ω in D, such that P(Ω) ≤
lim inf P(Ωn) and Ωn → Ω in the char-topology.

We note that the generalized perimeter is associated to measurable sets, the char-

convergence has not special behavior for the family of open sets where usually p.d.e. are

defined. So it is possible that a sequence of open sets with uniformly bounded gener-

alized perimeter converges in the char-topology to measurable set which has not open

representative. We denote by BPS(D) the family of finite perimeter sets of D.

It is immediate to see that {χΩ|Ω ∈ BPS(D)} is contained in BV (D) (bounded

variation functions in D). Further ∇χ is a Radon measure on Ω and its total variation

|∇χ|(Ω) is equal to P. The family of finite perimeter sets is important to study the free

surface problem in presence of surface tension; see [9].

To consider the free surface or interface problem one needs to introduce a family of

perturbations Ωt of a given domain Ω ⊂ Rm for t ≥ 0. It is assumed that the domains

Ω ≡ Ω0 and Ωt have the same topological properties. Hence one can construct a family

of transformations Tt : Rm → Rm which are one-to-one, and Tt maps Ω onto Ωt. To

construct the transformation Tt, we consider a vector field v(x, t).

Let

∂tx = v(x, t), x(y, 0) = y ∈ Ω.(2.2)

The transformation Tt is given by

x(t) = Tt(y).

We remark that if Ω ⊂ D(⊂ Rm) and v · n = 0 on ∂D we have TtΩ̄ ⊂ D̄. Let Γ(t) be the

boundary of Ω(t).

An important result is (see [15])

dt

∫

Γ(t)

dΓ =

∫

Γ(t)

(∇ · v(t) − (∇v(t) · n, n))dΓ =(2.3)

∫

Γ(t)

(∇·)ΓvdΓ =

∫

Γ(t)

v · nHdΓ.
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In the above formula we have used the relations

(∇·)Γ((v · n)n) = (v · n)(∇·)Γn,
and

(∇·)Γn = H.
(H is the mean curvature of Γ.) Here (∇·)Γ denotes the tangential divergence to Γ.

Further we have the following formula for integration by parts on Γ.

Proposition 2.4 (Integration by parts on Γ). Let Ω ∈ C2 with boundary Γ and f, φ ∈
H̃2(Ω). Then

∫

Γ

∂xi
fφdΓ = −

∫

Γ

f∂xi
φdΓ +

∫

Γ

(∂n(fφ) + Hfφ)nidΓ.

Assuming f = 1 and Γ ∈ C2, we can consider Hn as a distribution in Rm with support

on Γ, with norm

|||Hn|||−s ≤ c(meas(Γ))|||φ|||s,(2.4)

with s ≥ 3.

The above results permit us to extend the functional vector mean curvature Hn to

BPS-sets in Rm.

2.3. Hyperelastic material. Now we need some results from the elastic theory. X ∈ Rm

is the material description of a solid point, also called the Lagrangian coordinate; x =

ψ(X, t) is the position of the particle X at time t, the current or final spatial coordinate

also called Eulerian coordinate. x = ψ(X, t)) is the representation of the deformation of

the structure. The velocity v = ẋ, where the dot indicates the partial derivative with

respect to time with X fixed (the material or convective derivative). In the Eulerian

description (x, t), the chain rule gives φ̇ = φt + v · ∇φ for any smooth function φ.

Classical mechanics assumes that ψ : Rm → Rm is a diffeomorphism and the defor-

mation gradient F = [∂xi/∂Xj ] = xi,j is the Jacobian of the mapping ψ and satisfies

F ∈ GL+(Rm) = {F ∈ Rm×m|J = detF > 0}.
For incompressible material J = 1.

The stress tensor referred to the initial configuration of the solid and associated by

work with deformation gradient F is denoted S and is usually called the first Piola-

Kirchhoff stress tensor. We denote by T the actual stress tensor that is referred to the

current configuration (Eulerian description) and it is called the true stress or Cauchy

stress. The relationship of T and S is the following

T = (Tij) = (1/J)SFT = (1/J)
∂xj

∂Xk
Sik.

If the elastic part of the stress of a solid particle depends only upon the deformation

gradient F , it must take the form DW(F ) where W : Rm×m → R is the strain-energy

function and D is the derivation with respect the arguments of W . Note, however, that

W is not path-independent; it does not represent a potential except if the material is

elastic in finite strain. In this case the material is called hyperelastic. In this paper the

mathematical investigation of elastic solids allows for large strains. We consider two orders
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tensors as invertible matrices Mat+(n) and adopt the notation of calculus of matrices. In

particular the Frobenius inner product of matrices A,B is denoted A · B =
∑

i,j AijBij

and |A|2 = tr(AAT ).

2.4. Discontinuous model. Let Ω be a domain of R3, with the boundary ∂Ω and T an

arbitrary positive number and QT = Ω× (0, T ). We assume that Ω is filled with a viscous

incompressible fluid containing solid particles and write

Ω = Ω1(t) ∪ Ω2(t)

for 0 ≤ t < T , where Ω1 is the region occupied by the fluid and Ω2 is the region occupied

by solids.

The interface Γ(t) between the two phases is expressed by

Γ(t) = (∂Ω1(t) ∪ ∂Ω2(t)) \ ∂Ω

for 0 ≤ t ≤ T .

Now we recall the basic systems of equations deduced in [13].

Here and in what follows we shall use the well-known notation of vector analysis and

summation convention.

We introduce the characteristic functions of Ω1(t),Ω2(t), namely χ1 ≡ χ(t), χ2 =

1 − χ(t), respectively.

The interface between the fluid and the solid particles is defined as the discontinuity

surface of χ. v1, v2 denote the velocity of the fluid and of a solid point, respectively.

Analogously (ρ1, ρ2), (µ1, µ2) denote the density and the viscosity of the fluid and of the

solid, respectively. We introduce v = χ1v1 +χ2v2, ρ = χ1ρ1 +χ2ρ2 and µ = χ1µ1 +χ2µ2.

Concerning the evolution of F , we assume that F is defined in Ω. An application of

chain rule gives an Eulerian description of the evolution of deformation gradient F ,

dtF = ∂t
∂x

∂X
(X, t) =

∂v

∂X
(x, t) =

∂v

∂x
(x, t)

∂x

∂X
(X, t),

which we write

Ft + v · ∇F = (∇v)F.(2.5)

The product on the right is a product of matrices.

The equations of the flow of an incompressible Newtonian fluid carrying incompress-

ible visco-hyperelastic (macroscopic) particles are

ρ(vt + v · ∇v) −∇ · (µ∇v) + ∇p−∇ · (DW(F )FT ) = ρf −∇χ2H,
∇ · v = 0,

χt + v · ∇χ = 0,
(2.6)

Ft + v · ∇F = (∇v)F,
v(x, t) = 0, x ∈ ∂Ω, v = 0 at∞, v(x, 0) = v0, F (x, 0) = F0, x ∈ Ω,

χ0 ≡ χ(0) = characteristic function of Ω1(0).

We recall that ρ and µ are positive functions of χ. Of course we need to compute F in

the solid. We observe that if we define F ≡ χ2F , thanks to (2.6)3, it is a solution of (2.5)

with initial data χ2
0F0. So far to localize F in the solid part it is sufficient to localize in
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the solid region the initial value F0. Without loss of generality we can assume F = 0 on

∂Ω.

One interesting observation is that the convective derivative of the divergence of FT

or (Fij,i) vanishes if ∇ · v = 0. In fact if we take the divergence of (2.5) we obtain

(Fij,i)t + vkFij,ik + vk,iFij,k = vi,ilFlj + vi,lFlj,i,

or

∂t∇ · FT + (v · ∇)∇ · FT = 0.

We notice that the material derivative of the divergence of the localization χ2F van-

ishes, but ∇ · (χ2F ) may be a measure. In fact

∇ · (χ2
0F

T
0 ) = χ2

0∇ · FT
0 + ∇χ2

0F
T
0 = χ2

0∇ · FT
0 + n · FT

0 δ(Γ(0)),

where δ(Γ(0)) is Dirac distribution with support on Γ(0). Any way we will take advantage

of the evolution properties of F for the existence theory in the large without smallness

conditions considering the system (2.9) below.

2.5. Continuous model. We assume now that the constituent elastic particles involve

molecular scales only. The binary system can be considered as a mixture and one of

the volume concentrations c1(x, t) serving as the order parameter. Of course, in this

situation, the capillarity effect cannot be defined. Then, as in subsection 4.3, we define

the mean-volume velocity v = c1u1 + c2u2, the density of mixture ρ = c1ρ1 + c2ρ2, the

viscosity of the mixture µ = c1µ1 + c2µ2 and assume the stress tensor of the medium is

−(µ∇v)+pI−DW(F )FT . Then the motion of the medium, apart from diffusion process,

is governed by the following system (continuous model)

ρ(vt + v · ∇v) −∇ · (µ∇v) + ∇p−∇ · (DW(F )FT ) = ρf,

∇ · v = 0,

ct + v · ∇c = 0,
(2.7)

Ft + v · ∇F = (∇v)F,
v(x, t) = 0, x ∈ ∂Ω, v = 0 at∞, v(x, 0) = v0,

F (x, 0) = F0, c(x, 0) = c0, x ∈ Ω.

Here c ≡ c1, and c1 + c2 = 1. In the following instead of (2.7) we will discuss the

system

ρ(vt + v · ∇v) −∇ · (µ∇v) + ∇p−∇ · (DW(F )FT ) = ρf,

∇ · v = 0,

ρt + v · ∇ρ = 0, µt + v · ∇µ = 0
(2.8)

Ft + v · ∇F = (∇v)F,
v(x, t) = 0, x ∈ ∂Ω, v = 0 at∞, v(x, 0) = v0, F (x, 0) = F0,

ρ(0) = ρ0, µ(0) = µ0.

System (2.8) does not change the fundamental structure of (2.7), and it is a bit more

general.
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2.6. Small-strain and relaxed models. Equation (2.6)4 is responsible of much of the math-

ematical difficulty to the existence theory of weak solution of (2.6), (2.8). Considerations

of analytical tractability of (2.6)4 can be derived from small-strain elasticity theory (see

[6]). This theory leads to consider the following evolution equation for F

Ft + v · ∇F = (Wv)F.

Here Wv = 1
2 (∂xi

vj − ∂xj
vi). We call the small strain model the particular model ob-

tained from the complete system (2.6) with the above evolution equation of F . Moreover,

we remark that this model is also related to a particular Oldroyd-B model (see [13]). Any

way, the small-strain condition is a severe restriction for the system solid/fluid consid-

ered, i.e. elastic particles transported in a fluid medium. The properties of the evolution

equation of F suggest the following relaxed form of (2.6).

ρ(vt + v · ∇v) −∇ · (µ∇v) + ∇p−∇ · (DW(F )FT ) = ρf −∇χ2H,
∇ · v = 0,

χt + v · ∇χ = 0,

gt + v · ∇g = 0,(2.9)

∇ · FT = g,

v(x, t) = 0, x ∈ ∂Ω, v = 0 at ∞, v(x, 0) = v0, g(x, 0) = g0,

χ0 ≡ χ(0) = characteristic function of Ω1(0).

For the small-strain and relaxed models an existence theory of weak solution is de-

veloped below.

3. Statement of main results. First, we give the definitions of weak and weak-measure

solution of systems (2.6), (2.8), (2.9). Mutatis mutandis, the definitions hold for the small-

strain model. We set T ≡ DW(F )FT . For simplicity of exposition we assume suppχ2
0 is

a bounded open set.

Definition 3.1. A weak solution of (2.6) is (v, F, χ) such that:

i) χ ∈ L∞(QT ) is a characteristic function,

ii) v ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(Ω)),

iii) F ∈ L2(QT ),

iv) for any T > 0 and any φ ∈ C1(0, T ; C∞
0 (Ω)), φ(T ) = 0, and

η, ψ ∈ C1(0, T ;C∞
0 (Ω)), η(T ) = ψ(T ) = 0,
∫ T

0

((ρv, ∂tφ) + (ρ(v · ∇)φ, v) − (µ∇v + T ,∇φ) +

(ρf, φ) − (H, φ))dt+ (ρ0v0, φ(0)) = 0,
∫ T

0

((χ, ηt) + (χ, (v · ∇)η))dt+ (χ0, η(0)) = 0,

∫ T

0

((F, ψt) + (F, (v · ∇)ψ) + (∇vF, ψ))dt+ (F0, ψ(0)) = 0,
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with H ∈ L∞(0, T ; H̃−3(Ω)) a functional which represents the generalized vector mean

curvature.

Definition 3.2. A weak solution of (2.8) is (v, ρ, µ, F ) such that:

i) ρ, µ ∈ L∞(QT ),

ii) v ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(Ω)),

iii) F ∈ L2(QT ),

iv) for any T > 0 and any φ ∈ C1(0, T ; C∞
0 (Ω)), φ(T ) = 0, and

η, ψ ∈ C1(0, T ;C∞
0 (Ω)), η(T ) = ψ(T ) = 0,

∫ T

0

((ρv, ∂tφ) + (ρ(v · ∇)φ, v) − (µ∇v + T ,∇φ) + (ρf, φ))dt+ (ρ0v0, φ(0)) = 0,

∫ T

0

((ρ, ηt) + (ρ, (v · ∇)η))dt+ (ρ0, η(0)) = 0,

∫ T

0

((µ, ηt) + (µ, (v · ∇)η))dt+ (µ0, η(0)) = 0,

∫ T

0

((F, ψt) + (F, (v · ∇)ψ) + (∇vF, ψ))dt+ (F0, ψ(0)) = 0.

Definition 3.3. A weak solution of (2.9) is (v, χ, g, F ) such that:

i) χ ∈ L∞(QT ) is a characteristic function,

ii) v ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(Ω)),

iii) g ∈ L∞(QT ), F ∈ L∞(0, T ;H1
0 (Ω)),

iv) for any T > 0 and any φ ∈ C1(0, T ; C∞
0 (Ω)), φ(T ) = 0, and

η, ψ ∈ C1(0, T ;C∞
0 (Ω)), η(T ) = ψ(T ) = 0,

∫ T

0

((ρv, ∂tφ) + (ρ(v · ∇)φ, v) − (µ∇v + T ,∇φ) +

(ρf, φ) − (H, φ))dt+ (ρ0v0, φ(0)) = 0,
∫ T

0

((χ, ηt) + (χ, (v · ∇)η))dt+ (χ0, η(0)) = 0,

∫ T

0

((g, ψt) + (g, (v · ∇)ψ))dt+ (g0, ψ(0)) = 0,

∇ · FT = g a.e. in QT ,

with H ∈ L∞(0, T ; H̃−3(Ω)) a functional which represents the generalized vector mean

curvature.

Definition 3.4. A weak-measure solution of (2.6) is (v, F,Λ, χ) such that:

i) χ ∈ L∞(QT ) is a characteristic function,

ii) Λ a Radon measure,

iii) v ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(QT )),

iv) F ∈ L2(QT ), ∇ · FT ∈ L∞(QT ),

v) for any φ ∈ C1(0, T ; C∞
0 (Ω)), η, ψ, ξ ∈ C1(0, T ;C∞

0 (Ω)),
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φ(T ) = η(T ) = ψ(T ) = ξ(T ) = 0,
∫ T

0

((ρv, ∂tφ) + ((ρv · ∇)φ, v) − (µ∇v + Λ,∇φ) +

(ρf, φ) − (H, φ))dt+ (ρ0v0, φ(0)) = 0,
∫ T

0

((χ, ηt) + (χ, (v · ∇)η))dt+ (χ0, η(0)) = 0,

∫ T

0

((F, ψt) + (F, (v · ∇)ψ) − (v∇ · FT , ψ) − (F,∇ψv))dt+ (F0, ψ(0)) = 0,

∫ T

0

((∇ · FT , ξt) + (∇ · FT , (v · ∇)ξ))dt+ (∇ · FT
0 , ξ(0)) = 0,

with H ∈ L∞(0, T ; H̃−3(Ω)) a functional which represents the generalized vector mean

curvature.

Definition 3.5. A weak-measure solution of (2.8) is (v, F,Λ, ρ, µ) such that:

i) ρ, µ ∈ L∞(QT ),

ii) Λ a Radon measure,

iii) v ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(QT )),

iv) F ∈ L2(QT ), ∇ · FT ∈ L∞(QT ),

v) for any φ ∈ C1(0, T ; C∞
0 (Ω)), η, ψ, ξ ∈ C1(0, T ;C∞

0 (Ω)),

φ(T ) = η(T ) = ψ(T ) = ξ(T ) = 0,
∫ T

0

((ρv, ∂tφ) + ((ρv · ∇)φ, v) − (µ∇v + Λ,∇φ) + (ρf, φ))dt+ (ρ0v0, φ(0)) = 0,

∫ T

0

((ρ, ηt) + (ρ, (v · ∇)η))dt+ (ρ0, η(0)) = 0,

∫ T

0

((µ, ηt) + (µ, (v · ∇)η))dt+ (µ0, η(0)) = 0,

∫ T

0

((F, ψt) + (F, (v · ∇)ψ) − (v∇ · FT , ψ) − (F,∇ψv))dt+ (F0, ψ(0)) = 0,

∫ T

0

((∇ · FT , ξt) + (∇ · FT , (v · ∇)ξ))dt+ (∇ · FT
0 , ξ(0)) = 0.

We recall that the above definitions hold if suppχ2(x, 0) is a bounded set. If it

is unbounded the above definitions continue to hold in local sense, i.e. in the spaces

Vloc(Ω), L2
loc(Ω) and so on.

Now we present the main results of the paper. We state the theorems in the framework

of Sobolev spaces. The first four theorems are devoted to the existence of continuous

model, i.e., the density and the viscosity are regular functions or constants. In Theorems

3.10, 3.11, 3.12, the existence of weak solution of the continuous and discontinuous model

is treated. In the following α, β are positive constants such that α, β < 1.

Theorem 3.6. Let Ω be an unbounded domain in R3 with boundary ∂Ω uniformly of

class C3 and W ∈ C3(R3×3). Let v0 ∈ H2(Ω) ∩ Ṽ , (∇µ0,∇ρ0,∇F0) ∈ H̃1(Ω), F0 ∈
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L∞(Ω) ∩ L2(Ω) with α ≤ ρ0 ≤ 1, β ≤ µ0 ≤ 1 such that |||u0|||2 + |||∇ρ0|||1 + |||∇µ0|||1 +

|||F0|||2 ≤ r0, r0 being given, f ∈ L2(0, T ; H̃1(Ω)), ∂tf ∈ L2(ΩT ).

Then there exists a T̄ (r0) > 0, T̄ ≤ T, such that there exists a solution (v, ρ, µ, F ) of

(2.8) on (0, T̄ ) such that

v ∈ L2(0, T̄ ;H3(Ω) ∩ Ṽ ), ∂tv ∈ L2(0, T̄ ; Ṽ ),

0 < α ≤ ρ ≤ 1, 0 < β ≤ µ ≤ 1, (ρ, µ, F ) ∈ L∞(QT ),

(∇ρ,∇µ,∇F ) ∈ L∞(0, T̄ ; H̃1(Ω)), (∂tρ, ∂tµ, ∂tF ) ∈ L2(0, T̄ ; H̃1(Ω)).

Moreover, the solution (v, ρ, µ, F ) is unique.

Theorem 3.7. Let Ω be an unbounded domain in R3 with boundary ∂Ω uniformly of

class C3, q > 3 and W ∈ C2(R3×3). Let v0 ∈ H2(Ω) ∩ Ṽ , (ρ0, µ0, F0) ∈ H1,q(Ω) with

0 < α ≤ ρ0 ≤ 1, 0 < β ≤ µ0 ≤ 1 and F0 ∈ L∞(Ω) ∩ L2(Ω) such that |||v0|||2 + |∇ρ0|q +

|∇µ0|q + |||F0|||1,q ≤ r0, r0 being given, f ∈ L2(0, T ; H̃1(Ω)), ∂tf ∈ L2(ΩT ).

Then there exists a T̄ (r0) > 0, T̄ ≤ T, such that there exists a solution (v, ρ, µ, F ) of

(2.8) on (0, T̄ ) such that

v ∈ L2(0, T̄ ;H2,q(Ω) ∩ Ṽ ), ∂tv ∈ L2(0, T̄ ; Ṽ ),

0 < α ≤ ρ ≤ 1, 0 < β ≤ µ ≤ 1, F ∈ L∞(QT̄ ),

(ρ, µ, F ) ∈ L∞(0, T̄ ;H1,q(Ω)), (∂tρ, ∂tµ, ∂tF ) ∈ L2(QT̄ ).

Moreover, the solution (v, ρ, µ, F ) is unique.

Remark. Theorem 3.7 continues to hold (except for the uniqueness) in the case when

ρ ∈ L∞(QT ) only.

Theorem 3.8. The assumptions of Theorem 3.6 hold with 0 ≤ ρ0 ≤ 1. Further we

assume that ∇·(µ0∇v0)+∇·T (0)√
ρ0

belongs in L2(Ω).

Then there exists a T̄ such that there exists a solution (v, ρ, µ, F ) of (2.8) satisfying

v ∈ L2(0, T̄ ;H3(Ω) ∩ V ),
√
ρv ∈ L∞(0, T̄ ;L2(Ω)),

√
ρ∂tv ∈ L∞(0, T̄ ;L2(Ω)),

∂tv ∈ L2(0, T̄ ;V (Ω)), 0 ≤ ρ ≤ 1, β ≤ µ ≤ 1, F ∈ L∞(QT̄ ),

(∇ρ,∇µ,∇F ) ∈ L∞(0, T̄ ; H̃1(Ω)), (∂tρ, ∂tµ, ∂tF ) ∈ L2(0, T̄ ; H̃1(Ω)).

Moreover, the solution (v, ρ, µ, F ) is unique.

We notice that in Theorem 3.8 we prove the existence of strong solution even though

the initial density vanishes in an open subset of Ω, i.e., an initial vacuum is allowed. For

the classical nonhomogeneous incompressible fluids the problem of the existence of weak

solution with initial vacuum was solved completely in [11]. Higher regularity of solutions

in the case of vacuum was solved in the more general context of compressible fluid in [14].

Now we state global results.

Theorem 3.9. Let Ω,W > 0, v0, ρ0, µ0, F0, q be as in Theorem 3.7. Besides, assume that

f ∈ L2(0,∞; H̃1(Ω)), ∂tf ∈ L2(0,∞;L2(Ω)) and r0+
∫ ∞
0

(|||f |||21+|∂tf |22)dt is sufficiently

small. Then there exists a (unique) solution (v, ρ, µ, F ) of the problem (2.8) on (0, T ) (T

is an arbitrary positive number) such that

v ∈ L2(0, T );H2,q(Ω) ∩ Ṽ ), ∂tv ∈ L2(0, T ; Ṽ (Ω)) ∩ L∞(0, T ;L2(Ω)),
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0 < α ≤ ρ ≤ 1, 0 < β ≤ µ ≤ 1, F ∈ L∞(QT ),

(∇ρ,∇µ,∇F ) ∈ L∞(0, T ;Lq(Ω)), (∂tρ, ∂tµ, ∂tF ) ∈ L2(0, T ;L2(Ω)).

Moreover, the solution (v, ρ, µ, F ) is unique. Further, if T = e−λtDW(F )FT , λ > 0

(decay model), and the Poincaré-Friedrichs inequality holds then T = ∞.

The proof of Theorem 3.9 uses the same arguments of Theorem 5.9 in [13] so we omit

details.

In the following theorems the existence of weak-measure solutions is considered.

Theorem 3.10. Let χ0 be the characteristic function of Ω1(0), f ∈ L2(QT ), F0 ∈
C1

0 (Ω)∩L∞(Ω) with n ·F0 = 0 on Γ(0), v0 ∈ H, and a(|F |2 − 1)+ ≤ W ≤ a(|F |2 + 1) (a

is a positive constant). Then there exists a weak-measure solution of (2.6).

We notice that the condition F0 ∈ C1 is redundant, but this avoids approximation

arguments. Moreover n · F0 = 0 on Γ(0) circumvents ∇ · FT to be a measure.

An analogous statement holds for system (2.8) so we omit it.

We notice that Theorem 3.10 is a guidance for the next theorems.

Theorem 3.11. Let χ0, v0, f be as in Theorem 3.10, F0 ∈ L∞(Ω) and W ∈ C1(R3×3).

Then there exists a weak solution of small-strain model.

Finally we state the existence of a weak solution for the relaxed model.

Theorem 3.12. Let χ0 be the characteristic function of Ω1(0), Ω,W as in Theorem 3.11.

Moreover, assume that v0 ∈ H, g0 ∈ L∞(Ω) ∩ L2(Ω). Then there exists a weak solution

(v, g, F, χ) to (2.9).

We notice, denoting by E the support of χ2 and thanks to the results of De Giorgi,

for weak solutions we find the interface Γ(t) as the points (x, t) ∈ supp|∇χ2| ∩Ω. Further

Γ(t) contains, locally, a subset Γ∗(t) such that there exists a generalized inner normal nE :

Γ∗(t) → S2. By the Besicovitch derivation theorem the measure |∇χ2| is concentrated on

Γ∗(t), and ∇χ2 = nE |∇χ2|. Moreover Γ∗(t) is, locally, a countable (2)-rectifiable set. In

other words for weak solution we obtain an interface with the classical properties. Indeed

the only difference is that the inner normal and the interface are understood in a measure

theoretic sense and non in topological one. Moreover, the vector mean curvature can be

defined as a functional in H̃−3(Ω).

Furthermore, as the weak solution is conceived, the assumption g ∈ L2(Ω) is not

strictly necessary.

4. Existence theory of the continuous model. In this section we prove the existence

theorems for the continuous model via a generalized Lax-Milgram lemma and a Schauder

fixed point theorem.

4.1. Proof of Theorem 3.6. First we consider the following auxiliary problem. Let

F = {φ|φ ∈ L2(0, T ;H2(Ω) ∩ Ṽ ), ∂tφ ∈ L2(QT ), with the natural norm},
and let Φ be the closure of the space

{φ|φ ∈ L2(0, T ;H2(Ω) ∩ Ṽ ), ∂tφ ∈ C0(0, T ;H2(Ω) ∩ Ṽ )}
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in the norm

‖φ‖Φ = ‖φ‖F + |||φ(0)|||1.
We consider the following problem:

find (v, ρ, µ, F ) that satisfies

(ρ∂tv − ∆v + kv + ∇p) = −ρu · ∇u+ ρf + ∇ · T −∇ · ((1 − µ)∇u) + ku,

∇ · v = 0,

∂tρ+ u · ∇ρ = 0,
(4.1)

∂tµ+ u · ∇µ = 0,

∂tF + u · ∇F = ∇uF,
v(0) = v0, ρ(0) = ρ0, µ(0) = µ0, F (0) = F0,

such that v ∈ F , (∇ρ,∇µ,∇F ) ∈ L∞(0, T ; H̃1(Ω)), (∂tρ, ∂tµ, ∂tF ) ∈ L∞(0, T ; H̃1,q(Ω)),

0 < α ≤ ρ ≤ 1, 0 < β ≤ µ ≤ 1, F ∈ L∞(QT ) ∩ L2(QT ).

Here u ∈ L2(0, T ;H3(Ω) ∩ Ṽ ), ∂tu ∈ L2(0, T ;H1(Ω) ∩ Ṽ ), v0 ∈ H2(Ω) ∩ Ṽ ,

(∇ρ0,∇µ0,∇F0) ∈ H̃1,q(Ω)), F0 ∈ L2(Ω) ∩ L∞(Ω)), α ≤ ρ ≤ 1, β ≤ µ ≤ 1 are

given functions and q ≥ 2.

Now, let y(τ, x, t) denote the position at time τ of the fluid particle which occupies

the position x at time t and it is the solution of

dy

dτ
= u(y, τ ), y(t, x, t) = x,

then, the explicit form of ρ is

ρ(x, t) = ρ0(y(0, x, t)).(4.2)

From (4.2) it follows

0 < α ≤ ρ(x, t) ≤ 1.(4.3)

Now applying the gradient operator ∇ to (4.1)3, multiplying the result by |∇ρ|q−2∇ρ
and, after integrations, we get

|∇ρ|q ≤ |∇ρ(0)|q exp

(

c

∫ t

0

|∇u|∞
)

dτ ).(4.4)

Analogously we obtain

‖ρ‖2
2 ≤ exp

(

c

∫ t

0

(|∇u|∞ + 1)dτ

)(

‖ρ0‖2
2 +

∫ t

0

|∇ρ|23|||u|||23dτ
)

.(4.5)

Analogously for F we obtain

0 < |F0| exp

(

−
∫ t

0

|∇u|∞
)

dτ ) ≤ |F (x, t)| ≤ |F0| exp

(
∫ t

0

|∇u|∞dτ
)

(4.6)

where |F |2 = tr(FFT ),

|∇F |q ≤ exp

(

c

∫ t

0

|∇u|∞
)

dτ )

(

|∇F (0)|q +

∫ t

0

|F |∞|||∇u|||1,qdτ

)

.(4.7)
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Analogously

‖F‖2
2 ≤ exp

(

c

∫ t

0

(|∇u|∞ + 1)dτ

)(

‖F0‖2
2 +

∫ t

0

(|F |2∞ + |∇F |23)‖|u|‖2
3dτ

)

.(4.8)

Now we prove the existence of a solution of (4.1)1. We let

E(v, φ) =

∫ T

0

(ρ∂tv +Av + kv, ∂tφ+Aφ+ φ)dt+

(kv(0), Aφ(0) + φ(0)),

L(φ) =

∫ T

0

(−ρu · ∇u+ (µ− 1)∆u+ ∇µ∇u+ ku+ ∇ · T +

ρf, ∂tφ+Aφ+ φ)dt+ (kv0, Aφ(0) + φ(0)).

Here A = −P∆ is the Stokes operator and k a suitable positive constant. First, L(φ) is a

linear continuous form on Φ with respect to the norm ‖φ‖Φ. Moreover, bearing in mind

that |Aφ|2 + |φ|2 ≥ c|||φ|||2, we have

E(φ, φ) =
∫ T

0

(|√ρ∂tφ|22 + |Aφ|22 + (k + 1)|∇φ|22 + k|φ|22 + (ρ∂tφ,Aφ+ φ)dt+

1

2
(|∇φ(T )|22 − |∇φ(0)|22) +

k

2
(|φ(T )|22 − |φ(0)|22) + k(|∇φ(0)|22 + |φ(0)|22) ≥

∫ T

0

(|√ρ∂tφ|22 + |Aφ|22 −
3

4
|√ρ∂tφ|22 −

1

2
|Aφ|22 + (k − 3

4
)|φ|22)dt+

1

2
(|∇φ(T )|22 +

|∇φ(0)|22) +
1

2
(|φ(T )|22 + |φ(0)|22) ≥ c‖φ‖2

Φ.

Then, thanks to the Lax-Milgram theorem, there exists a v ∈ F such that

E(v, φ) = L(φ),(4.9)

is satisfied for every φ ∈ Φ.

Now let φ̃ be a solution of the problem

∂tφ̃+Aφ̃+ φ̃ = 0,

φ̃(0) = h(x),

∇ · φ̃ = 0, φ̃ = 0, on ∂Ω and at ∞
with h(x) smooth enough and divergence free.

Replacing in (4.9) φ with φ̃ we have

(v(0), Ah+ h) = (v0, Ah+ h),

which implies v(0) = v0.

Now let φ̄ be a solution of the problem

∂tφ̄+Aφ̄+ φ̄ = g(x, t),

φ̄(0) = 0,

∇ · φ̄ = 0, φ̄ = 0, on ∂Ω and at ∞,
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with g smooth enough and solenoidal. Replacing φ with φ̄ in (4.9), we have
∫ T

0

(ρ∂tv + ρu · ∇u−∇ · T − ρf − ∆v + k(v − u) −∇ · ((µ− 1)∇u), g)dt = 0.

This implies that (v, ρ, µ, F ) satisfies a.e. in QT the following system:

ρ∂tv + ρu · ∇u−∇ · T + ∇p− ∆v + k(v − u) − ρf −
∇ · ((µ− 1)∇u) = 0,

∂tρ+ ∇ · (ρu) = 0,
(4.10)

∂tµ+ ∇ · (µu) = 0,

∂tF + u · ∇F = ∇uF.
with v(0) = v0, ρ(0) = ρ0, µ(0) = µ0, F (0) = F0.

Here p is the pressure defined in classical manner. Now we prove more regularity for

v. To avoid tedious calculations and notation, we work directly with the derivatives with

respect to t of v instead of the difference quotients.

First, we multiply (4.10)1 by v, and integrate over Qt, to obtain

(4.11) |√ρv|22 +

∫ t

0

(k|v|22 + |∇v|22)dτ ≤ |√ρ(0)v(0)|22 + δ

∫ t

0

|∇v|2dτ+

cδ

[
∫ t

0

(|u|2∞|√ρv|22 + |u|26|∇u|23 + k|u|22 + |(µ− 1)∇u|22 + |T |22 + |f |22)dτ
]

.

We multiply (4.10)1 by ∂tv, integrate over Qt, obtain

2

3

∫ t

0

|√ρ∂τv|22dτ +
k

2
|v(t)|22 +

1

2
|∇v(t)|22 ≤ 1

2
(|∇v(0)|22 + k|v(0)|22) +(4.12)

cδ

[
∫ t

0

(|u|26|∇u|23 + |(µ− 1)∇u|22 + k|u|22 + |T |22 + |f |22)dτ
]

+

δ

∫ t

0

(|∂τ∇v|2 + |∂τv|2)dτ.

Now we differentiate (4.10)1 with respect to t and obtain

ρ∂2
t v + ∂tρ∂tv + k∂tv + ∂tρu · ∇u+ ρ∂tu · ∇u+ ρu · ∇∂tu−(4.13)

∇ · ∂tT −∇ · ((µ− 1)∇∂tu) −∇ · (∂tµ∇u) − k∂tu−
∂tρf − ρ∂tf − ∆∂tv + ∇∂tp = 0.

Multiplying (4.13) by ∂tv, integrating over Qt and bearing in mind (2.1), we find

1

2
|√ρ(t)∂tv(t)|22 +

1

2

∫ t

0

(|∇∂τv|22 + k|∂tv|22)dτ ≤ 1

2
|√ρ(0)∂tv(0)|22 +(4.14)

cδ

[
∫ t

0

(|√ρu|2∞|√ρ∂τv|22 + |∇u|42|D2u|22 + |∇u|62 + |√ρ∂τu|22|∇u|23 +

|∂tT |22 + |∂τµ∇u|22 + k|∂tu|22 + |∂τf |22 + |∂τρ|22|f |23 +

|(µ− 1)∇∂τu|22)dτ
]

+ δ

∫ t

0

|∇∂τv|22dτ.
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Now we sum (4.11), (4.12) and (4.14), and for suitable δ, we obtain

1

2
|√ρ(t)∂tv(t)|22 +

1

2
(|∇v(t)|22 + k|v(t)|22) +

1

3

∫ t

0

(|√ρ(t)∂τv(t)|22 +(4.15)

k|∂tv|22 + |∇∂τv|22)dτ ≤ 1

2
|√ρ(0)∂tv(0)|22 +

1

2
|∇v(0)|22 +

cδ

[
∫ t

0

(|u|2∞|√ρ∂tv|22 + |∇u|42|D2u|22 + |∇u|62 + |∂τµ∇u|22 +

|√ρ∂τu|22 + |∇u|23 + (µ− 1)2(|∇∂τu|22 + |∇u|22) + k(|u|22 + |∂tu|22) +

|∂τT |22 + |f |22 + |∂τρ|22|f |23 + |∂τf |2)dτ
]

+ δ

∫ t

0

(|∇∂τv|22 + |v|22)dτ.

The estimate (4.15) implies
√
ρ∂tv ∈ L∞(0, T ;L2(Ω)), ∂tv ∈ L2(0, T ; H̃1(Ω)),

v ∈ L∞(0, T ; H̃1(Ω)).
(4.16)

Now we consider

P∆v − kv = P (ρ∂tv + ρu · ∇u−∇ · T −(4.17)

∇ · ((µ− 1)∇u) − ku− ρf) ≡ Z.
This is a Stokes system. Thanks to (4.2)-(4.8) and (4.16), we have

Z ∈ L2(0, T ; H̃1(Ω)) ∩ L∞(0, T ;L2(Ω)).(4.18)

Then

v ∈ L2(0, T ; H̃3(Ω)) ∩ L∞(0, T ; H̃2(Ω)).

Now the existence and uniqueness of the solution to the system (4.10) enables us to define

the map v = Gu given by the composition of g : u → (ρ, µ, F ) and h : (u, ρ, µ, F ) → v.

The fixed point of G is the solution of the system (2.6).

Let us consider the set

B = {φ|sup(‖φ‖L2(0,T ;H̃3(Ω)); ‖φ‖L∞(0,T ;H̃2(Ω));

‖∂tφ‖L∞(0,T ;L2(Ω)); ‖∂tφ‖L2(0,T ;H̃1(Ω))) ≤ r},
with

r2 = c̃e‖v0‖1(|∆v0|22 + |∇µ0∇v0|22 + |v0 · ∇v0|22 + |∇ · T (0)|22 + |f(0)|22)/α,
where c̃ ≥ 1 is a suitable constant.

It is clear that B is a compact set in L2
loc(QT ). As we are going to use a fixed point

theorem, we have to show that GB ⊆ B and G is continuous in B with respect to the

norm in L2
loc(QT ).

Next we prove GB ⊆ B for suitable T̄ . In fact, assuming u ∈ B, from (4.2)-(4.5), we

have

α ≤ ρ ≤ 1,

|∇ρ|q ≤ |∇ρ0|qecr
√

t, (2 ≤ q ≤ 6),(4.19)

‖ρ‖2 ≤ cecr
√

t+t‖ρ0‖2(1 + cr
√
tecr

√
t).
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The same estimates hold for µ. Further

|F | ≤ |F0|er
√

t,

|∇F |p ≤ ecr
√

t(|∇F0|p + |F0|∞r
√
ter

√
t) (2 ≤ p ≤ 6),(4.20)

‖F‖2 ≤ cecr
√

t(‖F0‖2 + r
√
tecr

√
t(|∇F0|3 + |F0|∞ + |F0|∞r

√
tecr

√
t)).

Therefore from (4.14), (4.15), (4.19) and (4.20) we have

1

2
|√ρ(t)∂tv(t)|22 +

1

2

∫ t

0

(|∇∂τv|22 +
k

2
|∂τv|22)dτ ≤ 1

2
|√ρ(0)∂tv(0)|22 +(4.21)

cδ[tr
2 sup

0≤τ≤t
|√ρ∂τu|22 + t(r6 + cr4ecr

√
t) + t

|1 − β|2
2

r2 +

k2tr2 +

∫ t

0

|∂τf |22dτ + sup
0≤τ≤t

|∂τρ|22
∫ t

0

|f |23dτ ] +

δt sup
0≤τ≤t

|√ρ∂τu|22 + δ

∫ t

0

(|∇∂tv|22 + |v|22)dτ ≤ r2

with suitable δ and T̄ . Now from (4.17) and (2.1) we find (to avoid tedious control of

constants we assume for simplicity that ‖v‖3 ≤ ‖(A+ k)v‖1)

∫ T̄

0

‖v‖2
3dt ≤

∫ T̄

0

(‖(A+ k)v‖2
1dt ≤(4.22)

c sup
0≤t≤T̄

(|∇ρ|26|∂tu|22)
(

∫ T̄

0

‖∂tv‖2
1dt

)1/2

(T̄ )1/2 +

c

∫ T̄

0

(|∇∂tv|22 + |(∇µ)∆u|22 + |∇(∇µ)∇u|22 + ||T ||22 +

|∇ρ|26|u|2∞|∇u|23 + |u|2∞|∇(∇u)|22 + k‖u‖2
1 + |∇f |22 + |∇ρ|24|f |24)dt+

∫ T̄

0

|1 − β|2|∇∆u|22dt ≤ r2,

for suitable T̄ and β (we denote with the same letter possibly different suitable T̄ ).

Whence (4.21), (4.22) imply

GB ⊆ B.

Now we prove the continuity of G in L2
loc(QT ). First, we introduce for any fixed compact

A ⊂ Ω, such that supx∈A |x| ≤ R (R > 0 large enough), a cut-off function φ ∈ C1 such

that φ ≡ 1 on A, φ ≥ 0 on Ω and |∇φ| ≤ 1
R for |x| ≥ 2R. First we observe that if

{un} ⊆ B, then there exists a subsequence (denoted again by {un}) such that as n→ ∞,

un → u strongly in L2(0, T̄ ; H̃2
loc(Ω)), weak* in L∞(0, T̄ ; H̃2(Ω)), and ∂tu

n → ∂tu weakly

in L2(0, T̄ ; H̃1(Ω)). Let ρn and ρ be the solutions of

∂tρ
n + ∇ · (ρnun) = 0 with ρn(0) = ρ0,

∂tρ+ ∇ · (ρu) = 0 with ρ(0) = ρ0,

respectively. Analogously for (µn, µ) and (Fn, F ).
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Now τn = ρn − ρ satisfies

∂tτ
n + un · ∇τn + (un − u) · ∇ρ = 0,(4.23)

with τn(0) = 0. Multiplying (4.23) by τnφ2 integrating over QT , and applying Gronwall

lemma, we have

|τnφ|22 ≤ ecT̄

∫ T̄

0

(|φ(un − u) · ∇ρ|22 + |unτn∇φ|22)dt.

Bearing in mind (2.1), this implies that ρn → ρ strongly in L∞(0, T̄ ;L2(Ω̃)) for

arbitrary Ω̃ ⊂ A, first passing to the limit n → ∞ and then to the limit R → ∞. The

same convergence holds for {µn}.
Concerning Fn we have that Fn = Fn − F satisfies

∂tFn + un · ∇Fn + (un − u) · ∇F = Fn∇un + F∇(un − u).(4.24)

As for τn, this implies that Fn → F strongly in L∞(0, T̄ ;L2
loc(Ω)).

Now let vn and v be solutions of

ρn∂tv
n + ρnun · ∇un − ∆vn + k(vn − un) −∇ · T n −(4.25)

ρnf −∇ · ((µn − 1)∇un) + ∇pn = 0,

with vn(0) = v0, and

ρ∂tv + ρu · ∇u−∇ · T − ∆v + k(v − u) −(4.26)

−ρf −∇ · ((µ− 1)∇u) + ∇p = 0,

with v(0) = v0 and pn, p are the pressures obtained in the standard manner.

Subtracting (4.25) and (4.26), denoting V n = vn − v, Un = un − u, Pn = pn − p we

obtain

(ρn∂tV
n + τn∂tv + ρnUn · ∇un + τnu · ∇un + ρu · ∇Un −(4.27)

τnf −∇ · T n + ∇ · T −∇ · ((µn)∇Un) −∇ · ((µn − µ)∇u)) −
∆V n + kV n + ∆Un − kUn + ∇Pn = 0.

Multiplying (4.27) by ∂tV
nφ2 and integrating over QT we find

∫ T

0

|
√
ρn∂tV

nφ|22dτ +
1

2
|∇V n(t)φ|22 ≤

∫ T̄

0

(−τn∂tv − ρnUn · ∇un − τnu · ∇un − ρu · ∇Un + τnf +

∇ · (T n − T ) + ∇ · (µn∇Un) + ∇ · ((µn − µ)∇u) − (∆ − k)Un, φ2∂tV
n)dt+

∫ t

0

(Pn∂tV
n, φ∇φ)dt+ 2 sup

t
|∇V nV nφ∇φ|2.

Thanks to

(τn, µn − µ, Fn) → 0 strongly in L∞(0, T̄ ;L2
loc(Ω)),

Un → 0 strongly in L2(0, T̄ ; H̃1
loc(Ω)),

it is a routine matter to prove that V n → 0 strongly in L2
loc(QT ). Consequently, the map

G is continuous in L2
loc(QT ), and the existence of a local solution is completely proved.
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The proof of the uniqueness of the solution is obtained by the same procedure as that

used for the continuity of G, considering (ρn, µn, Fn, vn) ≡ (ρ1, µ1, F 1, v1) and (ρ, µ, F, v)

as two solutions of (2.8) with the same data and without localization.

Theorem 3.6 is completely proved.

4.2. Proof of Theorem 3.7. Under the assumptions of Theorem 3.7, (4.16), the first two

relations in (4.19) and (4.20) continue to hold. Bearing in mind that (4.17) is the Stokes

system, we have, with r as in Theorem 3.6,
∫ T

0

‖v‖2
2,qdt ≤

∫ T

0

(|∂tv|2q + |u|2∞|∇u|2q + k|u|2q + |f |2q +

|∇T |2q + |∇µ∇u|2q + |β − 1|2|∆u|2q)dt ≤ c

∫ T

0

|f |2qdt+ cT (ecr
√

T |∇F0|22 +

ecr
√

T r2 + r6) + ce−‖v0‖1r2 + |β − 1|2r2 ≤ r2,

for suitable T and β. We deduce immediately that GB ⊆ B. The continuity of G is proved

as in Theorem 3.6. Moreover, a uniqueness theorem holds. Theorem 3.7 is proved.

4.3. Proof of Theorem 3.8. First, to prove the existence of a solution of (4.1) we consider

an approximation ρǫ
0 of ρ0 such that

∇ρǫ
0 ∈ H̃1(Ω), 0 < ǫ ≤ ρǫ

0 ≤ 1, ∇ρǫ
0 → ∇ρ0 as ǫ→ 0

strongly in H̃1(Ω), and ρ0 ≤ ρǫ
0. Then there exists a solution of (4.1) for the initial density

ρǫ
0.

In what follows, we denote simply by (v, ρ, µ, F ) the solution of (4.1) with the data

ρǫ
0.

Bearing in mind that

1

2
|√ρ(0)∂tv(0)|22 ≤ c

(

|√ρ0v0 · ∇v0|
2
2 +

∣

∣

∣

∣

∇ · (µ0∇v0) + ∇ · T0√
ρ
0

∣

∣

∣

∣

2

2

+ |f(0)|22
)

,

(4.14) gives √
ρ∂tv ∈ L2(QT ) ∩ L∞(0, T ;L2(Ω)), ∂t∇v ∈ L2(QT ).

Furthermore, from (4.17)

v ∈ L2((0, T ;H3(Ω) ∩ Ṽ ) ∩ L∞(0, T ; H̃2(Ω)).

Now we prove GB ⊆ B, where B is as in the proof of Theorem 3.6 with

r2 = c̃e‖v0‖1(|√ρ0v0 · ∇v0|
2
2 + |(∇ · (µ0∇v0) + ∇ · T0)/

√
ρ0|

2
2 + |f(0)|22

c̃ > 1 a suitable constant.

From (4.27), as in Theorem 3.6, for suitable T̄ǫ ≡ T̄ and δ, we have

sup
0≤t≤T̄

|√ρ∂tv(t)|22 +

∫ T̄

0

|∇∂tv(t)|22dt ≤ r2e−‖v0‖1 .(4.28)
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Now thanks to (4.21), we have

∇(ρ∂tv) = ∇ρ∂tv + ρ∇∂tv ∈ L2(QT̄ ).

Now repeating the calculations to obtain (4.23), for suitable T̄ , and β, we get

GB ⊆ B.

As in Theorem 3.6, we have the continuity of G in L2(QT̄ ). The existence of a solution

of (4.1) is proved. Now, for the solution vǫ the estimates (4.28) and (4.22) for ‖Avǫ‖1

hold for a T̄ which depends only upon the data and is independent of ǫ. Consequently vǫ

belongs to

B̃ = {φ|sup(‖φ‖L2(0,T ;H3(Ω)∩V ); ‖φ‖L∞(0,T ;H2(Ω)∩V );

sup
t

|√ρ(φ+ ∂tφ)|22, ‖∂tφ‖L2(0,T ;H1(Ω)) ≤ r},

uniformly with respect to ǫ and ρǫ satisfies (4.3) with α = 0 uniformly with respect to ǫ.

Hence, passing to the limit ǫ→ 0, it is routine matter to obtain a solution (v, ρ, µ, F ) of

(2.8).

The uniqueness of the solution is proved in just the same manner as in Theorem 3.6.

Theorem 3.8 is completely proved.

5. Discontinuous model. In this section we prove the existence of the discontinuous

model. The proofs remain on the results in [9], [11], [12] and [13].

5.1. Proof of Theorem 3.10. The presence of the surface tension in the system (2.6) and

the evolution equation of F give a technical difficulty which leads to the introduction of

a regularization through the addition of a viscosity term η(As + I) with s > 3, where

As is the operator associated to the bilinear form ((u, v))s on the space V s. We assume

s = 4. Moreover, for simplicity, assume Ω2(0) is a bounded domain.

We thus introduce the regularized system

ρ∂vt + ρv · ∇v −∇ · (µ∇v) + η(As + I)v −∇ · T + ∇χ2H + ∇p = f,

∇ · v = 0,

Kv(x, t) = 0, on ∂Ω, v = 0 at ∞, v(x, 0) = v0, in Ω,(5.1)

∂tχ+ v · ∇χ = 0,

∂tF + v · ∇F = ∇vF.
Here K is the boundary operator associated to the bilinear form ((·, ·))s and χ2(t), H
are the characteristic function and the mean curvature of the transformed domain Ω2(t)

obtained from Ω2(0) in terms of the vector field v, respectively. Further we notice that,

bearing in mind the form of ρ(> 0) and µ(> 0), we consider the continuity equation for

χ only.

The proof of Theorem 3.10 is divided into three steps.

Step 1. Auxiliary problem. We consider the following system:

ρ∂tv + ρu · ∇v −∇ · (µ∇v) + η(A4 + I)v −∇ · T + ∇χ2H + ∇p = f,

∇ · v = 0,
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Kv(x, t) = 0, on ∂Ω, v = 0 at ∞, v(x, 0) = v0 in Ω,(5.2)

∂tχ+ u · ∇χ = 0, χ(0) = χ0,

∂tF + u · ∇F = ∇uF, F (0) = F0.

u, ρ, µ, v(0), F0 are smooth given functions. χ2, H are the characteristic function and the

mean curvature of the transformed domain Ω2(t) obtained in terms of a given vector field

u as the set of points x = x(y, t) such that

∂tx = u(x, t), x(y, 0) = y ∈ Ω2(0).

Moreover, we assume that χ0 is regular (it will be defined in step 2).

The existence of a solution of (5.2)4 and (5.2)5 is obtained as in Theorem 3.6.

Now we prove the existence of a solution of (5.2)1. First we consider the existence of

a strong solution to the system

∂tv +A4v + v = Pf,
(5.3)

Kv = 0 on ∂Ω, v = 0 at ∞, v(0) = v0.

Let

F = {φ|φ ∈ L2(0, T ;H8(Ω) ∩ Ṽ ),K(φ) = 0}

with the natural norm, and

G = {φ|φ ∈ L2(0, T ; H̃8
0 (Ω) ∩ V ), φt ∈ C([0, T ]; H̃8(Ω)), φ(T ) = 0}.

We consider on G the norm

‖φ‖G = ‖φ‖F + |||φ(0)|||4.

We let

E(v, φ) =

∫ T

0

(−(v, ∂t(A
4 + I)φ) + (A4v + v, (A4 + I)φ))dt,

L(φ) =

∫ T

0

(f, (A4 + I)φ)dt+ (v0, (A
4 + I)φ(0)).

First, L(φ) is a linear continuous form on G with respect to the norm ‖ ·‖G . Moreover,

bearing in mind |(A4 + I)φ|2 ≥ c|||φ|||8, we have

E(φ, φ) =

∫ T

0

(((−∂tφ, φ))4 − (∂tφ, φ) + 2|A2φ|22 + |A4φ|22 + |φ|22)dt ≥

c(|||φ(0)|||24 +

∫ T

0

(|A4φ|22 + |A2φ|22 + |φ|22)dt) ≥ c‖φ‖G .

Then, from the Lax-Milgram theorem, there exists a v ∈ F such that

E(v, φ) = L(φ)(5.4)

is satisfied for every φ ∈ G. Of course

‖v‖F ≤ c.
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Now if g(t) ∈ C∞
0 (Ω) and g(0) = g(T ) = 0 and φ solution of (A4 + I)φ = Pg(t) one has
∣

∣

∣

∣

∫ T

0

(v(t), ∂tg(t))dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

((A4v(t) + v, g(t)) + (f, Pg(t)))dt

∣

∣

∣

∣

≤ c

(
∫ T

0

|g(t)|2dt
)1/2

.

Hence ∂tv ∈ L2(QT ). By standard arguments, v satisfies (5.3) a.e. in QT .

Now let

F̃ = {φ|φ ∈ L2(0, T ;H8(Ω) ∩ Ṽ ), ∂tφ ∈ L2(QT ),K(φ) = 0}
with the natural norm; let G̃ be the closure of the space

G = {φ|φ ∈ L2(0, T ; H̃8
0 (Ω) ∩ V ), ∂tφ ∈ C0([0, T ]; H̃8(Ω))}

in the norm

‖φ‖G = ‖φ‖F̃ + |||φ(0)|||4.
Now we prove the existence of a solution of (5.2)1. We note that in the spaces con-

sidered ∇χ2 is a smooth trace operator. We let

E(v, φ) =
∫ T

0

(ρ(∂tv + u · ∇v) −∇ · (µ∇v) + η(A4 + I)v, ∂tφ+ ηA4φ+ kφ)dt+

k((v(0), A4φ(0)) + (v(0), φ(0))),

L(φ) =

∫ T

0

(f −H∇χ2 + ∇ · T , ∂tφ+ ηA4φ+ kφ)dt+ k((v0, A
4φ(0)) + (v0, φ(0))).

Here k is a positive suitable number.

We remark that if φ ∈ L2(Ω) and ∇ · φ = 0 then

‖φn‖H−1/2(∂Ω) ≤ ‖φ‖L2(Ω).

Then L(φ) is a linear continuous form on G̃ with respect to the norm ‖ · ‖G̃.

Moreover, bearing in mind that |(A4 + I)φ|2 ≥ c|||φ|||8, and ρ, µ satisfy the transport

equation, we have

E(φ, φ) ≥
∫ T

0

(

3

4
|√ρ∂tφ|22 + η2|A4φ|22 + η(ρ∂tφ,A

4φ) − 3

4
|∇ · (µ∇φ)|22 +

(ρu · ∇φ, ∂tφ+ ηA4φ) + (kη + η2)|A2φ|22 + kη|φ|22 + k|√µ∇φ|22
)

dt+

1

2

∫

QT

∇ · (uµ)|∇φ|2dxdt+
1

2
(|

√

µ(T )∇φ(T )|22 − |
√

µ(0)∇φ(0)|22) +

k

2
(|√ρ(T )φ(T )|22 − |√ρ(0)φ(0)|22) +

η

2
(|A2φ(T )|22 + |φ(T )|22 − |A2φ(0)|22 − |φ(0)|22) +

k(|A2φ(0)|22 + |φ(0)|22) ≥ c‖φ‖2
G,

for suitable k. Then, thanks to the Lax-Milgram theorem, there exists a v ∈ F̃ such that
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E(v, φ) = L(φ)(5.5)

is satisfied for every φ ∈ G̃.

Now let φ̄ be the solution of the problem

∂tφ̄+ ηA4φ̄+ kφ̄ = 0 in QT ,

φ̄(0) = h(x) in Ω, K(φ̄) = 0 on ∂Ω, φ̄ = 0 at ∞.

with h(t) smooth enough, and ∇ · h = 0. Replacing in (5.5) φ with φ̄ we have

(v(0), (A4 + I)h) = (v0, (A
4 + I)h),

which implies that v(0) = v0.

Now let φ̄ be the solution of the problem

∂tφ̄+ ηA4φ̄+ kφ̄ = g in QT ,

φ̄(0) = 0 in Ω, K(φ̄) = 0 on ∂Ω, φ̄ = 0 at ∞.

with g smooth enough and ∇ · g = 0. Replacing in (5.5) φ with φ̄ we have
∫ T

0

(ρ(∂tv + u · ∇v) −∇ · (µ∇v) + η(A4 + I)v −∇ · T − f + H∇χ2, g)dt = 0.

This implies that v satisfies (5.2)1 a.e. in QT .

Step 2. Approximate problem. We consider the following system:

ρ∂tv + ρvǫ · ∇v −∇ · (µ∇v) + η(A4 + I)v −∇ · Tǫ + ∇p = f −H∇χ2,

∇ · v = 0,

Kv(x, t) = 0, on ∂Ω, v = 0 at ∞,(5.6)

∂tχ+ vǫ · ∇χ = 0,

∂tF + v̄ǫ · ∇F = ∇vǫF,

with the initial conditions

χη(0) = (χ0)η ≡ χη
0 , v(0) = (v0)η,

where vǫ, Tǫ, (χ0)η, (v0)η, are regularizations of v, T , χ0, v0, respectively. vǫ, Tǫ are

obtained by convolution. Further (χ0)η = χ(0) on Ω1(0) (supp(χ0)η ≡ Ω1
η(0) ⊂ Ω1(0) is

bounded, measure(Ω1
η(0)∩Ω2(0) ≤ cη and Ω1

η(0) → Ω1(0) as η → 0), and Hǫ ≡ H, χ2
ǫ ≡

χ2 are the mean curvature and the characteristic function of the transformed domain

Ω2
ǫ(t) obtained from Ω2(0) in terms of the vector field vǫ, respectively. Moreover, v̄ǫ is

obtained by truncation of v in Ωǫ = {x ∈ Ω, dist(x, ∂Ω) > 2ǫ} and by convolution with

parameter ǫ (see [5] appendix A) so that the homogeneous Dirichlet boundary condition

is satisfied. We recall that ρ and µ are regular function of χ.

Of course, we have

0 ≤ (χ0)η,

(χ0)η → χ0 in Lp
loc(Ω) (1 ≤ p <∞),

(v0)η → v0 in L2(Ω).
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We prove the existence of a solution of (5.6) by a fixed point argument. Let B a

convex set in L2(0, T ; Ṽ ) defined by

B = {u|u ∈ L2(0, T ; Ṽ ), ‖u‖L2(0,T ;Ṽ ) ≤ C},
with suitable C. We follow the procedure of Theorem 3.6. First we consider the solution,

for fixed η, (vǫ, χǫ, F ǫ) ≡ (v, χ, F ) of the system

ρ∂tv + ρuǫ · ∇v −∇ · (µ∇v) + η(A4 + I)v −∇ · Tǫ + ∇p = f −H∇χ2,

∇ · v = 0,

Kv(x, t) = 0, on ∂Ω, v = 0 at ∞, v(x, 0) = v0,(5.7)

∂tχ+ uǫ · ∇χ = 0, χ(0) = χη
0 ,

∂tF + ūǫ · ∇F = ∇uǫF, F (0) = F0,

with u ∈ B and χ2,H are obtained using the vector field uǫ.

First the existence of a unique solution χ of the transport equation follows from the

method of characteristics as in Theorem 3.6. The explicit formula for χ is

χ(x, t) = χη
0(y(0, x, t)).(5.8)

Obviously 0 ≤ χ ≤ c and χ ∈ L∞(0, T ; H̃2(Ω)) and ∂tχ ∈ L2(QT ). Furthermore

‖χ(t)‖L2(Ω) = ‖χη
0‖L2(Ω).

Analogously we obtain the existence of F solution of (5.7)4. Then a solution v of (5.7)1
can be obtained as in step 1.

Now we can define the map G : u→ v given by the composition of g : u→ (χ, F ) and

h : (F, χ, u) → (v).

The fixed point of G is a solution of (5.7). For this we need a priori estimates. We

multiply (5.7)1 by v, integrate over Ω, and obtain
∫

Ω

1

2
(ρ∂t|v|2 + η(vA4v + v2)dx+

∫

Ω

(

1

2
ρuǫ · ∇|v|2 + |√µ∇v|2

)

dx =

∫

Ω

(fv −∇χ2Hv − Tǫ∇v)dx.

Bearing in mind the continuity equation and integrating over (0, t), we have

|√ρv(t)|22 +

∫ t

0

(|√µ∇v|22 + η|A2v|24 + |v|22)dt ≤

c

(
∫ t

0

|f |22dt+ T

∫ T

0

‖H‖2
H1/2(Γ(t))dt+ T |Tǫ|2∞

)

+ |
√

ρ(0)v(0)|22,

hence

sup
0≤t≤T

|v(t)|22 + ‖v‖2
L2(0,T ;Ṽ ∩H4)

≤ c+ TCcǫ,η,(5.9)

where c is independent of (C, ǫ, η).

Now we choose C > c and T = T̄ sufficiently small so that GB ⊆ B. We multiply

(5.7)1 by ∂tv, integrate over Ω and obtain

|√ρ∂tv|22 +
1

2

d

dt
(|√µ∇v|22 + η(|A2v|22 + |v|22)) ≤
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c(|f |22 + ‖H‖2
H1/2(Γ(t)) + ‖uǫ‖2

L∞(Ω)|∇v|22 +

|∇ · Tǫ|22 + ‖∂tµ‖L∞(Ω)|∇v|22).
We deduce from Gronwall’s lemma that

∫ t

0

|∂tv|22dt+ |∇v(t)|22 + η(|v(t)|22 + |A2v(t)|22) ≤ cǫ,η.

Consequently the map G is compact in L2(0, T ;L2
loc(Ω)).

The fixed point of G is the solution of (5.7) in (0, T̄ ). Thanks to (5.7)5 we get
∫

Ω

∇ · Tǫvdx =

∫

Ω

T ∇vǫdx = dt

∫

Ω

Wdx

holds.

Consequently we have the energy estimate

sup
t

(|√ρv(t)|22 +

∫

Ω

Wdx) +

∫ t

0

(|√µ∇v|22 + η(|A2v|22 + |v|22)dτ ≤

c

(

|√ρ(0)v(0)|22 +

∫

Ω

W0dx+

∫ t

0

|f |22dτ
)

.

It is a routine matter to prove that the solution (χ, F, v) exists in (0, T ), and satisfies

(5.7) a.e. in Ω.

Step 3. A priori estimates and limit (ǫ, η) → 0. From the results of step 2 we have

the estimate

sup
0≤t≤T

(|v(t)|22 +

∫

Ω

Wdx) + η‖v‖2
L2(0,T ;Ṽ ∩H8)

+ ‖∂tv‖LQT
≤ c(5.10)

where c depends on η only. Consequently we can pass to the limit ǫ → 0 in (5.7) and

obtain a solution (vη, χη, Fη) ≡ (v, χ, F ) of (5.1).

Now we prove the existence of a solution of (2.6).

From the transport equation and multiplying (5.1)1 by v, integrating over ΩT and

bearing in mind (2.3), we obtain the estimates

|√ρv(t)|2 +

∫

Ω

W(t)dx+

∫ t

0

(|√µ∇v|2 + η(|A2v|22 + |v|22)dt+

meas(Γ(t)) ≤ c,(5.11)

0 ≤ χη ≤ c, ‖χη(t)‖L2(Ω) = ‖χη(0)‖L2(Ω).

The constant c is independent of η. An immediate consequence of the above estimates is

that the domains (Ω2
η)T = ∪(Ω2

η(t)× t) have perimeters uniformly bounded with respect

η. This implies that there exists a measurable set Ω2
T ⊂ QT such that the characteristic

functions χ2
η of {(Ω2

η)T }, up to a subsequence, converge to the characteristic function χ2

of Ω2
T , i.e.

χ2
η → χ2 in L2(QT ),

and

P (Ω2
T ) ≤ lim inf P (Ω2

η)T .
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Thanks to
∣

∣

∣

∣

∫

QT ∩(Ω2
η)T

χ1
ηdx

∣

∣

∣

∣

≤ cη,

we get

χ1
η → χ1 strongly in L2

loc(QT ).(5.12)

Here χ1 = 1 − χ2.

From (2.4)
∣

∣

∣

∣

∫ T

0

(∇χ2
ηHη, φ)dt

∣

∣

∣

∣

≤ c sup
t

(meas(Γ(t)))

∫ T

0

sup
x

|∇φ|dt.(5.13)

for any φ ∈ L∞(0, T ;C∞
0 (Ω)).This implies {∇χ2

ηHη} is bounded in sense of distributions.

Hence {∇χ2
ηHη} has a limit for η → 0 that we will denote H.

Now collecting the above arguments, we obtain as in [12], the estimate

‖∂tPΩ(ρηvη)‖L2(0,T ;H̃−3(Ω)) ≤ c,(5.14)

where c is independent of η and PΩ is the projection operator onto the solenoidal space

H(Ω).

The above estimates permit us to prove that {vη} is a compact set in L2
loc(QT ). In fact,

let K ⊂ Ω be an open bounded domain and Kδ the δ-dilation of K. Let θδ ≡ θ ∈ C∞
0 (Ω),

Suppθ ⊂ Kδ, θ ≡ 1 on K. Let wδ,η ≡ w be the solution in K̃ = Kδ \K of

∇ · w = ∇ · (θ(vη − v)), w = 0 on ∂K̃.

Here v is the weak limit of {vη} in L2(0, T ; Ṽ ).

We set hη = θ(vη − v)−w (w is extended by 0 in K). We notice that ∇ · hη = 0 and

hη ∈ L2(0, T ;H1
0 (Kδ)).

Now we prove, for η → 0,
∫

KT

((ρv2)η − (ρv)ηv)dxdt =

∫

KT

hη(ρv)ηdx→ 0.(5.15)

Here KT = K × (0, T ) (and Kδ
T = Kδ × (0, T )). Now

∫

KT

hη(ρv)ηdx =

∫

Kδ
T

hη(ρv)ηdx−
∫

K̃T

hη(ρvη)dxdt.

The first integral on the right-hand side tends to zero as η → 0 because hη →
0 weakly in L2(0, T ;H1

0 (Kδ)) and PKδ(ρv)η → PKδρv strongly in L2(0, T ;H−1(Kδ)).

Moreover, the second integral satisfies
∣

∣

∣

∣

∫

K̃T

hη(ρv)ηdxdt

∣

∣

∣

∣

≤ cδα

with c independent of η and α a positive number. (5.15) is proved.

The estimates (5.11), (5.14) and (5.15) permit us to deduce that there exists a sub-

sequence, still denoted by {(Fη, χη, vη)}, such that

vη → v weakly in L2(0, T ; Ṽ ), strongly in L2
loc(QT ),

χη → χ weak∗ in L∞(QT ) and strongly in L2
loc(QT ),

ρ(χη)vη → ρ(χ)v weak∗ in L∞(0, T ;L2(Ω)),
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µ(χη)∇vη → µ(χ)∇v weakly in L2(QT ),(5.16)

ρ(χη)(vi)η(vj)η → ρ(χ)vivj weakly in Lp(QT ), p > 1,

Fη → F weakly in L2(QT ),

χ2
ηFη → χ2F weakly in L2(QT ),

T → Λ in the sense of measure.

In subsection 4.4 we noticed that the localization of F is obtained by localizing the

initial data F0. This procedure can produce some singular effect on the evolution of ∇·F ,

in general. For example ∇ · F can be a measure. But the assumption n · F0 = 0 on Γ(0)

circumvents this eventuality and implies that ∇ · (χ2(0)F0) = χ2(0)∇ · F0. So we get

{∇ · FT
η } is uniformly bounded in L∞(QT ). Thanks to (5.16), we get

∫ T

0

∫

Ω

∇vηFηψdxdt = −
∫ T

0

(vη∇ · FT
η ψ + vηFη∇ψ)dxdt→

−
∫ T

0

(v∇ · FTψ + vF∇ψ)dxdt, as η → 0,

for any smooth tensor ψ with compact supports. Now multiplying the equations in (5.2)

by the respective test functions with compact support, integrating on QT and passing to

the limit η → 0, we get that (v, χ, F,Λ) is a weak-measure solution of (2.6).

5.2. Proof of Theorem 3.11. The proof of Theorem 3.11 follows the procedure of Theorem

3.10. The main changes consist in

dt|Fη|2 = 2(dtFη) · Fη = 2(Wη(v)Fη) · Fη = 0,(5.17)

and in the form of the energy estimate

sup
t

|√ρv(t)|22 +

∫ t

0

(|√µ∇v|22 + η(|A2v|22 + |v|22))dτ +measΓ(t) ≤

c

(

|√ρ(0)v(0)|22 +measΓ(0) + supt|T |22 +

∫ t

0

|f |22dτ
)

.

(5.17) implies that

||F (t)||L2(Ω) = ||F0||L2(Ω) ∀t > 0; F ∈ L∞(0, T ;Lq(Ω)) ∀ q > 1.

Now |F |2 satisfies the transport equation and thanks to the compactness result on trans-

port equation in [5], {Fη} is a compact set in Lq
loc(QT ) for any q ≥ 1. With the above

results in hand, we get
∫ T

0

∫

Ω

W (vη)Fηψdxdt→
∫ T

0

∫

Ω

W (v)Fψdxdt, as η → 0,

for any smooth tensor ψ with compact support. Theorem 3.11 follows immediately from

Theorem 3.10.

5.3. Proof of Theorem 3.12. The core of the change of the proof of Theorem 3.12 with

respect to Theorem 3.11 remains on the solution of

∇ · FT
η = gη or ∂xi

(Fη)ij = (gη)j ,

where gη is the solution of the transport equation (2.7)4 in L∞(QT ).
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From Bogovskĭı’s results (see [1]), there exists a solution Fη ∈W 1,q
0 (Ω) for any q > 1

such that

|∇FT
η |q ≤ c|gη|q.

Moreover, we get

∇ · ∂tF
T
η = ∂tgη ∈ L∞(0, T ;H−1(Ω)),

hence

‖∂tFη‖L2

loc
(QT ) ≤ c‖∂tgη‖L2(0,T ;H−1(Ω)).

The above estimates imply that {Fη} is a compact set in Lq
loc(QT ). Now, the proof

of Theorem 3.12 follows the arguments of Theorem 3.11.
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