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Abstract. In this survey we report on existence results for some free boundary problems for
equations describing motions of both incompressible and compressible viscous fluids. We also
present ways of controlling free boundaries in two cases: a) when the free boundary is governed
by surface tension, b) when surface tension does not occur.

1. Introduction. We present some results concerning free boundary problems for non-
stationary Navier-Stokes equations. We are interested in a free boundary problem for
equations describing the motion of a viscous general (heat-conducting) fluid which can
be formulated as follows: find a domain §2; C R? with a boundary S; = S; U Sy (S is
a fixed part of S; independent of time ¢; Sy is a free part of S;) as well as a velocity
vector field v = v(x,t) (v = (v, v9,v3)), density p = p(x,t) and temperature 6 = 6(z,t)
satisfying for x € Q, ¢t € (0,7), T > 0, the compressible Navier-Stokes system with initial
conditions: Q|i—0 = Q, v|t=0 = vo, pli=0 = po, 0]t=0 = By in Q, the Dirichlet boundary
condition for v and 6 on S; x (0,T) and the Neumann type condition for the stress tensor
and for 6 on ;¢ (o 1) S2¢ x {t}.
Therefore, the equations under consideration are as follows (see [LanLif], [Ser]):

(1.1) plve + (v Vo] —divT(v,p) = pf  inQ7T,
(1.2) pt +div(pv) =0 in Q7
(1.3) pcy (0 +v - VO) — div(32V8) 4 Opy divv

3
M 2 )2 o oT
-5 Z (Viz; + Vje,)” — (v — p)(dive)® = pr, in Q7

i,j=1
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where T > 0, QT = Uicory e % {t}, Q¢ C R® is an unknown domain at time ¢ with
boundary S; = S; U So;; T = T(v,p) is the stress tensor given by

T(v,p) = {—pdij + p(vie; + vVja;) + (v — p) divvd;}i j=123.

Moreover, f: f(:c, t) is the force per unit mass acting on the fluid; » = r(z, t) denotes
the heat sources per unit mass; p = p(p,0) is the pressure, » = 3(p, ) the coefficient
of heat conductivity, ¢, = ¢,(p,0) the specific heat at constant volume; v = v(p, 6) and
uw = p(p,0) are the viscosity coefficients. The functions s, ¢,, v, p are positive and
v > (1/3)pu.

We complete equations (1.1)—(1.3) with the following initial conditions:

(1.4) Qtli=0 =, Stli=o = S
(1.5) V|t=0 = vo in Q,
(1.6) pli=o =po  in
(1.7) Oli—0 = 6o in Q.

We also complete system (1.1)—(1.3) with boundary conditions which depend on the
geometry of {2;. We consider two kinds of free boundary problems.

Drop problem. This is the problem describing the motion of an isolated mass of a
fluid bounded by a free boundary. In this case Q; C R? is a bounded domain with the
boundary S; = So; (51 = 0).

For the drop problem the following boundary conditions are assumed:

(1.8) TR —oHn = —pon on ST = U Sy x {t},
te(0,T)
_ T
(1.9) v-n——‘vqSI on S°,
(1.10) %g—z =6 onS7
or
(1.10") %g—z = 5,(0, — 0) on ST,

where 7 is the unit outward vector normal to S;; o is a constant coefficient of surface
tension; po is the constant external pressure; § = f(x,t) the heat flow per unit surface;
», the constant coefficient of outer heat conductivity; 6, the constant atmospheric tem-
perature; ¢(z,t) = 0 describes the boundary S;; H denotes the double mean curvature
of S; expressed by

Hn = Ag, (),

where Ag, (t) is the Laplace-Beltrami operator on S;.

We can distinguish the two cases o > 0 and o = 0 in the boundary condition (1.8). If
o > 0 we say that the free boundary is governed by surface tension.

Condition (1.9) is called the kinematic boundary condition. It means that fluid par-
ticles do not cross the free boundary.
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In drop problems it is usually assumed that
(1.11) f=f+kVU,

where f = f(x,t) denotes the external force field per unit mass; k is the constant coeffi-
cient of gravitation, and U(x,t) fQ (y.1) dy is the self-gravitational potential.

In the case of k > 0 the second term on the right-hand side of (1.11) is called the
self-gravitational force.

Surface waves problem. This is the problem describing the motion of a fluid occupying
a semifinite domain in R? bounded above by a free surface So; = {x = (2/,73) € R3 :
2’ € R?, 23 = F(2',t)}, and below by a fixed part of boundary S;, that is, by S; = {z €

R?: 2’ € R?, 23 = —b(z')}, where F is an unknown function and b is a given function.
Therefore, initial condition (1.4) takes the form
(1.12) Fli—o = Fo('), 7’ € R%
For the surface waves problem the following boundary conditions are assumed:
(1.13) Tn—oHR = —poii. on S = Use(o,r) S2e x {t},
F -
(1.14) (TR I S on SY,
V1+I|V,FP
00 - ~
(1.15) Ho = 0 on ST,
or
00 ~
oo = 2#4(04 — 0) on ST, * (1.15")
(1.16) v=0 on Sy x (0,7),
(1.17) 0 =06 on S1 x (0,7,

where 7 is the unit outward vector normal to Sy in (1.13) ¢ > 0 or 0 = 0; 6, is the
constant temperature at Sy, V., = V,; (1.14) is the kinematic condition in this case.
Moreover, in surface waves problems it is usually assumed that

(1.18) F=f—ges,
where f = f(x,t) is an external force field per unit mass, g denotes the accelaration of
gravity and ez =t (0,0, 1).

Thus, the second term on the right-hand side of (1.18) is the gravity.

We can also consider some special cases of system (1.1)—(1.3).

1° Barotropic compressible fluid. This is a fluid of the state equation: p = p(p). The
free boundary problem for such a fluid is described by equations (1.1)—(1.2) (where the
viscosity coefficients v and p are only functions of p) with conditions (1.4)-(1.6), (1.8)—
(1.9) or (1.5)-(1.6), (1.12)~(1.14), (1.16).

2° Incompressible fluid. Assuming that p = const (let for simplicity p = 1) equations
(1.1)—(1.2) take the form of the classical Navier-Stokes equations

(1.19) v+ (v-Vv—vAv+Vp=f  inQ7,
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(1.20) divo=0  in Q7,

where p = p(z,1).
The drop problem for an incompressible fluid takes the form of system (1.19)—(1.20)
with initial conditions (1.4)—(1.5) and boundary conditions (1.8)—(1.9), where

T(v,p) = {Tij}ij=1,23 = {—Pdij + 20 (Viz; + Vja;) }i,j=1,2,3-

The incompressible surface waves problem consists of equations (1.19)—(1.20) together
with initial conditions (1.5), (1.12) and with boundary conditions (1.13)—(1.14), (1.16).

2. Existence results. Most of existence results are obtained after transforming a free
boundary problem to a problem in a fixed domain. The most frequently used transforma-
tion connects the Eulerian coordinates x with the Lagrangian coordinates &, which are
defined as initial data for the following Cauchy problem:

fl_f:u(m,t), 20) =&  E=(&,6,8)

Hence, the transformation connecting x and ¢ coordinates has the form:

(2.1) r=£&+ /0 w(& ) dt' = X, (€, 1),

where u(€,t) = v(X, (&, 1), 1).

In coordinates £ the above problems have the forms of problems with the unknown
functions u, 1(€,6) = p(Xu(&,6),6), D, 1) = O(X,(6,6),) (u and a(€,t) = p(Xu(&,),8)
in the incompressible case) in a fixed domain Q7 = Q x (0,7). The drop problem for
equations (1.1)—(1.3) in the Lagrangian coordinates takes the form:

(2.2) nug — divy, Ty (u, p) = n(g + £V, Uy) in Q7
(2.3) n+nVy -u=0  inQ7T,
(24)  neo(n,9)0e = V- (3Vu0) = =Ipy(n, )V - u

3
S ey &, O — (= p)(Vu ) =gk im0,
ij=1
(2.5) Tou(u, p)oy — 0 AL () Xy = —qoTiu on ST,
(2.6) s(n, )y -V =9  on ST

or
(2.6") 2x(n, 0)y, - Vo = 52, (0g — 9) on ST
(2.7) ult=0 = vo, N|t=0 = po, V|t=0 = 0o, in 2,

where h(&,1) = (X, (&,1),1), D(&,t) = 0(Xu(&,1),1),
Tu(u,p) = {=p(n,9)ds; + p(n, 9)(0x, 1 0¢, u;
+ 0z, &k 0, ui) + (V(0,0) — 11(n,9))0i; Vi - ubij=12.3,

I = {6i}ij=1,23, divy Tu(u,p) = {0z;Ex0¢, Tuisj(u, p) }i=1,2,3; moreover V, = &;,0:, =
(iz;0¢,)j=1,2,3, Eiz; are the elements of the matrix £, which is inverse to z¢ = I +
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fot ug (&, t)dt" = {6;; + fg e, (§,1')dt'}; j—1,2,3 and the summation convention over re-
peated indices is assumed.

The surface waves problem can be transformed analogously.

The solvability results for the above free boundary problems are obtained in different
function spaces. However, since the transformation (2.1) is involved in the nonlinear
terms, we have always to impose such a regularity of solutions that

T T 1/2
28) | [t sr ([l qar) <o
0 Lo (Q) 0

Therefore, for the presented free boundary problems we cannot expect the existence of

solutions as weak as for initial-boundary value problems for the Navier-Stokes system in
fixed domains. For this reason we can obtain for the above problems only local existence
theorems or global existence theorems for initial data sufficiently close to equilibrium
states.

Local existence and uniqueness. The local existence and uniqueness theorems for
both the drop and surface waves problems have been proved in all cases, i.e. for in-
compressible, barotropic compressible and general compressible motions. The required
regularity of function spaces in which we can examine the solvability of the above free
boundary problems is implied by condition (2.8).
Below, we present the local solvability and uniqueness results in spaces of functions
with the lowest regularity. First, we introduce the notation:
(29) AiT,QiT = BiT,QiT n LQ(iTa (Z + 1)T; WQB(QlT))a
(2.10)  Bir.q,p = {w € C(GT, (i + 1)T]; Wi (Qur)) : wy € C([iT, (i + 1)T); Wy (Qur))
N La(iT, (i + 1)T; W3 (Qr)), wie € C([ T, (i + 1)T7; Lo (Qir))
N Ly(iT, (i + 1)T; Wy (Qu7))}  fori € NU{0}
and Aor,0,r = A1.0, Bor,0or = Bor,0.
Moreover, we denote by W.™(QT) | where [,m € R, U{0},1 < r < oo, the anisotropic
Sobolev-Slobodetskii space with the following norm

(2.11) \|u||;w,m(m)=/ﬂ (O dzdt + Y / \DYu(e, )] dadt

0<|y|<[1]

+ Z / |Diu(x,t)|"dzdt

0<i<[m]

¥ Y
/dt//'D“ ,D’l“( LA
Ivl 0 @ =/t

D, t) — DM )"
/dm/ /' H_ﬂpwm[ﬂ) drd’.

In (2.11) D} = 8;, D} = 97* ... 9} and v = (y1,...,7,)- In the case of integer [ the
fourth term on the right-hand side of (2.4) is omitted and in the case of integer m the
fifth term is omitted.
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In our presentation of local existence results we assume for simplicity that f = 0,
r = 0,0 = 0 and we omit compatibility conditions. We can distinguish the following
cases:

1° The incompressible case with o = 0 (drop problem with k = 0 [Sol2], drop problem
with k > 0 [MZaj]; surface waves problem [A]).

Regularity of data: r > 3, vy € W3_2/T(Q), Sew2 T,

Regularity of solution: u € W21(QT), ¢ € WO(QT), q € WQ‘”’“’I”‘”(”)(ST) in
the case of the drop problem, and ¢ € Wzl_l/r’l/Q_l/(QT)(Sg x (0,7))in the case of the
surface waves problem (where Sy = Sat|i—), for some T > 0.

2° The incompressible case with o > 0 (drop problem with k = 0 [Soll], drop problem
with k > 0 [Sol4]; surface waves problem [T]).

Regularity of data: a € (1/2,1), vo € W3 T%(Q), S € W25/2+a for the drop problem,
and S € W§/2+a, Sy € W25/2+a for the surface waves problem.

Regularity of solution: u € W22+a’1+a/2(QT), qe W;’Q/Q (QT), Vg e W;’a/2(QT) and
q € Wl/tal/4+e/2(g » (0,T)) for the drop problem, ¢ € W1/2+t1/4+a/2(G, x (0,T))
in the case of the surface waves problem, for some T > 0.

3° The compressible barotropic case with o > 0 (drop problem [SolT1]).

Regularity of data: a € (1/2,1), vg € W3T*(Q), po € WaT¥(Q), S € W25/2+a,
p € C3(Ry); pu, v are constants.

Regularity of solution: u € W22+a’1+a/2(QT), 7€ W21+a’1/2+a/2(QT) for some T' > 0.

4° The compressible heat-conducting case with o > 0 (drop problem with k=0 [Z1]).
Regularity of data: o € [3/4,1), vg € W3 T*(Q), po € Wyt¥(Q), 6y € W3T*(Q),
S e Wit pe C3(R?), ¢, € C2(R2), v € C3(R2), pu € C3(R?), » € C3(R2).
Regularity of solution: u € W22+a’1+0‘/2(QT), ¥ € W22+a’1+a/2(QT), and n €
W21+a’1/2+a/2(QT) NC([0,T]; W T*()) for some T > 0.

5° The compressible barotropic case with o = 0 (drop problem with k=0 [ZZaj1, ZZaj2]).
Regularity of data: S € W2'2, vg € W2(Q), po € W2(Q), ue(0) € WL(Q), uw(0) €
Ly(€2), (where u(0), uy(0) are calculated from equation (2.2)), p € C3(R?); p, v are
constants.
Regularity of solution: u € Agr,0, n € Bor,q for some T > 0.

6° The compressible barotropic case with o =0 (drop problem with k > 0 [StZaj]).
Regularity of data: S € W25/2, vo € WE(Q), po € W(Q), p € C3(Ry); u, v are
constants.
Regularity of solution: u € Lo (0,T; W3 (Q)) N La(0,T; W5(Q)), ut € Lo (0,T; L2(R))
N Lo(0, T;WH)), 1 € Loo(0,T;W(2)), 0t € Loo(0,T; La(Q)) N Lo (0, T; HA()), net €
Lo (QT), for some T > 0.

7° The compressible heat-conducting case with o = 0 (drop problem [ZZaj1]).

Regularity of data: S € W25/2, vo € WZ(Q), 6y € WZ(Q), po € W (Q), uw(0) €
W), 9:(0) € Wi (), uu(0) € La(2), 94(0) € La(Q) (where u(0), uy(0), 94(0),
94:(0) are calculated from equations (2.2) and (2.4)), p € C3(R?), ¢, € C%(R?); p, v, »
are constants.
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Regularity of solution: v € Agrq, ¥ € Aor,a, n € Bor,o for some T" > 0. The full
review of local existence results can be found in [Z2].

Global existence and stability. The global existence theorems for the three-dimen-
sional free boundary problems can be proved for initial data close to equilibrium states.
For incompressible motions it means that the initial velocity vy is assumed to be small.
Moreover, for problems with a free boundary governed by surface tension it is assumed
that a boundary of an initial domain is close to a sphere of radius Ry = (%m\)l/g in
the case of drop problem or to a plane in the case of surface waves problem. Under the
above assumptions it is proved that there exists a global solution which is close to the
equilibrium state. It means that the velocity v of the fluid remains small, the pressure is
close to a certain constant and the free boundary S; remains close to the same sphere or
to the same plane as the initial boundary S for all £ > 0.

Solonnikov [Sol2] proved that in the case of the incompressible drop problem with
o =0 and k = 0, the local solution (see 1° above) can be extended to a global one if vy
is sufficiently small in W’ -2/ "(€). For incompressible surface waves problem with o = 0
the global existence result with a small initial velocity has been obtained by Sylvester
[Syl] in spaces of more regular functions.

In the incompressible case with ¢ > 0 the local solutions described in 2° above can
be extended to global ones if vg € W, () and S € W25/2+a are sufficiently close to an
equilibrium state (see [Soll], [Sol3], [T Tan]).

Similar results can be proved for compressible problems. In particular, an equilibrium
state in the compressible heat-conducting case with ¢ > 0 and &k = 0 can be defined as
follows.

DEFINITION 1. Let f = 0, 7 = 8 = 0. By an equilibrium state we mean a solution
(v,0,p,9Q4) of problem (1.1)-(1.10) such that v =0, 8 = 0., p = pe, L = Q for t > 0,
where p, = (M/(4/3)7R2), M = [, po(§)dé, Q. is a ball of radius R.; R > 0 and 6. > 0

satisfy the equation
M 0 ) = 20
p<<4/3>7rRz’ ) TR

In this case if we assume that o € (3/4,1), vo € W, T*(Q) is sufficiently small,
po € WiT(), 6y € W3 +*(Q) are sufficiently close to p. and 6., respectively, and the
function R describing S (see Section 3) is sufficiently close to R,, then we can extend the
local solution (described in 4° above) to a global one (see [Z1], [Z2]).

The global solvability of the compressible barotropic drop problem with ¢ > 0 is
proved in [SolT2] in the function spaces determined by the local solution defined in
3° and in [Zaj] in spaces of more regular functions. A global solvability result for the
compressible barotropic surface waves problem with o > 0 can be found in [JinPad].

Moreover, Tani and Tanaka [TanT| proved the global existence theorem for the com-
pressible heat-conducting surface waves problem with ¢ > 0 in a class of functions of a
greater regularity than the regularity described in /° for the drop problem.

Now, consider the case of ¢ = 0 and k = 0. For the compressible barotropic drop
problem by an equilibrium state we mean a constant solution (0, pe, {2e) of the problem
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with f = 0 such that p(p.) = po and || = M/pe. In [ZZaj2] we prove that if initial
data are close to the equilibrium solution then the local solution of the problem (see 5°
above) can be extended to a global one.
Introduce the notation:
Po =D — Do, 0y =0 — 0, Po = P — Pe
() = [®)l3.0,0, + 10 B3 0,0, + P (D)300,,
o(t) = [v(t) 51,0, + 105 ()]3,1,0, + ||Pa(t)||%/v22(ﬂt)+
+ ||p0t(t)||%/[/22(ﬂt) + ”Pott(t)”?/[/;(g)t)a
t
t) = {(00sp0): sup olt)+ [ @10t < oo,
0

0<t/<t

where | f(t)|ik0. = 2i<i- 101 (O)llyyi-i(q,), 1 € NU{O}.
From [ZZaj4] it follows that the local solution of problem (1.1)—(1.10) described in

7° above can be extended to a global one if initial data are sufficiently close to the

equlibrium state, i.e. ©(0) < ¢ with ¢ sufficiently small and if the following differential

inequality holds:

2

t
(2.12) Ccll—f + 1P <o {4,0(1 +¢%) + H / vdt’
0

]<I> for t <T,

W3 (S)

where c1, ¢y are positive constants depending on p1, ps2, 01, 62, v, 1, 3, cy, D, ||SHW25/2
and the constants from the imbedding theorems and the Korn inequalities (being also
nondecreasing continuous functions of || fot vdt'||yws(q,))- Moreover, @ in (2.12) is a certain
function satisfying the estimate

cs3o(t) <p(t) < cqp(t) fort <T,

where c3, ¢4 are positive constants depending on p1, pa, 01, 02, p, 3, ¢y, p, ||S||W§/2 and
the constants from the imbedding theorems.

In [ZZaj3] it is proved that inequality (2.12) holds for problem (1.1)-(1.9), (1.10). In
this case we admit the following definition of an equilibrium state.

DEFINITION 2. An equilibrium state is a solution (v, 6, p, ) of (1.1)—(1.9), (1.10") such
that v =0, 0 = 0., p = pe, Qi = Q. for t > 0, where 6. = 0,, p. is a positive constant
satisfying the state equation

P(pe;fe) = po,
Q. is a domain of volume Q.| = M/p. and M = [, po(&)dE.

Using inequality (2.12) we can prove the following global existence theorem.

THEOREM 1. Let f = 0, r = 0, S € W22, vy € W2(Q), po € W2(Q), 6y € W2(Q),
Ut(O) S ng(Q), 19,5(0) S Wzl(Q), Utt(O) S LQ(Q)7 19,5,5(0) S LQ(Q) (where Ut(O), utt(()),
9¢(0), 91 (0) are calculated from equations (2.2) and (2.4)). Let v, u, » be positive con-
stants and v > (1/3)p; p € C*(R?); p, > 0, pg > 0 for p, 6 > 0; ¢, € C*(R?) and assume
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that the following compatibility conditions are satisfied:
8;{[1[)“(“) - (p(n? 19) _pO)]ﬁu}h:O = 07 1= 0) 17 on Sa

0[5y - Vo) — 524(04 — 9)]|t=0 = 0, i=0,1, onS.
Moreover, let the following assumptions be satisfied: ©(0) < e; I > 0 is a constant such
that pe —1 >0, 69 —1 > 0 and

p1 < po < p2, 01 < 0y < b,

where p1 = pe — 1, po=p+1,00=0,—1, 0, =0.+1;
[ oo (@ bx )i =0
Q

where a and b are arbitrary constant vectors. Then for sufficiently small € there exists
a unique global solution of (1.1)=(1.9), (1.10") such that (v,0,,ps) € M(t) for t € Ry,
Si € W25/2 fort e Ry and

o(t) <ce fort € Ry,

where ¢ > 0 is a constant depending on 2, p1, p2, 01, 02, p, cy, V, i, .

Apart from inequality (2.12) we use in the proof of Theorem 1 the following estimate
which holds for the local solution of (2.2)—(2.5), (2.6"), (2.7):

(2.13) [l o + 190l o + 1101y 0 < C1(T)2(0),

where T is the time of local existence; Agrq, Bor,o are given by (2.9)-(2.10), and C; is
an increasing function of T'. Inequality (2.13) rewritten in the Eulerian coordinates yields
fort<T
t
(214) sup o(t)+ [ BE)d < CalT)p(0),
0<t/<t 0
where C5 is an increasing function of 7.

In the process of extending the solution step by step to all ¢ > 0, estimate (2.14) implies
step by step that p and 6 remain in the intervals (p1,p2) and (61,62), respectively, for
all ¢.

Inequalities (2.13) and (2.14) allow to extend the solution and to control the shape of
Q); which will be explained in the next section.

3. Differences in the ways of controlling the free boundary in two cases: ¢ =0
and o > 0.

1° The case of o > 0. Consider a free boundary drop problem with & = 0 and o > 0. As
usual in the case of 0 > 0 we assume:

(3.1)  Qis close to a ball and S is described by the equation: |¢| = R(w), w € S,

where S is the unit sphere.

Then from the relation (2.1) connecting Lagrangian and Eulerian coordinates it follows
that €, is also close to a ball and S; (¢t < T') is described by
(3.2) || = R(w,t), we S

where R(w,0) = R(w), T is the time of local existence.



288 E. ZADRZYNSKA

The boundary condition (1.8) can be presented in the form

2 1
(33) H + R_ = ;ﬁ . T(’l},pa-)ﬁ on St,

e
where in the incompressible case R, = Ry = (3 \Q|)1/3, while in the compressible case
R, is given in the definition of an equilibrium solution.
Using (3.2) we can write condition (3.3) in the form

2
(3.4) H[R] + T h(w),
where H[R] is the double mean curvature of S; expressed in spherical coordinates, i.e.
M (L Fe 0 mehs )2
S\ Gin ooy /B2 + |VRE OP2\[R2 4 VR \JR2 4 VR

Now, following [Sol1] cover S! by a finite number of domains S’ having sufficiently
small diameters. Take a function ¢ = ((y) such that ( = 1 on S’, ¢ = 0 on S\ s,
S c §” and 0 < ¢ < 1. Next, denote R, = R — R, R, = (R,. Then, by applying the
formula

R)(R+ R.) + |VR|

= A,
\/R2+\VR R\/R2+|VR (Re + 1/ R? + |VR]?
equation (3.4) takes the form of the following elliptic equation:
2 > 2
0’R, OR,
s() +) Ap)5— =G,
P ¥ Dip, O ; Opy
where
aq OR. 02¢ 2 aC¢
=2 A + A — —2AC + h¢.
7;1 s (e 390 D (¢ &p Don ;1 ~(#) B C+h¢

Spherical coordinates have been chosen so that sing; > ¢ > 0. Therefore A5, A,,
Ace W21/2+l(5'1), and these coefficients do not depend on Ry, ¢ = (¢1, ¢2).

In order to control the free boundary in this case (and as a consequnece to extend the
solution for all ¢) we use the regularity properties of the above elliptic equation. More
precisely, we use the following theorem.

THEOREM 2 (see [Soll, Z2]). Let R € W23/2+I(Sl), 1 €(1/2,1) be a solution of equation
(3.4) satisfying inequality
sglp |R(w,t) — Re| + S;J.lp IVR(w,t)| <R,
with sufficiently small 5. If h € W3(SY), s € [0, 1], then
(3.5) [R = Rellyyz+s g1y < callbllws sy + c2llR = RellLy(s1),
where c1, ¢y are constants and ca can depend on ||R||Wl+3/2( s1)- Moreover, if REWFT5(Sh)
and h € Wyt5(S1), s € (0,00), then
(3.6) 1R — Rellyz+s g1y < esllbllyaee gy + call R = RellLysm),

where c3, ¢4 are constants and cy can depend on ||R|[y2+s g1y
2
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Theorem 2 is essential to all proofs of global existence and stability theorems for
drop problems. The norm [|R — Rel| 1, g1y is estimated in each case by using conservation
laws of: energy, momentum and mass, and in order to estimate the norms |[A[|y (g1 or
Hh||W21+s(Sl) we need estimates of v and p,. Such estimates are derived in different ways
in dependence on what motion we consider. Thus, if we assume that S € W23+5 for some
s > 0, we obtain by Theorem 2 the same regularity of the boundary for all ¢ > 0, i.e.
S € W23+s. Moreover, for data sufficiently close to an equilibrium state we can usually
prove that the free boundary S; remains close to a ball of radius R, for all ¢.

For surface waves problems, a theorem analogous to Theorem 2 can be proved for
function F(z’,t) describing a free boundary in this case (see [TTan]).

2° The case of o = 0. Now, we consider a drop problem with ¢ = 0. Then the Laplace-
Beltrami operator Ag,(t) does not occur in boundary condition (1.8). Therefore, we
cannot apply Theorem 2 and the way of controlling a free boundary is different than for
o > 0. In this case we prove the following differential inequality

.
(3.7) d—f +a®<0 fort <T,
where T is the time of local existence; ¢; > 0 is a constant.
In the case of a compressible heat-conducting fluid, o = $(t) is a function equivalent
to
i i 2 i
(3:8) o(t) = D 001X, @0 + 10:9 Oy, @) + 18i2s 011X, )
1€ENy
where N; is a subset of NU {0}, and X;(£2:), ¢ € Ny, is a certain function space, usually
of the Sobolev type; 8, = 0 — 0., po = p — pe; (v,0,p) is the local solution of problem
(1.1)-(1.9), (1.10’); 0 and p. are the constants defined in Definition 2. Moreover,
(3.9) o(t) = Y (10103, + 10705 D13, 0) + D 1050 0o (D7, (),
JEN2 kEN3
where Y;(€%), j € N and Zi, (%), k € N3 (N2, N3 are subsets of NU {0}) are spaces
such that

(3.10) D > cop.

In the compressible barotropic case we omit in formulas (3.8)-(3.9) the terms
> ien, 10105 (1)] ,ZXi(Qt) and >y, ||8£9(,(t)||§/j(ﬂt), respectively.

Finally, for an incompressible fluid % is equivalent to ¢(t) = >,y \|8§v(t)||§(i(gt) and
(1) =D jen, H&gv(t)H%,j(Qt), where v is the local solution of (1.19)—(1.20), (1.4)—(1.5),
(1.8)-(1.9).

Thus, we have

(3.11) c3p(t) <P(t) <cap(t)  fort <T,

where in the general heat-conducting case constants c3, ¢4 > 0 depend on py, po, 61, 62,
Ly Vy 32, Coyy Dy || fg vdt'||ws(q,) and p1, p2, bh, 02 are positive constants such that

(3.12) p1 < p(x,t) < pa, 61 <6O(x,t) <O for x € Qy, t €10, 7).
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The constant ¢; in (3.7) depends on the same quantities as c3 and ¢4. It depends also
on ||StHW5/2 and the constants from the imbedding lemmas and the Korn inequalities
which depend on O, t <T.

Inequalities (3.7), (3.10), (3.11) imply

(3.13) (flf +ep <0 fort <T.

Hence

(3.14) ?(t) < p(0)e ! fort <T

and

(3.15) o(t) < %@(0)675575 fort <T.
Moreover

(3.16) B(t) + c1 /Ot o(t")dt' <p(0)  fort <T.

In the incompressible case it suffices to take Ny = {0}, N2 = {0} and Xo(Q:) =
La(), Yo () = W3 () (see [Sol2]). Then B(t) = ¢(t) = ||v(t)||iz(9t) and inequalities
(3.7) and (3.13) follow from the energy conservation law and the Korn inequality. However,
the solvability of problem (1.19)-(1.20), (1.4)-(1.5), (1.8)—(1.9) is proved in [Sol2| in
spaces of more regular functions v than Lo ().

In the compressible case, the functions ¢(t) and ®(¢) with the lowest possible regu-
larity of functions v, 6,, p, are defined as follows

2

(317) o) = S 1050023+ ) + 19806 (1320 + 10500 ()12 0)
i=0
2 . .

(318) @) = S (I0/o(0) 50y + 1000 (D35 ) + 00 Dl v3c
j=0

10600 (8) 3 0y + 19290 (1) 3 -

In this case inequality (3.7) follows from (2.12) if we assume that ¢(0) < & with &
sufficiently small. In fact, then by (2.14) we get

(3.19) sup (1) < Cy(T)e
0<t<T

¢
/ udt’
0 Wi

< cgCh (T)T1/2€1/2 < cg€ for t <T,

and by (2.13)

t
(3.20) H / vdt!
0

if ¢ is sufficiently small.
Therefore, for ¢, € sufficiently small estimates (3.19)—(3.20) and inequality (2.12) yield
(3.7).

< ¢
W3 (%)

< T |Jull o,
Q)
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¢
/ udt’
0

both the volume and the shape of ; (¢t < T') do not change much if £ is sufficiently small.

Next, assuming that the initial conditions pg, 8y and the equilibrium solution (pe, 6.)
satisfy inequalities (3.12) we prove by using estimate (2.13) that inequalities (3.12) are
satisfied for x € Q, t € [0, T).

Therefore, estimate (3.21) and inequalities (3.12) for = € Q;, t € [0, 7] imply that if
we assume (3.11) for ¢(0) and $(0) with c3, ¢4 depending on p1, po, 61, 02, u, v, ¢y, P,
», we obtain this estimate satisfied by ¢(t) and $(t) for ¢ < T with the same constants
C3, C4.

Moreover, since by (3.20)

(3.21) |z —¢| = ‘ /t udt’
0

<y < c7Cy (T)Tl/zsl/2 <cgg fort<T,

w(Q)

Hence, by (3.14) we get (3.15). As a consequence, we have

(3.22) o(t) < “, for t <T.
cs

Therefore, for sufficiently small ¢ the solution can be extended to the interval [T, 2T].
This solution satisfies in [T, 2T the inequality

(3.23) lur P, + 1970lPip e, + 000, < C1(T)(T).

where (ur, 19Tg, 7o) denotes (v, 0,5, py) written in the Lagrangian coordinates & € Qr,
ie. gT_§+f0 w(&, t)dt'.
Moreover, using (3.16), (3.22), (3.23), (3.11) we get for ¢t < 2T

t T t
(3.24) H / udt’ < H / udt’ +H / udt’
0 W3 () 0 W3(Q) T w3 (Q)

T 1/2
< T2 [( / @(t')dt’) + |uT||AT,QT]
0

< cses*TV2e2[1 4 (C1(T) Je3)/?) < 7
and

(3.25) o — | = ‘ /Ot wdt! /Ot udt’

< 070801/2T1/251/2[1 +(C1(T) /e3)Y?) < 7

<er

w3(Q)

if € is sufficiently small.
In view of (3.25) the volume and the shape of Q; changes in [0, 27] no more than they

do in [0, 7).
¢
< cg / udt
W3 () 0

Inequality (3.24) implies
< cgE for t < 2T.
Using (3.23) and (3.15) we also obtain

t
(3.26) H / vdt’
0

w3 (Q)

(3.27) sup ©(t) <max( sup @(t), sup @(t))legmax (—E Cy(T )C4 )
0<t<2T 0<t<T T<t<2T C3 C3
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Now, since the solution exists in the interval [0, 27] and in view of (3.25) we can derive
inequality (2.12) for ¢t < 2T. Therefore, estimates (3.26)—(3.27) with sufficiently small
and ¢ imply differential inequality (3.7) for t < 27.

Hence (3.13)—(3.15) also hold for ¢ < 27" and

t
o(t) + cl/ o (t")dt' < p(T) for T <t < 2T.
T

This way the solution can be extended to the interval [2T", 3T].
Now, assume that there exists a solution in [0,!T], [ > 3, satisfying;:
il e, + 1570 g, + 0570 lB g, < CLUT)QGT),  §=0,...,1-1,
?(t) < p(0)e fort < (I—1)T,
ot) < Lot fort < (I 1T,
cs

t
a(t)m/ B()dt' < P(T)  for JT<t<(j+1T,j=0,....1-2,
§T

where u;r, V15, NjTo denote v, 0,, p, written in the Lagrangian coordinates ;7 € ;7.

Assume also that the volume and the shape of Q; change in [0, (I —1)T] no more than
they do in [0, 7] and that

¢
H / udt’
0

with sufficiently small €.

<g fort<(-1)T
W3 (@)

Hence, assuming that € is sufficiently small we obtain for 0 < ¢ < [T

t t
|z —&| = ‘/ u(&, t)dt / udt!
0 0 W3 (Q)

=2 G+1)T t
<cy ( Z / udt’ + H / udt’
i—o 1 /4T W3(Q) (-nr

J W;?(Q))
G+1T

-2 1/2

< C7CST1/2 {Z (/ c1<1>(t/>dt’) + |u(z1)T||AT,Q(H)T}
j=0 N/IiT
1—2 c 1/2

< et T Eun) 2+ am(Le) |
j=0

Cc3
]:

<ec7

1/2
< cresT O+ e e T () (2e)
3

1 () /?
< C7C80411/2T1/2€1/2 {(1 Ep—R Y + < 16(3 )) ] < ¢rE,

if € is sufficiently small in dependence on €.

Thus, the volume and the shape of € change in [0,!{7] no more than they do in
[0, (I — 1)T]. These changes of the volume and the shape are as small as we want if we
assume that £ is sufficiently small.
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Therefore, we can control the free boundary of €2; in the case of 0 = 0. At the same
time, this way, we can extend the solution to a global one.

The difficulties connected with controlling the free boundary in the surface waves

problems without surface tension are discussed by Beale [B] for incompressible fluids and
Strohmer [St] for compressible ones.
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