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Abstra
t. In this survey we report on existen
e results for some free boundary problems forequations des
ribing motions of both in
ompressible and 
ompressible vis
ous �uids. We alsopresent ways of 
ontrolling free boundaries in two 
ases: a) when the free boundary is governedby surfa
e tension, b) when surfa
e tension does not o

ur.1. Introdu
tion. We present some results 
on
erning free boundary problems for non-stationary Navier-Stokes equations. We are interested in a free boundary problem forequations des
ribing the motion of a vis
ous general (heat-
ondu
ting) �uid whi
h 
anbe formulated as follows: �nd a domain Ωt ⊂ R

3 with a boundary St = S1 ∪ S2t (S1 isa �xed part of St independent of time t; S2t is a free part of St) as well as a velo
ityve
tor �eld v = v(x, t) (v = (v1, v2, v3)), density ρ = ρ(x, t) and temperature θ = θ(x, t)satisfying for x ∈ Ωt, t ∈ (0, T ), T > 0, the 
ompressible Navier-Stokes system with initial
onditions: Ωt|t=0 = Ω, v|t=0 = v0, ρ|t=0 = ρ0, θ|t=0 = θ0 in Ω, the Diri
hlet boundary
ondition for v and θ on S1× (0, T ) and the Neumann type 
ondition for the stress tensorand for θ on ⋃
t∈(0,T ) S2t × {t}.Therefore, the equations under 
onsideration are as follows (see [LanLif℄, [Ser℄):

ρ[vt + (v · ∇)v] − div T(v, p) = ρf̃ in Ω̃T ,(1.1)

ρt + div(ρv) = 0 in Ω̃T ,(1.2)

ρcv(θt + v · ∇θ) − div(κ∇θ) + θpθ div v(1.3)

−
µ

2

3∑

i,j=1

(vixj
+ vjxi

)2 − (ν − µ)(div v)2 = ρr, in Ω̃T ,

2000 Mathemati
s Subje
t Classi�
ation: 35Q30, 35R35, 76D03, 76D05, 76N10.Key words and phrases: Navier-Stokes equations, free boundary, in
ompressible vis
ous �uid,
ompressible vis
ous �uid, lo
al existen
e, global existen
e, stability.The paper is in �nal form and no version of it will be published elsewhere.
[279]



280 E. ZADRZYŃSKAwhere T > 0, Ω̃T ≡
⋃

t∈(0,T ) Ωt × {t}, Ωt ⊂ R
3 is an unknown domain at time t withboundary St = S1 ∪ S2t; T = T(v, p) is the stress tensor given by

T(v, p) = {−pδij + µ(vixj
+ vjxi

) + (ν − µ) div vδij}i,j=1,2,3.Moreover, f̃ = f̃(x, t) is the for
e per unit mass a
ting on the �uid; r = r(x, t) denotesthe heat sour
es per unit mass; p = p(ρ, θ) is the pressure, κ = κ(ρ, θ) the 
oe�
ientof heat 
ondu
tivity, cv = cv(ρ, θ) the spe
i�
 heat at 
onstant volume; ν = ν(ρ, θ) and
µ = µ(ρ, θ) are the vis
osity 
oe�
ients. The fun
tions κ, cv, ν, µ are positive and
ν > (1/3)µ.We 
omplete equations (1.1)�(1.3) with the following initial 
onditions:

Ωt|t=0 = Ω, St|t=0 = S,(1.4)

v|t=0 = v0 in Ω,(1.5)

ρ|t=0 = ρ0 in Ω,(1.6)

θ|t=0 = θ0 in Ω.(1.7)We also 
omplete system (1.1)�(1.3) with boundary 
onditions whi
h depend on thegeometry of Ωt. We 
onsider two kinds of free boundary problems.Drop problem. This is the problem des
ribing the motion of an isolated mass of a�uid bounded by a free boundary. In this 
ase Ωt ⊂ R
3 is a bounded domain with theboundary St = S2t (S1 = ∅).For the drop problem the following boundary 
onditions are assumed:

Tn − σHn = −p0n on S̃T ≡
⋃

t∈(0,T )

St × {t},(1.8)

v · n = −
φt

|∇φ|
on S̃T ,(1.9)

κ
∂θ

∂n
= θ on S̃T(1.10)or

(1.10′) κ
∂θ

∂n
= κa(θa − θ) on S̃T ,where n is the unit outward ve
tor normal to St; σ is a 
onstant 
oe�
ient of surfa
etension; p0 is the 
onstant external pressure; θ = θ(x, t) the heat �ow per unit surfa
e;

κa the 
onstant 
oe�
ient of outer heat 
ondu
tivity; θa the 
onstant atmospheri
 tem-perature; φ(x, t) = 0 des
ribes the boundary St; H denotes the double mean 
urvatureof St expressed by
Hn = ∆St

(t)x,where ∆St
(t) is the Lapla
e-Beltrami operator on St.We 
an distinguish the two 
ases σ > 0 and σ = 0 in the boundary 
ondition (1.8). If

σ > 0 we say that the free boundary is governed by surfa
e tension.Condition (1.9) is 
alled the kinemati
 boundary 
ondition. It means that �uid par-ti
les do not 
ross the free boundary.



FREE BOUNDARY PROBLEMS 281In drop problems it is usually assumed that
(1.11) f̃ = f + k∇U,where f = f(x, t) denotes the external for
e �eld per unit mass; k is the 
onstant 
oe�-
ient of gravitation, and U(x, t) =

∫
Ωt

ρ(y,t)
|x−y|dy is the self-gravitational potential.In the 
ase of k > 0 the se
ond term on the right-hand side of (1.11) is 
alled theself-gravitational for
e.Surfa
e waves problem. This is the problem des
ribing the motion of a �uid o

upyinga semi�nite domain in R

3 bounded above by a free surfa
e S2t ≡ {x = (x′, x3) ∈ R
3 :

x′ ∈ R
2, x3 = F (x′, t)}, and below by a �xed part of boundary St, that is, by S1 ≡ {x ∈

R
3 : x′ ∈ R

2, x3 = −b(x′)}, where F is an unknown fun
tion and b is a given fun
tion.Therefore, initial 
ondition (1.4) takes the form
(1.12) F |t=0 = F0(x

′), x′ ∈ R
2.For the surfa
e waves problem the following boundary 
onditions are assumed:

Tn − σHn = −p0n on S̃T
2 ≡

⋃
t∈(0,T ) S2t × {t},(1.13)

v · n = −
Ft√

1 + |∇′

xF |
2

on S̃T
2 ,(1.14)

κ
∂θ

∂n
= θ on S̃T

2 ,(1.15)or
κ

∂θ

∂n
= κa(θa − θ) on S̃T

2 , ∗ (1.15′)

v = 0 on S1 × (0, T ),(1.16)

θ = θb on S1 × (0, T ),(1.17)where n is the unit outward ve
tor normal to S2t; in (1.13) σ > 0 or σ = 0; θb is the
onstant temperature at S1, ∇′
x = ∇x′ ; (1.14) is the kinemati
 
ondition in this 
ase.Moreover, in surfa
e waves problems it is usually assumed that

(1.18) f̃ = f − ge3,where f = f(x, t) is an external for
e �eld per unit mass, g denotes the a

elaration ofgravity and e3 =t (0, 0, 1).Thus, the se
ond term on the right-hand side of (1.18) is the gravity.We 
an also 
onsider some spe
ial 
ases of system (1.1)�(1.3).1 o Barotropi
 
ompressible �uid. This is a �uid of the state equation: p = p(ρ). Thefree boundary problem for su
h a �uid is des
ribed by equations (1.1)�(1.2) (where thevis
osity 
oe�
ients ν and µ are only fun
tions of ρ) with 
onditions (1.4)�(1.6), (1.8)�(1.9) or (1.5)�(1.6), (1.12)�(1.14), (1.16).2oIn
ompressible �uid. Assuming that ρ = const (let for simpli
ity ρ = 1) equations(1.1)�(1.2) take the form of the 
lassi
al Navier-Stokes equations
vt + (v · ∇)v − ν∆v + ∇p = f̃ in Ω̃T ,(1.19)
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div v = 0 in Ω̃T ,(1.20)where p = p(x, t).The drop problem for an in
ompressible �uid takes the form of system (1.19)�(1.20)with initial 
onditions (1.4)�(1.5) and boundary 
onditions (1.8)�(1.9), where
T(v, p) = {Tij}i,j=1,2,3 = {−pδij + 2ν(vixj

+ vjxi
)}i,j=1,2,3.The in
ompressible surfa
e waves problem 
onsists of equations (1.19)�(1.20) togetherwith initial 
onditions (1.5), (1.12) and with boundary 
onditions (1.13)�(1.14), (1.16).2. Existen
e results. Most of existen
e results are obtained after transforming a freeboundary problem to a problem in a �xed domain. The most frequently used transforma-tion 
onne
ts the Eulerian 
oordinates x with the Lagrangian 
oordinates ξ, whi
h arede�ned as initial data for the following Cau
hy problem:

dx

dt
= v(x, t), x(0) = ξ, ξ = (ξ1, ξ2, ξ3).Hen
e, the transformation 
onne
ting x and ξ 
oordinates has the form:

(2.1) x = ξ +

∫ t

0

u(ξ, t′)dt′ ≡ Xu(ξ, t),where u(ξ, t) = v(Xu(ξ, t), t).In 
oordinates ξ the above problems have the forms of problems with the unknownfun
tions u, η(ξ, t) = ρ(Xu(ξ, t), t), ϑ(ξ, t) = θ(Xu(ξ, t), t) (u and q(ξ, t) = p(Xu(ξ, t), t)in the in
ompressible 
ase) in a �xed domain ΩT ≡ Ω × (0, T ). The drop problem forequations (1.1)�(1.3) in the Lagrangian 
oordinates takes the form:
ηut − divu Tu(u, p) = η(g + k∇uUu) in ΩT ,(2.2)

ηt + η∇u · u = 0 in ΩT ,(2.3)

ηcv(η, ϑ)ϑt −∇u · (κ∇uϑ) = −ϑpϑ(η, ϑ)∇u · u(2.4)

+
µ

2

3∑

i,j=1

(ξxi
· ∂ξuj + ξxj

· ∂ξui)
2 − (ν − µ)(∇u · u)2 = ηh in ΩT ,

Tu(u, p)nu − σ∆u(t)Xu = −q0nu on ST ,(2.5)

κ(η, ϑ)nu · ∇uϑ = ϑ on ST(2.6)or
κ(η, ϑ)nu · ∇uϑ = κa(ϑa − ϑ) on ST(2.6′)

u|t=0 = v0, η|t=0 = ρ0, ϑ|t=0 = θ0, in Ω,(2.7)where h(ξ, t) = r(Xu(ξ, t), t), ϑ(ξ, t) = θ(Xu(ξ, t), t),
Tu(u, p) = {−p(η, ϑ)δij + µ(η, ϑ)(∂xi

ξk∂ξk
uj

+ ∂xj
ξk∂ξk

ui) + (ν(η, ϑ) − µ(η, ϑ))δij∇u · u}i,j=1,2,3,

I = {δij}i,j=1,2,3, divu Tu(u, p) = {∂xj
ξk∂ξk

Tuij(u, p)}i=1,2,3; moreover ∇u = ξix∂ξi
=

(ξixj
∂ξi

)j=1,2,3, ξixj
are the elements of the matrix ξx whi
h is inverse to xξ = I +
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∫ t

0
uξ(ξ, t

′)dt′ = {δij +
∫ t

0
uiξj

(ξ, t′)dt′}i,j=1,2,3 and the summation 
onvention over re-peated indi
es is assumed.The surfa
e waves problem 
an be transformed analogously.The solvability results for the above free boundary problems are obtained in di�erentfun
tion spa
es. However, sin
e the transformation (2.1) is involved in the nonlinearterms, we have always to impose su
h a regularity of solutions that
(2.8)

∥∥∥∥
∫ T

0

uξdt′
∥∥∥∥

L∞(Ω)

≤ T 1/2

( ∫ T

0

‖uξ‖
2
L∞(Ω)dt′

)1/2

< ∞.Therefore, for the presented free boundary problems we 
annot expe
t the existen
e ofsolutions as weak as for initial-boundary value problems for the Navier-Stokes system in�xed domains. For this reason we 
an obtain for the above problems only lo
al existen
etheorems or global existen
e theorems for initial data su�
iently 
lose to equilibriumstates.Lo
al existen
e and uniqueness. The lo
al existen
e and uniqueness theorems forboth the drop and surfa
e waves problems have been proved in all 
ases, i.e. for in-
ompressible, barotropi
 
ompressible and general 
ompressible motions. The requiredregularity of fun
tion spa
es in whi
h we 
an examine the solvability of the above freeboundary problems is implied by 
ondition (2.8).Below, we present the lo
al solvability and uniqueness results in spa
es of fun
tionswith the lowest regularity. First, we introdu
e the notation:
AiT,ΩiT

≡ BiT,ΩiT
∩ L2(iT, (i + 1)T ; W 3

2 (ΩiT )),(2.9)

BiT,ΩiT
≡ {w ∈ C([iT, (i + 1)T ]; W 2

2 (ΩiT )) : wt ∈ C([iT, (i + 1)T ]; W 1
2 (ΩiT ))(2.10)

∩ L2(iT, (i + 1)T ; W 2
2 (ΩiT )), wtt ∈ C([iT, (i + 1)T ]; L2(ΩiT ))

∩ L2(iT, (i + 1)T ; W 1
2 (ΩiT ))} for i ∈ N ∪ {0}and A0T,Ω0T

≡ AT,Ω, B0T,Ω0T
≡ B0T,Ω.Moreover, we denote by W l,m

r (ΩT ) , where l, m ∈ R+∪{0}, 1 ≤ r < ∞, the anisotropi
Sobolev-Slobodetski�� spa
e with the following norm
‖u‖r

W l,m
r (ΩT )

=

∫

ΩT

|u(x, t)|rdxdt +
∑

0<|γ|≤[l]

∫

ΩT

|Dγ
xu(x, t)|rdxdt(2.11)

+
∑

0<i≤[m]

∫

ΩT

|Di
tu(x, t)|rdxdt

+
∑

|γ|=[l]

∫ T

0

dt

∫

Ω

∫

Ω

|Dγ
xu(x, t) − Dγ

x′u(x′, t)|r

|x − x′|n+r(l−[l])
dxdx′

+

∫

Ω

dx

∫ T

0

∫ T

0

|D
[m]
t u(x, t) − D

[m]
t′ u(x, t′)|r

|t − t′|1+r(m−[m])
dtdt′.In (2.11) Di

t = ∂i
t, Dγ

x = ∂γ1
x1

. . . ∂γn
xn

and γ = (γ1, . . . , γn). In the 
ase of integer l thefourth term on the right-hand side of (2.4) is omitted and in the 
ase of integer m the�fth term is omitted.



284 E. ZADRZYŃSKAIn our presentation of lo
al existen
e results we assume for simpli
ity that f = 0,
r = 0, θ = 0 and we omit 
ompatibility 
onditions. We 
an distinguish the following
ases:1 o The in
ompressible 
ase with σ = 0 (drop problem with k = 0 [Sol2℄, drop problemwith k > 0 [MZaj℄; surfa
e waves problem [A℄).Regularity of data: r > 3, v0 ∈ W

2−2/r
r (Ω), S ∈ W

2−1/r
r .Regularity of solution: u ∈ W 2,1

r (ΩT ), q ∈ W 1,0
r (ΩT ), q ∈ W

1−1/r,1/2−1/(2r)
2 (ST ) inthe 
ase of the drop problem, and q ∈ W

1−1/r,1/2−1/(2r)
2 (S2 × (0, T ))in the 
ase of thesurfa
e waves problem (where S2 ≡ S2t|t=0), for some T > 0.2 o The in
ompressible 
ase with σ > 0 (drop problem with k = 0 [Sol1℄, drop problemwith k > 0 [Sol4℄; surfa
e waves problem [T℄).Regularity of data: α ∈ (1/2, 1), v0 ∈ W 1+α

2 (Ω), S ∈ W
5/2+α
2 for the drop problem,and S1 ∈ W

3/2+α
2 , S2 ∈ W

5/2+α
2 for the surfa
e waves problem.Regularity of solution: u ∈ W

2+α,1+α/2
2 (ΩT ), q ∈ W

α,α/2
2 (ΩT ), ∇q ∈ W

α,α/2
2 (ΩT ) and

q ∈ W 1/2+α,1/4+α/2(S × (0, T )) for the drop problem, q ∈ W 1/2+α,1/4+α/2(S2 × (0, T ))in the 
ase of the surfa
e waves problem, for some T > 0.3 o The 
ompressible barotropi
 
ase with σ > 0 (drop problem [SolT1℄).Regularity of data: α ∈ (1/2, 1), v0 ∈ W 1+α
2 (Ω), ρ0 ∈ W 1+α

2 (Ω), S ∈ W
5/2+α
2 ,

p ∈ C3(R+); µ, ν are 
onstants.Regularity of solution: u ∈ W
2+α,1+α/2
2 (ΩT ), η ∈ W

1+α,1/2+α/2
2 (ΩT ) for some T > 0.4 o The 
ompressible heat-
ondu
ting 
ase with σ > 0 (drop problem with k=0 [Z1℄).Regularity of data: α ∈ [3/4, 1), v0 ∈ W 1+α

2 (Ω), ρ0 ∈ W 1+α
2 (Ω), θ0 ∈ W 1+α

2 (Ω),
S ∈ W

5/2+α
2 , p ∈ C3(R2), cv ∈ C2(R2), ν ∈ C3(R2), µ ∈ C3(R2), κ ∈ C3(R2).Regularity of solution: u ∈ W

2+α,1+α/2
2 (ΩT ), ϑ ∈ W

2+α,1+α/2
2 (ΩT ), and η ∈

W
1+α,1/2+α/2
2 (ΩT ) ∩ C([0, T ]; W 1+α

2 (Ω)) for some T > 0.5 o The 
ompressible barotropi
 
ase with σ = 0 (drop problem with k=0 [ZZaj1, ZZaj2℄).Regularity of data: S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), ut(0) ∈ W 1

2 (Ω), utt(0) ∈

L2(Ω), (where ut(0), utt(0) are 
al
ulated from equation (2.2)), p ∈ C3(R2); µ, ν are
onstants.Regularity of solution: u ∈ A0T,Ω, η ∈ B0T,Ω for some T > 0.6 o The 
ompressible barotropi
 
ase with σ = 0 (drop problem with k > 0 [StZaj℄).Regularity of data: S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), p ∈ C3(R+); µ, ν are
onstants.Regularity of solution: u ∈ L∞(0, T ; W 1

2 (Ω))∩L2(0, T ; W 3
2 (Ω)), ut ∈ L∞(0, T ; L2(Ω))

∩ L2(0, T ; W 1
2 (Ω)), η ∈ L∞(0, T ; W 1

2 (Ω)), ηt ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), ηtt ∈

L2(Ω
T ), for some T > 0.7 o The 
ompressible heat-
ondu
ting 
ase with σ = 0 (drop problem [ZZaj1℄).Regularity of data: S ∈ W

5/2
2 , v0 ∈ W 2

2 (Ω), θ0 ∈ W 2
2 (Ω), ρ0 ∈ W 2

2 (Ω), ut(0) ∈

W 1
2 (Ω), ϑt(0) ∈ W 1

2 (Ω), utt(0) ∈ L2(Ω), ϑtt(0) ∈ L2(Ω) (where ut(0), utt(0), ϑt(0),

ϑtt(0) are 
al
ulated from equations (2.2) and (2.4)), p ∈ C3(R2), cv ∈ C2(R2); µ, ν, κare 
onstants.



FREE BOUNDARY PROBLEMS 285Regularity of solution: u ∈ A0T,Ω, ϑ ∈ A0T,Ω, η ∈ B0T,Ω for some T > 0. The fullreview of lo
al existen
e results 
an be found in [Z2℄.Global existen
e and stability. The global existen
e theorems for the three-dimen-sional free boundary problems 
an be proved for initial data 
lose to equilibrium states.For in
ompressible motions it means that the initial velo
ity v0 is assumed to be small.Moreover, for problems with a free boundary governed by surfa
e tension it is assumedthat a boundary of an initial domain is 
lose to a sphere of radius R0 =
(

3
4π |Ω|

)1/3 inthe 
ase of drop problem or to a plane in the 
ase of surfa
e waves problem. Under theabove assumptions it is proved that there exists a global solution whi
h is 
lose to theequilibrium state. It means that the velo
ity v of the �uid remains small, the pressure is
lose to a 
ertain 
onstant and the free boundary St remains 
lose to the same sphere orto the same plane as the initial boundary S for all t > 0.Solonnikov [Sol2℄ proved that in the 
ase of the in
ompressible drop problem with
σ = 0 and k = 0, the lo
al solution (see 1o above) 
an be extended to a global one if v0is su�
iently small in W

2−2/r
r (Ω). For in
ompressible surfa
e waves problem with σ = 0the global existen
e result with a small initial velo
ity has been obtained by Sylvester[Syl℄ in spa
es of more regular fun
tions.In the in
ompressible 
ase with σ > 0 the lo
al solutions des
ribed in 2 o above 
anbe extended to global ones if v0 ∈ W 1+α

2 (Ω) and S ∈ W
5/2+α
2 are su�
iently 
lose to anequilibrium state (see [Sol1℄, [Sol3℄, [TTan℄).Similar results 
an be proved for 
ompressible problems. In parti
ular, an equilibriumstate in the 
ompressible heat-
ondu
ting 
ase with σ > 0 and k = 0 
an be de�ned asfollows.Definition 1. Let f = 0, r = θ = 0. By an equilibrium state we mean a solution

(v, θ, ρ, Ωt) of problem (1.1)�(1.10) su
h that v = 0, θ = θe, ρ = ρe, Ωt = Ωe for t ≥ 0,where ρe = (M/(4/3)πR3
e), M =

∫
Ω

ρ0(ξ)dξ, Ωe is a ball of radius Re; Re > 0 and θe > 0satisfy the equation
p

(
M

(4/3)πR2
e

, θe

)
= p0 +

2σ

Re
.In this 
ase if we assume that α ∈ (3/4, 1), v0 ∈ W 1+α
2 (Ω) is su�
iently small,

ρ0 ∈ W 1+α
2 (Ω), θ0 ∈ W 1+α

2 (Ω) are su�
iently 
lose to ρe and θe, respe
tively, and thefun
tion R̃ des
ribing S (see Se
tion 3) is su�
iently 
lose to Re, then we 
an extend thelo
al solution (des
ribed in 4 o above) to a global one (see [Z1℄, [Z2℄).The global solvability of the 
ompressible barotropi
 drop problem with σ > 0 isproved in [SolT2℄ in the fun
tion spa
es determined by the lo
al solution de�ned in3 o and in [Zaj℄ in spa
es of more regular fun
tions. A global solvability result for the
ompressible barotropi
 surfa
e waves problem with σ > 0 
an be found in [JinPad℄.Moreover, Tani and Tanaka [TanT℄ proved the global existen
e theorem for the 
om-pressible heat-
ondu
ting surfa
e waves problem with σ > 0 in a 
lass of fun
tions of agreater regularity than the regularity des
ribed in 4o for the drop problem.Now, 
onsider the 
ase of σ = 0 and k = 0. For the 
ompressible barotropi
 dropproblem by an equilibrium state we mean a 
onstant solution (0, ρe, Ωe) of the problem



286 E. ZADRZYŃSKAwith f = 0 su
h that p(ρe) = p0 and |Ωe| = M/ρe. In [ZZaj2℄ we prove that if initialdata are 
lose to the equilibrium solution then the lo
al solution of the problem (see 5oabove) 
an be extended to a global one.Introdu
e the notation:
pσ = p − p0, θσ = θ − θe, ρσ = ρ − ρe,

ϕ(t) = |v(t)|22,0,Ωt
+ |θσ(t)|22,0,Ωt

+ |ρσ(t)|22,0,Ωt
,

Φ(t) = |v(t)|23,1,Ωt
+ |θσ(t)|23,1,Ωt

+ ‖ρσ(t)‖2
W 2

2 (Ωt)
+

+ ‖ρσt(t)‖
2
W 2

2 (Ωt)
+ ‖ρσtt(t)‖

2
W 1

2 (Ωt)
,

M(t) =

{
(v, θσ, ρσ) : sup

0≤t′≤t
ϕ(t′) +

∫ t

0

Φ(t′)dt′ < ∞

}
,where |f(t)|l,k,Ωt

≡
∑

i≤l−k ‖∂
i
tf(t)‖W l−i

2 (Ωt)
, l ∈ N ∪ {0}.From [ZZaj4℄ it follows that the lo
al solution of problem (1.1)�(1.10) des
ribed in7o above 
an be extended to a global one if initial data are su�
iently 
lose to theequlibrium state, i.e. ϕ(0) ≤ ε with ε su�
iently small and if the following di�erentialinequality holds:

(2.12)
dϕ

dt
+ c1Φ ≤ c2

[
ϕ(1 + ϕ2) +

∥∥∥∥
∫ t

0

vdt′
∥∥∥∥

2

W 3
2 (Ωt)

]
Φ for t ≤ T ,where c1, c2 are positive 
onstants depending on ρ1, ρ2, θ1, θ2, ν, µ, κ, cv, p, ‖S‖

W
5/2
2and the 
onstants from the imbedding theorems and the Korn inequalities (being alsononde
reasing 
ontinuous fun
tions of ‖ ∫ t

0
vdt′‖W 3

2 (Ωt)). Moreover, ϕ in (2.12) is a 
ertainfun
tion satisfying the estimate
c3ϕ(t) ≤ ϕ(t) ≤ c4ϕ(t) for t ≤ T ,where c3, c4 are positive 
onstants depending on ρ1, ρ2, θ1, θ2, µ, κ, cv, p, ‖S‖

W
5/2
2

andthe 
onstants from the imbedding theorems.In [ZZaj3℄ it is proved that inequality (2.12) holds for problem (1.1)�(1.9), (1.10′). Inthis 
ase we admit the following de�nition of an equilibrium state.Definition 2. An equilibrium state is a solution (v, θ, ρ, Ωt) of (1.1)�(1.9), (1.10′) su
hthat v = 0, θ = θe, ρ = ρe, Ωt = Ωe for t ≥ 0, where θe = θa, ρe is a positive 
onstantsatisfying the state equation
p(ρe, θe) = p0,

Ωe is a domain of volume |Ωe| = M/ρe and M =
∫
Ω

ρ0(ξ)dξ.Using inequality (2.12) we 
an prove the following global existen
e theorem.Theorem 1. Let f = 0, r = 0, S ∈ W
5/2
2 , v0 ∈ W 2

2 (Ω), ρ0 ∈ W 2
2 (Ω), θ0 ∈ W 2

2 (Ω),

ut(0) ∈ W 1
2 (Ω), ϑt(0) ∈ W 1

2 (Ω), utt(0) ∈ L2(Ω), ϑtt(0) ∈ L2(Ω) (where ut(0), utt(0),

ϑt(0), ϑtt(0) are 
al
ulated from equations (2.2) and (2.4)). Let ν, µ, κ be positive 
on-stants and ν > (1/3)µ; p ∈ C3(R2); pρ > 0, pθ > 0 for ρ, θ > 0; cv ∈ C2(R2) and assume
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ompatibility 
onditions are satis�ed:
∂i

t{[Du(u) − (p(η, ϑ) − p0)]nu}|t=0 = 0, i = 0, 1, on S,

∂j
t [κnu · ∇uϑ − κa(θa − ϑ)]|t=0 = 0, i = 0, 1, on S.Moreover, let the following assumptions be satis�ed: ϕ(0) ≤ ε; l > 0 is a 
onstant su
hthat ρe − l > 0, θ0 − l > 0 and

ρ1 < ρ0 < ρ2, θ1 < θ0 < θ2,where ρ1 = ρe − l, ρ2 = ρ + l, θ1 = θa − l, θ2 = θe + l;∫

Ω

ρ0v0 · (a + b × ξ)dξ = 0,where a and b are arbitrary 
onstant ve
tors. Then for su�
iently small ε there existsa unique global solution of (1.1)�(1.9), (1.10′) su
h that (v, θσ, ρσ) ∈ M(t) for t ∈ R+,
St ∈ W

5/2
2 for t ∈ R+ and

ϕ(t) ≤ cε fort ∈ R+,where c > 0 is a 
onstant depending on Ω, ρ1, ρ2, θ1, θ2, p, cv, ν, µ, κ.Apart from inequality (2.12) we use in the proof of Theorem 1 the following estimatewhi
h holds for the lo
al solution of (2.2)�(2.5), (2.6′), (2.7):
(2.13) ‖u‖2

A0T,Ω
+ ‖ϑσ‖

2
A0T,Ω

+ ‖ησ‖
2
B0T,Ω

≤ C1(T )ϕ(0),where T is the time of lo
al existen
e; A0T,Ω, B0T,Ω are given by (2.9)�(2.10), and C1 isan in
reasing fun
tion of T . Inequality (2.13) rewritten in the Eulerian 
oordinates yieldsfor t ≤ T

(2.14) sup
0≤t′≤t

ϕ(t′) +

∫ t

0

Φ(t′)dt′ ≤ C2(T )ϕ(0),where C2 is an in
reasing fun
tion of T .In the pro
ess of extending the solution step by step to all t > 0, estimate (2.14) impliesstep by step that ρ and θ remain in the intervals (ρ1, ρ2) and (θ1, θ2), respe
tively, forall t.Inequalities (2.13) and (2.14) allow to extend the solution and to 
ontrol the shape of
Ωt whi
h will be explained in the next se
tion.3. Di�eren
es in the ways of 
ontrolling the free boundary in two 
ases: σ = 0and σ > 0.1 o The 
ase of σ > 0. Consider a free boundary drop problem with k = 0 and σ > 0. Asusual in the 
ase of σ > 0 we assume:
(3.1) Ω is 
lose to a ball and S is des
ribed by the equation: |ξ| = R̃(ω), ω ∈ S1,where S1 is the unit sphere.Then from the relation (2.1) 
onne
ting Lagrangian and Eulerian 
oordinates it followsthat Ωt is also 
lose to a ball and St (t ≤ T ) is des
ribed by
(3.2) |x| = R(ω, t), ω ∈ S1,where R(ω, 0) = R̃(ω), T is the time of lo
al existen
e.



288 E. ZADRZYŃSKAThe boundary 
ondition (1.8) 
an be presented in the form
(3.3) H +

2

Re
=

1

σ
n · T(v, pσ)n on St,where in the in
ompressible 
ase Re = R0 =

(
3
4π |Ω|

)1/3, while in the 
ompressible 
ase
Re is given in the de�nition of an equilibrium solution.Using (3.2) we 
an write 
ondition (3.3) in the form
(3.4) H[R] +

2

Re
= h(ω),where H[R] is the double mean 
urvature of St expressed in spheri
al 
oordinates, i.e.

H[R] =
1

R sin ϕ2

(
∂

∂ϕ1

Rϕ1

sin ϕ2

√
R2 + |∇R|2

+
∂

∂ϕ2

sin ϕ2Rϕ2√
R2 + |∇R|2

)
−

2√
R2 + |∇R|2

.

Now, following [Sol1℄ 
over S1 by a �nite number of domains S′ having su�
ientlysmall diameters. Take a fun
tion ζ = ζ(ϕ) su
h that ζ = 1 on S′, ζ = 0 on S1 \ S′′,

S
′
⊂ S′′ and 0 ≤ ζ ≤ 1. Next, denote R∗ = R − Re, R̃∗ = ζR∗. Then, by applying theformula

1

Re
−

1√
R2 + |∇R|2

=
(R − Re)(R + Re) + |∇R|2

Re

√
R2 + |∇R|2(Re +

√
R2 + |∇R|2

≡ A,equation (3.4) takes the form of the following ellipti
 equation:
2∑

γ,δ=1

Aγδ(ϕ)
∂2R̃∗

∂ϕγ∂ϕδ
+

2∑

γ=1

Aγ(ϕ)
∂R̃∗

∂ϕγ
= G,where

G ≡ 2
2∑

γ,δ=1

Aγδ(ϕ)
∂ζ

∂ϕγ

∂R∗

∂ϕδ
+ R∗

2∑

γ,δ=1

Aγδ(ϕ)
∂2ζ

∂ϕγ∂ϕδ
+

2∑

γ=1

Aγ(ϕ)
∂ζ

∂ϕγ
− 2Aζ + hζ.Spheri
al 
oordinates have been 
hosen so that sin ϕ1 ≥ c0 > 0. Therefore Aγδ, Aγ ,

A ∈ W
1/2+l
2 (S1), and these 
oe�
ients do not depend on Rϕϕ, ϕ = (ϕ1, ϕ2).In order to 
ontrol the free boundary in this 
ase (and as a 
onsequne
e to extend thesolution for all t) we use the regularity properties of the above ellipti
 equation. Morepre
isely, we use the following theorem.Theorem 2 (see [Sol1, Z2℄). Let R ∈ W

3/2+l
2 (S1), l ∈ (1/2, 1) be a solution of equation

(3.4) satisfying inequality
sup
S1

|R(ω, t) − Re| + sup
S1

|∇R(ω, t)| ≤ δ̂Rewith su�
iently small δ̂. If h ∈ W s
2 (S1), s ∈ [0, 1], then

(3.5) ‖R − Re‖W 2+s
2 (S1) ≤ c1‖h‖W s

2 (S1) + c2‖R − Re‖L2(S1),where c1, c2 are 
onstants and c2 
an depend on ‖R‖
W

l+3/2
2 (S1)

. Moreover, if R∈W 2+s
2 (S1)and h ∈ W 1+s

2 (S1), s ∈ (0,∞), then
(3.6) ‖R − Re‖W 3+s

2 (S1) ≤ c3‖h‖W 1+s
2 (S1) + c4‖R − Re‖L2(S1),where c3, c4 are 
onstants and c4 
an depend on ‖R‖W 2+s

2 (S1).
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e and stability theorems fordrop problems. The norm ‖R − Re‖L2(S1) is estimated in ea
h 
ase by using 
onservationlaws of: energy, momentum and mass, and in order to estimate the norms ‖h‖W s
2 (S1) or

‖h‖W 1+s
2 (S1) we need estimates of v and pσ. Su
h estimates are derived in di�erent waysin dependen
e on what motion we 
onsider. Thus, if we assume that S ∈ W 3+s

2 for some
s > 0, we obtain by Theorem 2 the same regularity of the boundary for all t > 0, i.e.
St ∈ W 3+s

2 . Moreover, for data su�
iently 
lose to an equilibrium state we 
an usuallyprove that the free boundary St remains 
lose to a ball of radius Re for all t.For surfa
e waves problems, a theorem analogous to Theorem 2 
an be proved forfun
tion F (x′, t) des
ribing a free boundary in this 
ase (see [TTan℄).2 o The 
ase of σ = 0. Now, we 
onsider a drop problem with σ = 0. Then the Lapla
e-Beltrami operator ∆St
(t) does not o

ur in boundary 
ondition (1.8). Therefore, we
annot apply Theorem 2 and the way of 
ontrolling a free boundary is di�erent than for

σ > 0. In this 
ase we prove the following di�erential inequality
(3.7)

dϕ

dt
+ c1Φ ≤ 0 for t ≤ T ,where T is the time of lo
al existen
e; c1 > 0 is a 
onstant.In the 
ase of a 
ompressible heat-
ondu
ting �uid, ϕ = ϕ(t) is a fun
tion equivalentto

(3.8) ϕ(t) =
∑

i∈N1

(‖∂i
tv(t)‖2

Xi(Ωt)
+

∥∥∂i
tθσ(t)

∥∥2

Xi(Ωt)
+ ‖∂i

tρσ(t)‖2
Xi(Ωt)

),where N1 is a subset of N ∪ {0}, and Xi(Ωt), i ∈ N1, is a 
ertain fun
tion spa
e, usuallyof the Sobolev type; θσ = θ − θe, ρσ = ρ − ρe; (v, θ, ρ) is the lo
al solution of problem(1.1)�(1.9), (1.10′); θe and ρe are the 
onstants de�ned in De�nition 2. Moreover,
(3.9) Φ(t) =

∑

j∈N2

(‖∂j
t v(t)‖2

Yj(Ωt)
+ ‖∂j

t θσ(t)‖2
Yj(Ωt)

) +
∑

k∈N3

‖∂k
t ∂j

t ρσ(t)‖2
Zk(Ωt)

,where Yj(Ωt), j ∈ N2 and Zk(Ωt), k ∈ N3 (N2, N3 are subsets of N ∪ {0}) are spa
essu
h that
(3.10) Φ ≥ c2ϕ.In the 
ompressible barotropi
 
ase we omit in formulas (3.8)�(3.9) the terms∑

i∈N1
‖∂i

tθσ(t)‖2
Xi(Ωt)

and ∑
j∈N2

‖∂j
t θσ(t)‖2

Yj(Ωt)
, respe
tively.Finally, for an in
ompressible �uid ϕ is equivalent to ϕ(t) =

∑
i∈N1

‖∂i
tv(t)‖2

Xi(Ωt)
and

Φ(t) =
∑

j∈N2
‖∂j

t v(t)‖2
Yj(Ωt)

, where v is the lo
al solution of (1.19)�(1.20), (1.4)�(1.5),(1.8)�(1.9).Thus, we have
(3.11) c3ϕ(t) ≤ ϕ(t) ≤ c4ϕ(t) for t ≤ T ,where in the general heat-
ondu
ting 
ase 
onstants c3, c4 > 0 depend on ρ1, ρ2, θ1, θ2,
µ, ν, κ, cv, p, ‖ ∫ t

0
vdt′‖W 3

2 (Ωt) and ρ1, ρ2, θ1, θ2 are positive 
onstants su
h that
(3.12) ρ1 < ρ(x, t) < ρ2, θ1 < θ(x, t) < θ2 for x ∈ Ωt, t ∈ [0, T ].



290 E. ZADRZYŃSKAThe 
onstant c1 in (3.7) depends on the same quantities as c3 and c4. It depends alsoon ‖St‖W
5/2
2

and the 
onstants from the imbedding lemmas and the Korn inequalitieswhi
h depend on Ωt, t ≤ T .Inequalities (3.7), (3.10), (3.11) imply
(3.13)

dϕ

dt
+ c5ϕ ≤ 0 for t ≤ T .Hen
e

(3.14) ϕ(t) ≤ ϕ(0)e−c5t for t ≤ Tand
(3.15) ϕ(t) ≤

c4

c3
ϕ(0)e−c5t for t ≤ T .Moreover

(3.16) ϕ(t) + c1

∫ t

0

Φ(t′)dt′ ≤ ϕ(0) for t ≤ T .In the in
ompressible 
ase it su�
es to take N1 = {0}, N2 = {0} and X0(Ωt) =

L2(Ωt), Y0(Ωt) = W 1
2 (Ωt) (see [Sol2℄). Then ϕ(t) = ϕ(t) = ‖v(t)‖2

L2(Ωt)
and inequalities(3.7) and (3.13) follow from the energy 
onservation law and the Korn inequality. However,the solvability of problem (1.19)�(1.20), (1.4)�(1.5), (1.8)�(1.9) is proved in [Sol2℄ inspa
es of more regular fun
tions v than L2(Ωt).In the 
ompressible 
ase, the fun
tions ϕ(t) and Φ(t) with the lowest possible regu-larity of fun
tions v, θσ, ρσ are de�ned as follows

ϕ(t) =
2∑

i=0

(‖∂i
tv(t)‖2

W 2−i
2 (Ωt)

+ ‖∂i
tθσ(t)‖2

W 2−i
2 (Ωt)

+ ‖∂i
tρσ(t)‖2

W 2−i
2 (Ωt)

)(3.17)

Φ(t) =
2∑

j=0

(‖∂j
t v(t)‖2

W 3−j
2 (Ωt)

+ ‖∂j
t θσ(t)‖2

W 3−j
2 (Ωt)

) + ‖ρσ(t)‖2
W 2

2 (Ωt)
(3.18)

+ ‖∂tρσ(t)‖2
W 2

2 (Ωt)
+ ‖∂2

t ρσ(t)‖2
W 1

2 (Ωt)
.In this 
ase inequality (3.7) follows from (2.12) if we assume that ϕ(0) ≤ ε with εsu�
iently small. In fa
t, then by (2.14) we get

(3.19) sup
0≤t≤T

ϕ(t) ≤ C2(T )εand by (2.13)
∥∥∥∥

∫ t

0

vdt′
∥∥∥∥

W 3
2 (Ωt)

≤ c6

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c6T
1/2 ‖u‖AT,Ω

(3.20)

≤ c6C1(T )T 1/2ε1/2 ≤ c6ε for t ≤ T ,if ε is su�
iently small.Therefore, for ε, ε su�
iently small estimates (3.19)�(3.20) and inequality (2.12) yield(3.7).
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e by (3.20)
(3.21) |x − ξ| =

∣∣∣∣
∫ t

0

udt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c7C1(T )T 1/2ε1/2 ≤ c7ε for t ≤ T ,both the volume and the shape of Ωt (t ≤ T ) do not 
hange mu
h if ε is su�
iently small.Next, assuming that the initial 
onditions ρ0, θ0 and the equilibrium solution (ρe, θe)satisfy inequalities (3.12) we prove by using estimate (2.13) that inequalities (3.12) aresatis�ed for x ∈ Ωt, t ∈ [0, T ].Therefore, estimate (3.21) and inequalities (3.12) for x ∈ Ωt, t ∈ [0, T ] imply that ifwe assume (3.11) for ϕ(0) and ϕ(0) with c3, c4 depending on ρ1, ρ2, θ1, θ2, µ, ν, cv, p,
κ, we obtain this estimate satis�ed by ϕ(t) and ϕ(t) for t ≤ T with the same 
onstants
c3, c4.Hen
e, by (3.14) we get (3.15). As a 
onsequen
e, we have
(3.22) ϕ(t) ≤

c4

c3
ε for t ≤ T .Therefore, for su�
iently small ε the solution 
an be extended to the interval [T, 2T ].This solution satis�es in [T, 2T ] the inequality

(3.23) ‖uT ‖
2
AT,ΩT

+ ‖ϑTσ‖
2
AT,ΩT

+ ‖ηT σ‖
2
BT,ΩT

≤ C1(T )ϕ(T ).where (uT , ϑT σ, ηT σ) denotes (v, θσ, ρσ) written in the Lagrangian 
oordinates ξT ∈ ΩT ,i.e. ξT = ξ +
∫ T

0
u(ξ, t′)dt′.Moreover, using (3.16), (3.22), (3.23), (3.11) we get for t ≤ 2T

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤

∥∥∥∥
∫ T

0

udt′
∥∥∥∥

W 3
2 (Ω)

+

∥∥∥∥
∫ t

T

udt′
∥∥∥∥

W 3
2 (Ω)

(3.24)

≤ c8T
1/2

[(
c1

∫ T

0

Φ(t′)dt′
)1/2

+ ‖uT ‖AT,ΩT

]

≤ c8c
1/2
4 T 1/2ε1/2[1 + (C1(T )/c3)

1/2] ≤ εand
|x − ξ| =

∣∣∣∣
∫ t

0

udt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

(3.25)

≤ c7c8c
1/2
4 T 1/2ε1/2[1 + (C1(T )/c3)

1/2] ≤ c7εif ε is su�
iently small.In view of (3.25) the volume and the shape of Ωt 
hanges in [0, 2T ] no more than theydo in [0, T ].Inequality (3.24) implies
(3.26)

∥∥∥∥
∫ t

0

vdt′
∥∥∥∥

W 3
2 (Ωt)

≤ c6

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c6ε for t ≤ 2T .Using (3.23) and (3.15) we also obtain
(3.27) sup

0≤t≤2T
ϕ(t) ≤ max( sup

0≤t≤T
ϕ(t), sup

T≤t≤2T
ϕ(t))leq max

(
c4

c3
ε, C2(T )

c4

c3
ε

)
.
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e the solution exists in the interval [0, 2T ] and in view of (3.25) we 
an deriveinequality (2.12) for t ≤ 2T . Therefore, estimates (3.26)�(3.27) with su�
iently small εand ε imply di�erential inequality (3.7) for t ≤ 2T .Hen
e (3.13)�(3.15) also hold for t ≤ 2T and
ϕ(t) + c1

∫ t

T

Φ(t′)dt′ ≤ ϕ(T ) for T ≤ t ≤ 2T .This way the solution 
an be extended to the interval [2T, 3T ].Now, assume that there exists a solution in [0, lT ], l ≥ 3, satisfying:
‖ujT ‖

2
AjT,ΩjT

+ ‖ϑjTσ‖
2
AjT,ΩjT

+ ‖ηjTσ‖
2
BjT,ΩjT

≤ C1(T )ϕ(jT ), j = 0, . . . , l − 1,

ϕ(t) ≤ ϕ(0)e−c5t for t ≤ (l − 1)T ,
ϕ(t) ≤

c4

c3
ϕ(0)e−c5t for t ≤ (l − 1)T ,

ϕ(t) + c1

∫ t

jT

Φ(t′)dt′ ≤ ϕ(jT ) for jT ≤ t ≤ (j + 1)T , j = 0, . . . , l − 2,where ujT , ϑjTσ, ηjTσ denote v, θσ, ρσ written in the Lagrangian 
oordinates ξjT ∈ ΩjT .Assume also that the volume and the shape of Ωt 
hange in [0, (l−1)T ] no more thanthey do in [0, T ] and that
∥∥∥∥

∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ ε for t ≤ (l − 1)Twith su�
iently small ε.Hen
e, assuming that ε is su�
iently small we obtain for 0 ≤ t ≤ lT

|x − ξ| =

∣∣∣∣
∫ t

0

u(ξ, t′)dt′
∣∣∣∣ ≤ c7

∥∥∥∥
∫ t

0

udt′
∥∥∥∥

W 3
2 (Ω)

≤ c7

( l−2∑

j=0

∥∥∥∥
∫ (j+1)T

jT

udt′
∥∥∥∥

W 3
2 (Ω)

+

∥∥∥∥
∫ t

(l−1)T

udt′
∥∥∥∥

W 3
2 (Ω)

)

≤ c7c8T
1/2

[ l−2∑

j=0

( ∫ (j+1)T

jT

c1Φ(t′)dt′
)1/2

+ ‖u(l−1)T ‖AT,Ω(l−1)T

]

≤ c7c8T
1/2

[ l−2∑

j=0

(ϕ(jT ))1/2 + C1(T )

(
c4

c3
ε

)1/2]

≤ c7c8T
1/2

{
[ϕ(0)(1 + e−c5T + e−2c5T + . . . )]1/2 + C1(T )

(
c4

c3
ε

)1/2}

≤ c7c8c
1/2
4 T 1/2ε1/2

[
1

(1 − e−c5T )1/2
+

(
C1(T )

c3

)1/2]
≤ c7ε,if ε is su�
iently small in dependen
e on ε.Thus, the volume and the shape of Ωt 
hange in [0, lT ] no more than they do in

[0, (l − 1)T ]. These 
hanges of the volume and the shape are as small as we want if weassume that ε is su�
iently small.
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an 
ontrol the free boundary of Ωt in the 
ase of σ = 0. At the sametime, this way, we 
an extend the solution to a global one.The di�
ulties 
onne
ted with 
ontrolling the free boundary in the surfa
e wavesproblems without surfa
e tension are dis
ussed by Beale [B℄ for in
ompressible �uids andStröhmer [St℄ for 
ompressible ones.
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