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After Wladystaw Orlicz’ pioneering invention in 1932 of the function spaces which now
bear his name, a whole industry started dealing with the following problem: whenever
there is an interesting result for Lebesgue spaces, try to formulate a parallel result for
Orlicz spaces. In fact, it has become a quite useful device to use Orlicz spaces if one is
led, for example, to nonlinear problems involving a nonlinearity of non-polynomial (e.g.
exponential) growth.

The aim of this talk is to illustrate, by means of a series of examples, that extending
results from the Lebesgue to the Orlicz space setting is by no means trivial or “automatic”.
These results include, but are not restricted to:

examples and counterexamples in geometry of Banach spaces,

operators which are unbounded and continuous, or bounded and discontinuous,
differential equations with rapidly growing coefficients,

integral equations with kernels of non-polynomial growth,

singular integral equations with kernels of non-polynomial growth,

imbeddings between Sobolev spaces with critical exponent.

In all these examples, it is important to point out that Orlicz spaces are used not just
for technical reasons, but by the very nature of the problem involved. This also explains
the somewhat cryptic title of the talk (after Oscar Wilde).

Recall that an Orlicz function (or Young function) is a positive, convex, even, and
increasing (on R™) function ® : R — R satisfying

d
lim ﬂ =0, lim ——= = o0.
u—0 U U— 00 u

Given a bounded domain Q C R¥, the Orlicz space Ly = Lg(f2) is defined by the
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Throughout the following, we will consider the three examples

(Luxemburg) norm

(1) ®(u) = %|U|p7 B(u) = el —Ju| -1, B(u) = el” — 1

for 1 < p < oo. The first Orlicz function in (1) leads to the classical Lebesgue spaces

L, = L,(Q) with norm
1/p
Hmpz(/mep¢Q ,
Q

the other two functions to more complicated Orlicz spaces. The main difference between
the first and the other two Orlicz functions in (1) is that ®(u) = |u|P satisfies the Ao-
condition, but ®(u) = el*l — |u| — 1 and ®(u) = e/*I” — 1 don’t.

Loosely speaking, one could say that the space L¢ is not “too different” from the
Lebesgue space L, if its Orlicz function ® satisfies the As-condition. (Some exceptions of
this rule, however, occur in interpolation theory for linear operators, see [14].) To begin
with, we illustrate this by means of some geometrical properties of the space Lg. Given
an Orlicz function ®, we denote as usual by P its complementary function

B(0) = max [ufo] ~ B(w)]

For example, in case ®(u) = %\u|” we have ®(v) = %|’U|;5 (with p~t +p~! = 1), and
in case ®(u) = e/l — |u| — 1 we have ®(v) = (1 + |v])log(1 + |v|) — |v|. The conjugate
function of ®(u) = e/*” — 1 cannot be calculated explicitly.

Recall that the associate space (or Kdthe dual) X of a space X of measurable functions
is defined by the norm

llv]| ¢ = sup /u(a:)v(x) dx.
lJul|x <1 JQ
This is a (possibly strict) subspace of the usual dual space X*, and X = X* if and only
if X is regular, i.e., every element in X has an absolutely continuous norm. For example,

ip:L;for1§p<oobutI~/OOCL;‘O.

THEOREM 1. The associate space of Lo is Lo = Lg. Moreover, the following four condi-
tions are equivalent:

(a) Lo is regular; (b) Lo is separable; () Ly = Lg; (d) @€ A,
Finally, Lg is reflezive if and only if both ® € Ay and € A,.

Theorem 1 shows that, while the Lebesgue space L,, is always regular, separable, and
reflexive for 1 < p < oo, for the Orlicz space L¢ all these properties heavily depend on
growth properties of ®.

Our next example is concerned with the simplest nonlinear operator. Given a function
of two variables f : 2 x R — R, the operator F' defined by

(2) Fu(z) = f(z,u(x))



THE IMPORTANCE OF BEING ORLICZ 23

is called the Nemytskij operator (or superposition operator) generated by f. This operator
occurs everywhere in nonlinear analysis, it suffices to think of the right-hand side of a
differential equation.

The following remarkable theorem on the “automatic continuity” of the operator (2)
is due to Krasnosel’skij [12]:

THEOREM 2. Suppose that the operator F' maps L, into Ly for some p,q € [1,00). Then
F' is continuous and bounded. In particular, F' is always continuous and bounded in case
F(C) C Ly, where C = C(Q) denotes the set of all continuous real functions on .

From Theorem 2 it follows, in particular, that continuity and boundedness of the
operator F' are in fact equivalent between Lebesgue spaces. So, from this point of view,
F behaves rather like a linear operator.

If one passes from Lebesgue to Orlicz spaces, the situation changes drastically. Indeed,
the following two examples [13] show that in this case the operator (2) may be bounded
and discontinuous, or continuous and unbounded.

Suppose first that ® € Ay, but ¥ ¢€ A, and consider the function f : R — R defined
by

3) fu) =07 ((u)).

Then F : Ly — Ly is discontinuous at 0, but bounded on every bounded set M C Lg.
Conversely, suppose now that ® ¢ Ay, but ¥ € Ay, and define f again as in (3). Then
F : Ly — Ly is unbounded on every ball of radius » > 1, but continuous on the whole
space Lg.

The choice of the corresponding Young functions to satisfy or not the As-conditions
in these examples is not accidental. In fact, the following two theorems [13] show that the
“automatic continuity” of F' depends only on the target space Ly, while the “automatic
boundedness” of F' depends only on the source space Lg; compare this with Theorem 2:

THEOREM 3. Suppose that the operator F' maps Lg into Ly, where ¥ € As. Then F is
continuous.

THEOREM 4. Suppose that the operator I' maps Lg into Ly, where ® € Ag. Then F is
bounded.

Combining the two examples and theorems above, one could summarize these results
in a somewhat sloppy way with the two equivalences

F: Ly — Ly continuous < V¥ € A, F: Ly — Ly bounded & & € As.

Of course, this is a completely new phenomenon which in Lebesgue spaces cannot occur.
We point out that, in case of a “degenerate” function f(x,u) = g(x)h(u), the operator
(2), ie., Fu(z) = g(z)h(u(x)), is always continuous from C into Ly, even if ¥ & A,.
So, a parallel counterexample as (3) is not possible in this case. However, in case of
a general function f this is not true. For example [1], let ¥(u) = el*l — |u| — 1 and
f(z,u) =log(z + |u|). Then the corresponding Nemytskij operator (2) maps C' into Ly,
but is discontinuous at 0.
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Let us now pass to studying the linear integral operator

(4) Ku(x) = / ke wuly)dy  (zeQ)

between Lebesgue and Orlicz spaces. Combining acting, continuity, and boundedness
conditions for the operators (2) and (4) one may obtain existence results for the nonlinear
Hammerstein equation

/ E(x,y) f(y, u(y)) dy
Q

v(x) (x €Q).

To give sufficient (and sometimes even necessary) acting conditions for the operator (4)
between the spaces L, and L, (1 < p,q < c0), one usually considers the kernel classes

(Klp.g = llz = |lk(z lslle,  [Klpq = lly = G 9)lall5-

These classes are usually called Hilbert-Schmidt classes in case p = ¢ = 2 and Hille-
Tamarkin classes in the general case. It is well-known (see, e.g., [7]) that the operator (4)
maps L, into L, (and is then automatically continuous, by Banach’s classical theorem
[5]), if

() min {[k]p,q, [k], 4} < 00

Moreover, in this case the left-hand side of (5) gives an upper bound for the norm of K
between L, and L,. One may also show that the condition k € L, (Q x ) is sufficient for
(5), where either r = pg = pq/(p — 1) or r = max {p, ¢} = max{p/(p — 1), q}.

If one tries to get a parallel result between the Orlicz spaces Ly and Ly, one has to
consider kernel classes of the type [k]o,v = ||z — ||k(z,)||;||w. However, it is simpler to
imitate the special cases described above. To this end, we recall that the relation ® < ¥
between two Orlicz functions ® and ¥ means that ®(u) < ¥(ku) (Ju| > ug) for some
k >0 and uo > 0. Then one gets the following sufficient conditions [13]:

THEOREM 5. Suppose that k € L=(Q x ), where either ¥ o d<Z,orPoW <E, or
U <Z, ®=<E and = € A'. Then the operator (4) maps L into Ly and is continuous.

For example, in case ®(u) ~ |ul? and W(u) ~ |u|? we get (¥ o ®)(u) = (o U)(u) ~
|u|P?/(P=1) " and so we obtain the special result mentioned above.

A particularly important special case is a weakly singular integral operator of Volterra
type

(6) Vou(z) = / Wyl -yl Tul)dy (0 <7 <1).

This operator may be considered not only in Lebesgue spaces, but also in the Hdélder
space C“ with norm
u(z) — u(y)|

l[ulla = [u(0)] + sup
“ ety T —yl*

In fact, the following result is classical [8]:
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THEOREM 6. Suppose that
1
p>—, a<l—7—-.
1—7 P

Then the operator (6) maps L, into C* and is continuous.

It is natural to ask what happens if the Lebesgue space L, in Theorem 6 is replaced by
some Orlicz space Lg. As one could expect, one has then to replace also the Holder space
C* by some “generalized” Hélder space. Such a space may be constructed as follows (see,
e.g., [10]). Given a positive, continuous, increasing function ¢ : Rt — R* with ¢(0) = 0,
the generalized Hélder space C¢ is defined by the norm

— |u(z) — u(y)|
[lullg == [u(0)] + o [y

The following Theorem 7 is taken from [1].
THEOREM 7. Let f and ¢ be the scalar functions defined by

t
ft) = / S ") dv,  ¢(t) =inf{s>0: f(s¥/7t) <7},
0
Then the operator (6) maps Lo into C? and is continuous.
If we take ®(u) ~ |u|P in Theorem 7, we get
@(vfr) ~ |U|ffp/(p*1)’ ) ~ tlp=1=7p)/(p=1) B(t) ~ toT1/p,

and so we regain precisely Theorem 6. On the other hand, if ¢ is the second Orlicz
function in (1), then

f(t):/ot(l—kvT)log(1+vT)dv—/0thdw<oo7

and from this we may compute ¢(t) and the target space C'?.

Now we pass to a completely different aspect, viz. to Sobolev imbedding theorems. If
Q C RY is a bounded domain with sufficiently smooth boundary, the so-called Sobolev
conjugate p* := Np/(N —p) of p € [1, N) plays a crucial role in such imbedding theorems.
In fact, the imbeddings

Ly~ if p< N,
(7) WP — (L, (¢g<o0) ifp=N,
Lo ifp>N

are true (see, e.g. [15]), where WP = WP(Q)) denotes as usual the Sobolev space
consisting of all functions whose first (distributional) derivatives belong to L,. Now, one
could ask if one of the Lebesgue spaces on the right-hand side of (7) might be replaced
by some smaller Orlicz space, in order to make the corresponding imbedding theorem
sharper. In fact, the following imbedding theorem [11] makes the second case of (7) more
precise and involves the third Orlicz function in (1).

_ NN

THEOREM 8. In case p=N one has the imbedding W1 — Ly, with ¥ (u) 1.

Now we pose the reverse question: Is it possible to replace the Sobolev space WP
on the left-hand side of (7) by some larger space and still keep the same imbeddings?
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To make this more precise, recall that the Sobolev-Orlicz space W'Lg consists of all
functions whose first (distributional) derivatives belong to Lg. The following Theorem 9
was recently proved by Pick [18].

THEOREM 9. Among all Sobolev-Orlicz spaces, the space WP is optimal for the imbedding
(7) in case p > N, but not optimal in case p= N.

We point out that the problem of finding an optimal Orlicz function ® such that
WlLe — Ly, with U(u) = el ™" — 1, was also solved by Pick in [17].

One may also imitate the imbedding result (7) directly by introducing some kind of
Sobolev conjugate of an Orlicz function, rather then a number. Given an Orlicz function
®, one puts

(1) - !
) o) = e @70 = [ aar
The Orlicz function ®* is then called Sobolev conjugate to ®. Let us check what this
means in case ®(u) ~ |ul|P with 1 < p < N. An easy calculation shows that then

g(t) ~ t(N—NJD—I))/N;D7 (q)*)_l(’l)) ~ |’U|(N_p)/Np, <I>*(u) - |u|N;0/(N—p)’

i.e., we get the classical Sobolev conjugate p*, as one should expect. Now we distinguish
two cases for the function g in (8), viz.

(9) /01 g(t) dt < oo, /100 g(t) dt = oo.

and

(10) /0 g(t) dt = oo, /1Oo g(t)dt < oo.

THEOREM 10. The imbedding W'Ls — Lg- holds in case (9), while the imbedding
W'Lg < Lo holds in case (10).

We have already seen that ®*(u) ~ |ul?" for ®(u) ~ |u[P in case (9), i.e. p < N, and
so Theorem 10 contains the first imbedding in (7) as a special case. Similarly, condition
(10) corresponds then to the case p > N, and so we get the third imbedding in (7) as
well. In the most interesting case p = N we have g(t) = 1/t, and so neither (9) nor (10) is
satisfied. However, one may then show directly [15] that the Orlicz function ®(u) = |u|Y
has the Sobolev conjugate ®*(u) = el*l — |u| — 1.

There is a related problem which is of independent interest and may be stated as
follows: Is the Orlicz space Lg the union of all Orlicz spaces it contains properly? To
answer this question we recall that an Orlicz function ® satisfies a As-condition if ®(u) ~
||®(u). Such an Orlicz function necessarily increases more rapidly than any polynomial
function. The following result is due to Welland [20].

THEOREM 11. The equality

U Ly =Lg

LyCLg



THE IMPORTANCE OF BEING ORLICZ 27

holds if ® € Ao, while the equality
U Le#Le

LyCLa
holds if ® € As.

We intentionally confined ourselves in this talk to some basic problems where Orlicz
spaces arise quite naturally. Clearly, almost all results discussed here have been generali-
zed in various directions. One of the most important extensions is that of non-autonomous
Orlicz functions (also called modulars) ® : 2 x R — R. In this case one gets an Orlicz
space (or modular space) equipped with the more complicated norm

(1) lullo = inf {k>0: /Qmp(a;@) da:gl}.

The first systematic account of such spaces is the Lecture Notes [16], the recent mono-
graph on such spaces, with a particular emphasis to integral operators, is [6]. The norm
(11) may be used to construct new spaces from given ones which are important examples
of so-called ideal spaces (see Chapter 2 of [2]).

Instead of considering ordinary integral operators of type (4) in Orlicz spaces, one
may also consider the more general class of partial integral operators

Lu(a,y) = /T U,y E)u(6,y) du(€),  Mu(z,y) = /S (e, g, mu(z, ) dv(n)

in so-called Orlicz spaces with mized norm, see [3]. Surprisingly, such problems are not
only of theoretical interest, but admit applications in continuum mechanics, like axially
symmetric contact problems in surface mechanics, creeping of non-uniformly aging bodies
in fracture mechanics, aerodynamics, elasticity and visco-elasticity; we refer the interested
reader to [4].

There is a very important field where Orlicz spaces apply which we did not discuss in
this talk, viz. partial differential equations. Whenever one has to deal with equations with
rapidly growing coefficients, it is useful to replace Lebesgue spaces by Orlicz spaces, and
Sobolev spaces by Sobolev-Orlicz spaces. One of the first examples of such applications
is the pioneering paper [9] by Jean-Pierre Gossez.
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