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Abstract. We revisit Orlicz’s proof of the square summability of the norms of the terms of an
unconditionally convergent series in L'. The result is then used to motivate abstract generaliza-
tions and concrete improvements.

From the earliest days of Banach space theory there was a fascination with uncondi-
tionally convergent series.

In his thesis, Banach noted (and took great advantage of) the unconditional conver-
gence of absolutely convergent series in complete normed linear spaces. That this phe-
nomenon characterizes the Banach spaces among all normed linear spaces hints at the
wisdom of spending one’s analytic life in complete spaces.

Banach, Mazur and their Lwow colleagues were intrigued by the relationship of un-
conditionally convergent series and absolutely convergent series and conjectured (in the
Scottish book no less) that the equivalence of these two notions was characteristic of
finite-dimensional spaces.

The mysteries of unconditional convergence were too attractive to remain hidden for
long. Already in 1929, Orlicz had sensed the need to understand unconditional conver-
gence while studying orthogonal series. In fact, in the second of his series of papers on
the subject of orthogonal series, he takes special note of the fact that if X is a weakly
sequentially complete Banach space and if ) x, is a series composed of terms in X
for which ), |z*(x,)| < oo for each continuous linear functional x* on X, then ), x,
is unconditionally convergent in X. A close inspection of Orlicz’s proof ought to con-
vince anyone who wonders of the fairness of including Orlicz’s name in the 'Orlicz-Pettis’
Theorem!

An aside: we would be remiss if we didn’t comment on Orlicz’s natural instinct to home
in on the condition: if ) |z*z,| < oo for each x* € X*, then ) x, is (unconditionally)
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40 J. DIESTEL

convergent. It would be a quarter of a century before two young Poles, Bessaga and
Pelczynski, would show that it is precisely in Banach spaces X which do not contain any
isomorphic copy of co that the condition that ), |x*(xy,)| < oo for each x* € X* suffices
for the unconditional convergence of the series ) x, in X.

This theorem of Bessaga and Pelczyrniski is an excellent example of a result whose
depth is due to its clarity of formulation and utility, rather than the complexity of its
proof. It is an isomorphic invariant of great theoretical import.

The Lebesgue spaces LP(0, 1), and their cousins ;1 < p < oo, were the principal
examples of spaces that were known to be weakly sequentially complete at the time of
Orlicz’s early work (soon to be joined, by the way, by Orlicz spaces generated by functions
satisfying the As-condition). That L”(0, 1) and ¢? were weakly sequentially complete was
due to F. Riesz in case 1 < p < oo, to Schur for /! and to Steinhaus for L!(0, 1). Studying
unconditional convergence of series in these Lebesgue spaces led Orlicz to discover some
remarkably sharp results; these results appeared in two short notes published in Studia
in 1933. They conclude to the following:

THEOREM (Orlicz). Let )" fn be an unconditionally convergent series in LP(0,1).

(1) If1<p<2, then 3, ||fully < cc.
(2) If2<p < oo, then ) ||fullh < co.

We find the case p = 1 particularly fascinating and believe a detailed exposition of
Orlicz’s proof of it insightful, so here it goes.

Because ), f, is unconditionally convergent there is an M > 0 so that for all n and
all choices o; = £1 of signs,
| Yo,
i<n

Suppose (r,,) is the Rademacher sequence. Then for any n we have
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where K is the constant in Khinchin’s inequality that assures us that regardless of
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A1y, Qn,y

(/ ‘Zam dt>1<K/ ’Zan ‘dt

i<n

We've stated /proved Orlicz’s Theorem for L'(0,1) but it holds for any L! (1) by the
slightest of modifications. Indeed, no proof arising in this note calls on any subtlety of
measure theory and if we choose to present the proofs for L!(0,1) it’s purely for our
convenience; everything clearly holds for any L!(1)-space.

Orlicz’s proof was the first use in functional analysis of the inequalities now universally
ascribed to Khinchin. In fact, their formulation in LP(0, 1)-terms was fresh-off-the-press
in Orlicz’s day coming from a remarkable sequence of papers of Paley and Zygmund. To
be sure, recall what these inequalities say (and this formulation seems to have first been
made in Zygmund’s famous treatise on “Irigonometric Series’): for any 1 < p < oo there

are constants A,, B, > 0 such that, regardless of scalars a1, - - -, a, we have
1 » \ 7 1
Bp</ ’Zaln(t)‘ dt) g (Z|az|2) S (/ |Za ’I"Z |pdt>
0 i<n i<n i<n

Orlicz’s proof offers much if we but pay close attention. For instance, one can easily
glean from it that given fi,---, f, € L'(0,1), then

(Sse) ) <k [ | o

It was roughly 40 years before the language of Banach space theory included ‘cotype’ and
‘type’ but Orlicz proved that ‘L!(0, 1) has cotype 2’, regardless!

Quantites like
([ g ronfa)
0 i<n

arise frequently in modern abstract analysis and it’s a remarkable fact that such quantities

dt.
L1(0,1)

grow asymptotically alike, independent of 1 < p < o0; indeed, Kahane discovered that
whenever 1 < p, ¢ < oo there is a constant K, , > 0 so that regardless of the Banach

space X,
1 p \7© L g \7
(/ HZri(t)a:l ) ng7q</ HZri(t)xZ dt)
0 "i<n 0 "i<n

for any x4, -+, x, € X. For future reference we call Rad(X) the closed linear span of the
collection of members of L% (0,1) of the form r, ® z,n € N and z € X. No index p is
necessary so long as we’re using isomorphic language.

Another tid-bit to be gleaned from Orlicz’s proof is that if the ‘Rademacher averages’
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42 J. DIESTEL

are bounded in n, then [|(3_,-,, |fi()]2)2 |1 (0,1) is also bounded in n; after all,

N !
[ r) |,y <5 [ [ 05
Naturally, this says that (>_, | fa()[2)2 € L'(0,1), thanks to Fatou’s lemma. In other
words, the boundedness of the ‘Rademacher average’ ensures the integrability of the
square function (3, |f.(-)|?)2. We'll return to this later.
Though this is neither the time nor the place to discuss in great detail the remarkable
inequalities of Khinchin, we would be derelict in our duties if we didn’t at least mention

L1(0,1)

further Polish connections. In a stunning piece of extremal analysis, Szarek showed that
the best K in the real case of Khinchin’s comparison of L'(0, 1) and L?(0, 1) is v/2; later,
two students of Kwapieni, Latata and Oleszkiewicz, gave a stunning new proof of Szarek’s
result which also showed that /2 works for the vector-valued case (Kahane’s inequality)
as well. We highly recommend an enjoyable reading of their paper or of Kwapien’s rear-
rangement of their proof as found in the Notes and Remarks (pp. 227-228) of the book
‘Absolutely Summing Operators’. No serious discussion of best constants in Khinchin can
fail to marvel at Haagerup’s tour-de-force of classical analysis in finding best constants
in case 1 < p < oo or of Sawa’s proof that \/77_/2 is best possible constant in case of
complex coefficients in the L'(0,1) vs. L?(0, 1) Khinchin inequality.

It’s natural to discuss cotype 2 further but we delay such a discussion for a bit so as
to mention other work related to Orlicz’s theorem.

There are really at least two aspects of Orlicz’s theorem that need be discussed: The
reflexive case (1 < p < o) and the L'(0, 1)-situation.

L?(0,1) is more than reflexive, if 1 < p < oo; it’s uniformly convex. Recall with
Clarkson that a Banach space X is uniformly convez if given ¢ > 0 thereisa § = d(e) > 0
so that regardless of z,y € X with ||z|| = 1 = ||y|| we have that whenever ||z — y|| > €
then || ZfY| < 1 — 6. If we define the modulus of convexity of X by

Tty
2

5X(e):inf{1—

H:||x||=1=|y||,||x—y||=e}7 0<c<2,

then dx(e) > 0 whenever ¢ > 0 signals X’s uniform convexity. Refining Clarkson’s in-
equalities, Hanner estimated the moduli of convexity of LP(0,1) for 1 < p < oco. He
showed that

ce? ifl<p<2,

) >
drr(0,1)(€) > {Cep 2 < p< oo,

The relevance? Well, a wonderful abstract theorem of father Kadets goes as follows.

THEOREM (Kadets). If Yz, is an unconditionally convergent series in a uniformly
convez space X, then Y 0x(||z,]]) < co.

For Banach-space-geometry enthusiasts the only possible drawback to Kadets’s theo-
rem is that to be uniformly convex entails reflexivity. This ‘drawback’ aside, we cannot
be more enthusiastic in our own recommendation to read the lovely book of the Kadets
familia on ‘Series in Banach Spaces’.
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Curiously, Kadets’s idea has merit even in the case of L'; right idea, wrong scalar
field. We say a complex Banach space X is complex uniformly convex if given € > 0 there
is a § > 0 so that whenever ||z + py|| < 1 for all |u| < 1 and ||y|| > € then ||z| < 1 — J;
alternatively, X is complex uniformly convex whenever HX (¢) > 0 for any € > 0, where

HX(e) = el inﬁ | {sup{||lz + ey|| : 0 < 6 < 27} —1}.
z||=1,]||y||=e€
Naturally,
1+H§§ €)= inf sup —+ei9y’. *
© 20, |lyl=e 0<o<2nr || ||| *)

Globevnik showed that in case X = L!(0,1) then the function inverse to HZ!(e) is
<1062 so H Cfol > ¢2/10, making the following theorem of Dilworth extremely satisfying.

THEOREM (Dilworth). If )" x, is an unconditionally convergent series in the complex
uniformly convez space X, then Y, HX (||zn||) < occ.

Proof. We start with a bit of harmless but helpful normalization: suppose | >, oz,
< 1, for any n and any scalars a1, - - -, o, with |o;| < 1. In particular, ||z;|| <1 for all j.
We'll also assume none of the x;’s is zero.

Notice that (x) tells us that

el (L + H(lla2l) < max o+ el sl

so that there is a 65 : 0 < 65 < 27 so that
21 [|(1 4+ Hoo(l|z2])) < [la1 + €% |1 ]|22]|-
Similarly, we find a 83 : 0 < 63 < 27 so that

T +€w2||331||332

- + ey
21 + €2 |21 |22 ’

1+ Hoo([|lzs]]) <

and so
w1 + € |l ||za]| (1 + Hoo([ls]])) < llwn + €% (|2 |22 + €% [lar + €2 ||y ||z 2s | < 1,

thanks to our normalizing of relations before starting this fray. Repeating and letting
po = |1, w3 = ||z1 + €¥2||z1]| 22|, - -, we find 6,’s (n > 2) s0 0 < 6, < 27 and p,’s
(n > 2) so that |u,| < 1 so that

21 + €2 paza + - + € pn || (1 + Hoo([|znsa[])) <
lx1 + 6i92/£2$2 + -+ eienﬂnzn + 6i9"+1un+193n+1|| <1l
Collect terms with the proper amount of love and care and discover that

n
ol T+ Hoo (k) < llor + €2 poma + -+ + €+ iy g || < 1.
k=2

It follows that for each n
n
S Heelllaal) < o]
k=2

Tra la, Tra la.
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THEOREM (Globevnik). If f,g € L'(0,1) with || f|l1 =1 and ||f + zg|l1 < 1+ & whenever
2] <1, then ||g]| < V/6(4 + 2V1+26).

Proof. We can, and do, assume that |f(t)| < oo for all t. Everything that’s meaningful
happens inside the set

= [g(t) # Of;

on P set

Let ¢ > 0. Look at the events
Py=Ihl>cNP, Py=][hl<cNP.

Jolo=1,

Also our hypotheses guarantee that

/<|f+g| CNf =gl 1f gl +If —igl — Alf]) < A(L+ ) — 4= 46,
Consider the function

Q(r,0) = |rei9 +il+ |rei9 —i|—2r

Of course,

flo1 1
Ll< = < .
. PlIfLC

for > 0. For a fixed v, 6 — Q(r,#) is continuous and nonnegative. From —7/2 to 0
it’s increasing while from 0 to 7/2 it’s decreasing. Regardless, Q(r, —0) = Q(r,0) and
Q(r,0 4+ m) = Q(r,0). Alas, it follows that

Q(r,0) + Q(r,0+m/2) > Q(r,m/4).
Now, about Q(r,7/4):
Q(rym/4) = (r* + 227 +1)7 + (r2 — 227 + 1)2 — 2r

and so
(Q(r,m/4) + 27")2 > 472 + 2

Since Q(r,m/4) + 2r > 0 we conclude that
Q(r,w/4) +2r > (4% +2)3.
Next look at the function

[|R(E) + 1] + [h(t) — 1| + |h(t) + i] + |h(t) — i| — A|h(t)| if t€ P,
F(t)_{o ift¢ P

Notice that F'(¢) > 0 and
/F|g\ Ja5+al417 =gl +1f +igl + 11 —igl - 41£1) < 48,
But F also has the form
F(t) = Q(h(t)], arg h(t)) + Q(|h(t)|, arg(h(t) + m/2))
and |h(t)| < cfor s € Py. So for s € P, we have
F(s) > (4]h(s)|* +2)7 = 2|h(s)| > (4c® +2)% — 2
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because, after all, (472 + 2)% — 2r is positive and decreasing in 7. Now we’re ‘in business’:
6 [ Folz [ lglac+ 2} -2
Py P
and so

46 >/ ol
(42 +2)2 —2¢ ~ 9

In sum

Il /+/||<1+ il
glli = g<-4+——
SR P S ¢ (42 +2)F —2¢

Choose ¢ judiciously, say = 1/267, and the result is

451 _ =52 (4+2(1 4 25)),
(2+1/6)z —d =

if one can but believe in the algebra we learned eons ago.

1
llgills <202 +

To proceed further, we need to enter the enigmatic world of tensor products. For our
present purposes only two tensor norms need exposure: the injective and projective tensor
norms, the most classical of all tensor norms.

Let X and Y be Banach spaces (over the same scalar field). For v € X ® Y we define
the injective tensor norm ||ul|\ of u by

lullv = sup {[(z" @ y")(u)| : 2* € Bx+,y" € By~}

and the projective tensor norm ||ul[» of u by

lulln = inf {37 el lyillw =Y i @ 3 -

i<n i<n

Each of these norms is reasonable (||z ® y||r» = ||z]| ly]| = ||z ® y||v) and uniform
(if ug : X3 — X5 and us : Y7 — Ys are bounded linear operators then u; ® ug is a
bounded linear operator with bound < |uq]| |Juz||). They’re symmetric (so X ® ¥ and
Y ® X are naturally isometrically isomorphic). Fortunately, unless everything in sight is
finite dimensional we cannot hope for completeness so we complete X ® Y and obtain
the injective tensor product X ® Y of X and Y and the projective tensor product X ® Y
of X and Y.

In case of the injective tensor product, a few choice identifications are worth mention-
ing: for any compact Hausdorff space S, C(S)®X is isometrically isomorphic to the space
Cx (5) of X -valued continuous functions defined in S with the usual supremum norm and
0'®X is isometrically isomorphic to the space of unconditionally convergent series in X
with norm ||(2,,)|| = supj,- <1 {>_, [z} . The injective product is injective so Xo@Y
is a subspace of X®Y if X is a subspace of X.

The projective tensor product is (as one can see from the form of its norm) the
biggest tensor norm on X ® Y and a description of members u of X®Y is possible
(and due to Grothendieck): u € X®Y precisely when there are sequences (z,,) C X and
(yn) €Y so that Y, ||znl| [|ynll < 00 and w = ), x, ® yn; in such a case ||ulx =
inf {32, lznll lynll - u =22, 20 @yn}
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THEOREM (Grothendieck). For any measure ji, L' (p1)®X is isometrically isomorphic to
LY (u), the space of (equivalence classes of ) Bochner ji-integrable X -valued functions. In
particular, (*&X is isometrically isomorphic to £*(X).

The norm || - || 4s projective so whenever X is a closed linear subspace of X and
qg : X — X/X, the canonical quotient map then ¢ ® idy is a metric linear quotient
map of X®Y onto (X/X,)®Y. It is not injective despite the above theorem; indeed,
Grothendieck also showed the following remarkable result.

THEOREM (Grothendieck). If Z is a Banach space such that Z®X is a closed linear
subspace of ZQY whenever X is a closed linear subspace of Y, then Z is isometrically
isomorphic to an L'(u1)-space.

An important aspect of the projective tensor product is the Universal Mapping
Property: (X®Y)* is identifiable with the space B(X,Y) of continuous bilinear func-
tionals on X x Y, with 7* € (X®Y)* corresponding to Q € B(X,Y) via the formula
T (@ ®y) = Qx,y)-

If E and F are finite dimensional Banach spaces then so are (E ® F,| |v) and
(E® F,| ||); What’s more, in this case, (EQF)* = E*®F* and (EQF)* = E*QF*.
For infinite dimensional spaces life is not so kind; however, if Y is a Banach space where
dual Y* has the Radon-Nikodym property and the approzimation property, then (X QY )*
is X*®Y*, regardless of X.

Where’s this leading? Here’s a theorem found in the Résumé and ascribed by Grothen-
dieck to Littlewood.

THEOREM. If Y f, is an unconditionally convergent series in L'(u), then (f,) €
CRLY ().

To be sure, in a paper following his Résumé, Grothendieck made an incisive analysis
of the Dvoretzky-Rogers lemma and among other delicious discoveries he showed that if
1< p< oo and X is an infinite dimensional Banach space then

PRX C P(X) c & (X),
where ¢/ . (X) is the space of sequences (z,,) in X for which }_  |z*(z,|P < co for each

xz* € X* and ¢?(X) is the space of sequences (z,) in X for which }_ ||z, ||” < co, and C
indicates proper containment. So the above theorem is stronger than is Orlicz’s. But what
does it actually say? In his analysis of /’®X, Grothendieck side-steps any description of
which sequences are in /X (except for p = 1). However we can say something because
we’re dealing with (2@ L' (1) which is just L' (p)®¢? in reversed order; L' (11)®¢? is L}, (1)
so what’s it take for a sequence (f,,) to be in 2QL'(u)?

It must be that (3, [f|>)? € L'(x). Look familiar? It should: in Orlicz’s proof we
saw that if >~ f, is unconditionally convergent then there is a constant K - M (‘K’ from
Khinchin and ‘M’ from bounded multiplier) so that for each n € N, [[(3_;<,, [ f; 12)2 || <

1
K M. The sequence (3_;_, | fi]?)2 converges almost everywhere to (3, | ful?)? and so
Fatou’s lemma assures us that looking closely at Orlicz’s proof will also lead us to mem-
bership in (2L (1).
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Grothendieck wondered if X is a Banach space such that /'®X <— ?®X need X
be an L'(u)-space. In the late seventies, Kisliakov and Pisier discovered by different
techniques that if R is a reflexive subspace of L' (1), then L'(1)/R also solves the inclusion
1®X < (?®X. Then in the early eighties, Bourgain showed that if 7 denotes the unit
disk {z € C : |z| < 1} then L!(T")/H{} is another solution, where H{ is the subspace of
the Hardy space H' consisting of functions with vanishing value at 0. Since then some
progress has been made in the abstract. Here’s one such result.

THEOREM (Arregui-Blasco, Bu). Suppose X has cotype 2. Then the following statements
regarding X are equivalent.

1. Every operator u : X — (? takes unconditionally convergent series in X to abso-
lutely convergent series in (2.

2. 1'@X — ’°®X.

3. Rad(X) = 1?®X.

It is unknown if the hypothesis that X have cotype 2 is necessary in the above theorem.

The property that every unconditionally convergent series in X be square summable
was aptly coined by Lindenstrauss and Pelczynski as ‘X has the Orlicz property’; if
@X — 29X we'll say ‘X has the Littlewood-Orlicz property’. Naturally, adding Lit-
tlewood to the team leads to a stronger property. Like the Orlicz property, the Littlewood-
Orlicz property is special and conditions for its possession precious. Suppose i : £? < ¢
and j : ¢! < (2 are the natural inclusions; of course, i* = j.

THEOREM. A necessary and sufficient condition that X* has the Littlewood-Orlicz prop-
erty is that 1 @ idx takes (2QX continuously into co®X.

Suppose i ® idx takes /?®X continuously into co®X. Let’s compare the duals (that
is the natural codomain and domain of (i ® idx)*. Because /2> has both the approxima-
tion property and the Radon-Nikodym property, the domain of (i ® idx)* is (?QX* =
(/22 X)*. The Universal Mapping property ensures that the dual of co@X is the space
B(co, X) of bounded bilinear forms on ¢y x X which is easily seen to be L(cg; X*), the
space of continuous linear operators from ¢y into X*. Now it’s plain (and easy-to-see)
that /1®X* embeds inside £(co; X*) and on /1@X* the action of (i ® idx)* is precisely
that of j ® idx~ with values in (2&X*.

On the other hand, if j ®idx- takes /!@X* continuously into 2% X*, then computing
duals leaves us with (/!@X*)* being identifiable with the space B (¢!, X*) of integral
bilinear forms on /! x X*;co®X lies isometrically inside B (¢!, X*) thanks to ¢y having
the metric approximation property. In turn, (/20X *)* is identifiable, thanks to the Uni-
versal Mapping property with the space B (¢, X*) which contains /2@ X * isometrically
and naturally. A quick check of (j®1idx+)* on elementary tensors shows (j ®idx~)* takes
2®X into co®X much as i ® idx does. It follows that i ® idx maps ?®X continuously
into co® X, being as it is — the restriction of (j ® id%. to 2®X.

Many are the topics that are attractive and relate to the Orlicz Theorem, the Orlicz
property, the Littlewood-Orlicz, property, cotype 2; however, we have to finish this paper
somewhere so why not on a high note with an all-too-brief discussion of one of our favorite
results? It has its origins in the wonderous thesis of Maurey and the beautiful paper of
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Kwapient and Pelczynski on the main triangle projection. Its relationship with what we’ve
been discussing is established once we recall a crucial ingredient to the result’s proof, a
theorem of Maurey and Rosenthal.

THEOREM (Maurey, Rosenthal). Let X be a Banach space and v : X — L*(0,1) be a
bounded linear operator. Then a necessary and sufficient condition that there be a K > 0
such that for any x1,---,x, € X we have

[(Z )| < 5(X fonl?)’

k<n k<n

is that v admits a factorization
X —2— LY0,1)
PN /m
L?(0,1)
where d : X — L?(0,1) is a bounded linear operator of norm < K and M : L*(0,1) —
L'(0,1) is the multiplication operator M f = f - g for some g € L?(0,1).

A stunning consequence of this was drawn independently by Bennett and by Maurey
and Nahoum, a consequence certainly appreciated by the workers of the orthogonal-
functions vineyards.

THEOREM (Bennett-Maurey-Nahoum). Suppose )", f, is an unconditionally convergent
series in L'(0,1). Then there is a sequence (a,,) € (%, a g € L*(0,1) and an orthonormal
sequence (g,) in L?(0,2) such that for each n € N and almost all t € [0,1],

fn(t) = ang(t)gn(t).

P. @rno has given a titillating proof of this arousing result and one can find his proof
fully exposed in ‘Absolutely Summing Operators’ on pages 253—254.
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