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Abstract. This paper is an extended version of an invited talk presented during the Orlicz Cen-
tenary Conference (Poznaii, 2003). It contains a brief survey of applications to classical problems
of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and
real analytic functions). Sequential representations of the spaces and the theory of the functor
Proj' are applied to questions like solvability of linear partial differential equations, existence
of a solution depending linearly and continuously on the right hand side of the equation and
existence of a solution depending analytically on parameters.

In the 1930’s, the golden age of the Polish Mathematical School in Lvov (Banach,
Mazur, Orlicz and others), the main emphasis in functional analysis was put on metric lin-
ear spaces. Only later, motivated by emerging applications, a new study of non-metrizable
locally convex spaces started with ingenious discoveries of Grothendieck, especially with
his theory of nuclear spaces.

This survey paper is devoted to a study of a special class of non-metrizable locally
convex spaces, so-called PLS-spaces. The class contains many natural examples from
analysis like the space of real analytic functions, the space of distributions and various
spaces of ultradifferentiable functions and ultradistributions which turned out to be im-
portant for the theory of partial differential equations. Instead of a systematic “academic”
presentation we preferred the more application oriented approach. We emphasize the use

2000 Mathematics Subject Classification: Primary: 46A13, 46E10, 46F05, 35E20, 35N05.
Secondary: 35A05, 45E10, 46A03, 46A11, 46M18, 26E10.

Key words and phrases: space of real analytic functions, space of distributions, ultradif-
ferentiable functions, ultradistributions, linear partial differential operators, solvability, linear
continuous right inverse, analytic dependence on parameters, Proj' functor, sequential represen-
tation, PLS-spaces, locally convex spaces.

Research supported by Committee of Scientific Research (KBN), Poland, grant PO3A 022 25.

The paper is in final form and no version of it will be published elsewhere.

[51]



52 P. DOMANSKI

of two quite abstract tools, namely, sequential representations of the spaces in question
(or an absence of such a representation!) and the machinery of the functor Proj'. We
will apply them to non-abstract classical problems like existence of solutions of linear
partial differential equations or convolution equations, splitting of differential complexes
(or, existence of linear continuous right inverses for linear differential or convolution op-
erators) and analytic dependence of solutions of linear partial differential equations on
parameters. One could say that the main message of this survey is that the presented part
of the theory of locally convex spaces is extraordinarily useful in interesting questions of
classical origin in spite of the prevailing scepticism towards the abstract machinery of
functional analysis in general and of the theory of locally convex spaces in particular.

We try to explain (or, at least, to give a precise reference for explanation) all the
necessary background from the theory of locally convex spaces in order to make the
survey accessible for a wider audience. For non-explained notions see any standard book,
for instance, [76] or [47].

1. PLS-spaces—examples. Let us start with the precise definition.

DEFINITION 1.1. A locally convex space X is a PLS-space if it is a projective limit of
a sequence of strong duals of Fréchet-Schwartz spaces (i.e., DFS-spaces). If we consider
strong duals of nuclear Fréchet spaces instead (i.e., DFN-spaces) then X is called a
PLN-space.

Roughly speaking, PLS-spaces are “regular” spaces of the form (. yU,en XN,
Xn,n Banach spaces, with the natural topology. In the examples given below, one can
give explicitly seminorms defining the topology of the considered spaces but from the
application point of view it is better to look at them as intersections of unions of Banach
spaces. It follows from the definition that every PLS-space is automatically complete and
Schwartz. PLN-spaces are even nuclear and they have the approximation property. Let
us note that every Fréchet-Schwartz space is automatically a PLS-space.

It is easily seen that any PLS-space X = projycyind,eny Xn,n, where Xy, are
Banach spaces, ind, ey Xn,, denotes the locally convex inductive limit (direct limit) of
a sequence (Xn ,)neny Where the linking maps are compact, projycy Yy denotes the
topological projective limit (inverse limit) of a sequence (Y )nyen of locally convex spaces
(see [47], for the modern theory of locally convex inductive limits see [4]).

Let us denote by  C R? an open domain and by (Ky)yen, K1 € Ko € --- € Q,
a compact exhaustion, i.e., |Jycy KN = 2. Here € means that one set is compact and
contained in the interior of the other one.

EXAMPLE 1.2 (The space of distributions 2'(2)). It is well known that 2'(Q) is defined
as the strong dual of the space Z(2) = indyeny Pk, of test functions, where P
is the nuclear Fréchet space of smooth functions with the support contained in Ky
(equipped with the topology of uniform convergence with respect to all derivatives).
Since the inductive limit () is strict [88, I1.6.5], 2'(2) = projyey Zk, and it is a
PLN-space (comp. [76, 28.9(2)]).
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EXAMPLE 1.3 (The space of real analytic functions <7 () := {f : Q@ — C: f analytic}).
The space <7 (2) is equipped with the unique locally convex topology such that for any
U C C? open, RN U = (Q, the restriction map R : H(U) — /(1) is continuous and for
any compact set K C ) the restriction map r : /() — H(K) is continuous. As usual
we equip the space H(U) of holomorphic functions on U with the compact-open topology
and the space H(K) of germs of holomorphic functions on K with its natural topology:

H(K) = indpeny H*(U,),
where (U,,)nen is a basis of C%-neighbourhoods of K.

THEOREM 1.4 (Martineau, [64]). There is ezactly one topology on <7 () satisfying the
condition above and endowed with this topology one has

o/ () = proj yeny H(KnN).

The topology defined above is the natural topology on <7 (), it is very well adapted to
applications and to the structure of the space. Moreover it has several useful properties
(see [64], the introductory parts of [6] and [7], [49], [34], [35], [36], [29], compare also
the beautiful book on real analytic functions [50]). The topology on the space of real
analytic functions plays an important role in applications (see, for instance, [51], [52], [45],
[78], [55], [56], [60], [30], [31], [37]). Since for any two domains of holomorphy ©; € Qs
the restriction map p : H>®(Q2) — H> () is nuclear (see the proof of [83, 6.4.2]),
the space H(Ky) is a DFN-space and /() is a PLN-space (therefore, it is nuclear
and has the approximation property). Using the classical result that {2 has a basis of
C?-neighbourhoods which are domains of holomorphy (for elementary presentation of
this result see [37]) one proves easily that polynomials are dense in <7 (Q), so &7(Q) is
separable.

EXAMPLE 1.5 (The Roumieu class of ultradifferentiable functions &,1(92)). We define
this class as

Sy (Q)={feC™(Q): VNeNImeN:|f|lnm< oo},

where
« 1 *
Il = sup s 1) exp (1 (el )
z€KN aeNd m
©*(t) := sup(at — ¢(t)) (the Young conjugate of ), o(t) == w(eh)

x>0
and w : [0, 00[— [0, 00[ is a continuous increasing function (a so-called weight) satisfying
the following conditions:

(@) w(2t) = O(w(t));
(8) w(t) = O(t);
(v g logt = o(w(?));

(0) ¢ is a convex function.

Let us note that for partial derivatives we use the typical multiindex notation where
la| := a1 + -+ + a4 for a € N% The considered classes were introduced in [87] and
systematically studied in [15]. The motivation comes from work of Holmgren and Gevrey
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who observed that the functions in the kernel of hypoelliptic linear partial differential
operators are better smooth than expected. This observation led to the definition of the
so-called Gevrey classes (i.e., &,y with w(t) =t'/7, p € (0,1)).

Clearly,

g{w}(Q) =projyen indpen (g){w},N,n (Q) and g{w},N,n(Q) = {f cC>(Q): ||fHN,n < OO}
are Banach spaces with norms || f||n,. It is proved in [49, Prop. 2.4] (comp. [15, Cor. 3.6,
Lemma 4.5] and [86, 1.16]), that &7, (£2) are PLN-spaces. If

/0Oo w(t) dt = 00

1+ ¢2
then the class (or the weight) is quasianalytic (i.e., there are no elements with compact

support in &7, (£)). Otherwise the class is non-quasianalytic. The spaces &} were
considered, for instance, in [9], [10], [13], [14], [24], [25], [26], [57], [66], [72] and [77] .

EXAMPLE 1.6. The class of ultradistributions of Beurling type @(’w)(ﬂ), w a non-quasi-
analytic weight, is a PLN-space (see [15] for the definition and properties).

EXAMPLE 1.7 (The Kdthe type PLS-sequence spaces A(A)). Let A = (a; n,n) be a ma-
trix of positive elements satisfying the following conditions:

(i) ajnn = ajNn+1;
)

(i) ajNn < @ N1

(i) Jim; o0 %ot = 0,
We define

AA)={z=(z;): VNeNIneN: |z|yn<oo}
where
|2l 5m = |zjlajnn.
J

Clearly,

A(A) = projyen indpen l1(a;,nn),
where [i(a; n,) denotes the weighted [;-space equipped with the norm | - ||n,,. The
condition (iii) implies that A(A) is a PLS-space. If instead of (iii)

(iv) Zj LNt g

aj,N,n

holds then A(A) is even a PLN-space.

EXAMPLE 1.8. Every closed subspace and every complete quotient of a PLS-space (PLN-
space) is of the same type (see [32, Prop. 1.2, Theorem 1.3]).

2. Sequential representations. Let us recall that a sequence of elements (f,,)nen of a
locally convex space X is a basis if every element f € X can be represented uniquely as

oo
f= Z An fns (an) a sequence of scalars (see [47, Sec. 14.2]).
n=0
There is an extensive theory of (Schauder) bases in a variety of function spaces (see the
section on special bases in function spaces due to Figiel and Wojtaszczyk in [43, pp. 561—
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597], see also [76, 29.5], [47, Sec. 14 and 21.10], [85, Chapter 8|). Of course, a sequence of
explicitly given nice basis vectors is the most helpful object which allows us to decompose
every element of the space into its elementary building blocks and, therefore, provides us
with information on the individual elements considered. Nevertheless, even if the form
of the basis vectors is unknown, the mere existence of a basis is extraordinarily useful
since it allows us to represent elements of the space by numerical sequences giving more
flexibility. Of course, the unit vectors form a basis in every Kothe type PLS-space A(A).
Surprisingly enough, for a large class of PLS-spaces it is somehow the only possible basis
as the following version of the classical Dynin-Mityagin theorem (comp. [47, 21.10.1])
shows:

THEOREM 2.1 (Domanski-Vogt [34, Th. 2.1]). If an ultrabornological PLN-space has a
basis then it is isomorphic to a Kithe type PLN-space A(A) and the basis corresponds to
the unit vector basis in A(A).

REMARK 2.2. In order to get the above reformulation of the result in [34] one has to
apply the weak basis theorem [47, Th. 14.3.4] and inspect the original proof of [34, Th.
2.1]. See also [35].

Let us recall that a locally convex space X is ultrabornological if every linear map
T:X —Y,Y alocally convex space, is continuous whenever for every Banach space
E and an operator S : E — X the composition 7' o S is continuous [76, 24.14]. In
Section 3 below we will explain how one can decide in practice when a given PLS-space
is ultrabornological.

Before we present some examples of sequential representations, we need a special
sequence space. Let v = (o), t; /" 00, be a sequence of positive numbers. By the power
series space [76, Sec. 29] we mean the Kothe sequence space:

Ar(a) =z = (2))jen: VE<r |afo:= |ajle’™ < oo}
J
It is a Fréchet-Schwartz space and its strong dual is isomorphic to the DFS-space
A(a) = fo = (@))jen: t<r [l :=suplaylet < oo},
J
THEOREM 2.3. (a) (Vogt [93]) If w is a non-quasianalytic weight, o; = w(j*/?) and
Q C R? 4s an open domain, then

Er(Q) = M@, G (Q) = Al ()]
(b) (Valdivia [92], Vogt [93]) In particular,
9'(Q) = [AL (log )]

REMARK 2.4. It is well known that s := A (logj) is isomorphic to the Schwartz test
space . for the space of tempered distributions, similarly A (logj) ~ C>°[—1,1] (see
[76, 29.5]).

Theorem 2.3 was proved by Vogt via the following three steps:

o fa(z) = e "™ n € 74, form a basis in the periodic part of &} (R?) and the
space of coefficients can be explicitly identified.
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e (periodic part of &} (R")N C &,3(Q) C (periodic part of &7,1(R%))N and both
topological embeddings can be made onto complemented subspaces.
e (Pelczyriski decomposition) If X = HY, X C Y C X, then X ~Y.

comp comp

Vogt’s approach was used also to prove existence of bases in kernels of non-elliptic
systems of partial differential equations defined on various spaces, see [54].
In the quasianalytic case the situation turns out to be completely different.

THEOREM 2.5 (Domanski-Vogt [34], [35]). A complemented subspace of < (Q) with basis
must be a DFS-space. In particular, <7 () never has a basis.

REMARK 2.6. The space <7 (12) is nuclear, separable, complete and it has the approxima-
tion property. To my best knowledge, <7 () is the first example of a separable complete
locally convex space without a basis which is natural, i.e., not constructed on purpose
(see the historical notes on the basis problem in the introduction of [34], comp. [43]).

The proof of Theorem 2.5 is based on a deep analysis of the structure of </(2),
in particular, it is proved that any Fréchet complemented subspace of 7 (£2) is finite
dimensional. On the other hand, by some combinatorial arguments, any ultrabornological
PLS-space A(A) which is not a DFS-space contains an infinite dimensional complemented
Fréchet subspace (here Example 3.4 (c) below intervenes)—the conclusion follows from
Theorem 2.1 and Example 3.4 (b) below.

PROBLEM 2.7. Let w be a quasianalytic weight. Is there any basis in &) (Q2)?

The proof of Theorem 2.3 is a highly non-constructive method of finding bases. As a
consequence, even in 2’ (€)) we have no nice explicit basis known and there is no known
explicit isomorphism of %’(€2) and (s’)Y. The second method of proving a sequential
representation was introduced by Meise [65] (comp. also [66], [67]) and we explain it on
the following example.

Let

Z|
Il = sup £l exp (<1 sl — 21,
C n
THEOREM 2.8 (Langenbruch [55]). Let F(z) := Y. a,z" be an entire function such
that |Fllo, < oo for every n € N. The kernel of the partial differential operator of
infinite order

F(D): /(@) — #(9),  FD)() =3 an(—i)" o
n=0

dx™
has a basis and it is isomorphic to A(A) with an explicitly calculable matriz A.

REMARK 2.9. A similar result in the non-quasianalytic case F'(D) : &7, (R) — &1 (R)
was obtained in [66]. For quasianalytic case see [77], [86]. For kernels of convolution
operators on Z'(R) or 7, (R) the same method was applied in [39]. Meise’s method was
also applied in [24], [25], [29] and [55].

The proof is based on the following ingredients (for simplicity we assume that F' has
only simple zeros (2, )nen)-
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o We define
Hoo(C):={f€eHC): 3IK<oo VneN |flxn< oo},

Vi={zr=(z;)eC": 3K VneN Jc||K’n::sup|9cj|exp(—KImzj|—ZTj|)<oo}7
J

Mp 5Hoo,0((c)_) OO,O((C)a MF(f) =F-f
R:Hoo(C) =Y,  R(f):=(f(2n))nen-

e We prove the “division” property: im M = ker R because F is “slowly decreasing”.

¢ Using the interpolation method of Berenstein and Taylor [3] based on solving of the
O-equation, we prove that imR =Y.

e Since via the Fourier-Laplace transform H. o ~ «/(R)" and (F(D))’ = Mg, we
observe that ker F(D) ~im R’ ~ Y.

To show how useful the existence of the basis can be, let us sketch the proof (in the
version given in [35, Th. 4.7]) of the following result.

COROLLARY 2.10 (Langenbruch [55]). Under the assumptions of Theorem 2.8, if F/(D)
has a linear continuous right inverse then for every ¢ > 0 there is a constant C' such that
for every zero z; = &; +1in; of F' we have

In;| < C + el

Let us observe that the operator F(D) has a linear continuous right inverse if and
only if ker F(D) is complemented in ./ (R) = proj y¢y indpeny Xn,n. By Theorem 2.5 and
2.8, it is a DF'S-space, which implies certain estimates between norms on Xy ,. Applying
these estimates to functions exp(—i(-, z;)) we obtain the conclusion of Corollary 2.10.

3. Open mapping, closed graph and ultrabornologicity versus Proj' functor.
Usually the open mapping theorem and the closed graph theorem are the corner stones
of any reasonable theory of locally convex spaces. It turns out that ultrabornologicity,
which was so important for sequential representations, also plays a profound role here.
The following result is an immediate consequence of the classical De Wilde’s theory see
[76, 24.30, 24.31].

THEOREM 3.1. Let X be a PLS-space and Y be an ultrabornological locally convex space.

(a) Every surjective operator T : X — Y is open.
(b) Every linear map T : Y — X with closed graph is continuous.

Now, it becomes urgent to find ready-for-application criteria for ultrabornologicity
of PLS-spaces. Let X = projyeny Xn, Xn = indnen Xn,n, where (Xnp, | - ||nn) are
Banach spaces and X are DFS-spaces. Let us consider a so-called projective spectrum
representing X:

N+1

.2 1
N
e XN Xn

N
IN-1 5 20
Xl XO?

and let iy : X — Xy be canonical maps. Let us define

i X = I Xv. @) = (ino)nen
NeN
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and
: (N1
o: [ x5 = [] X, o((zn)nen) = (iy" TN41 — TN)NeN.
NEN NeN

Clearly, im j = ker ¢ but ¢ is not necessarily surjective. We define

Proj' X := (H XN> /ima,
NeN
in fact, it depends not only on X but on the whole spectrum, nevertheless Proj’ is equal
for all spectra with ix(X) = Xy for every N € N.

The functor Proj' originates from the homological algebra and it was introduced in
the theory of locally convex spaces by Palamodov [79], [80] and Vogt [96] (comp. [97]). Its
official name sounds very abstract: the first derived functor of the functor of the projective
limit of linear spaces. By now it has become an indispensable and powerful tool in the
theory which has beautiful applications to classical problems of analysis. I recommend a
nice and extensive survey due to Wengenroth [101] for the homological definition of the
functor, its equivalence to our definition, various characterizations of the vanishing of it
and plenty of other results.

The following theorem summarizes the long development of the theory and provides
us with calculable criteria of ultrabornologicity.

THEOREM 3.2. For a spectrum of DFS-spaces like above such that inX = Xy for every
N € N, the following assertions are equivalent:

(a) Proj' X =0;

(b) X is ultrabornological;

(c) X is reflexive;

(d) ¥V N 3 B bounded absolutely convex subset of Xy 3 M > N

iMXy CinX + B;
(e) VK ILVMIEVIImC>0Vye X))

lyllz.: < Cmax (1yllirm: W)

where || - ||* denotes the dual norm.

REMARK 3.3. The above result has many authors; see [101]. In particular, (a)=-(b)=-(c)
=(e) were proved by Vogt [96], [97]; (¢)=-(a) is due to Langenbruch [60], see also [101,
Th. 3.2.18] (comp. earlier version due to Wengenroth [98]); (a)=-(d) was obtained by
Retakh [84]; (d)=-(a) was obtained by Wengenroth [99]. For more refined criteria like (d)
and (e) see [27], [41], [42] and [101].
ExXAMPLE 3.4. The following PLS-spaces are ultrabornological:
(a) &7y (92), _@(’w)(ﬂ) and 2’ for non-quasianalytic weights w (use the sequential rep-
resentations as products of DFS-spaces, see Theorem 2.3);

(b) (Martineau [64]) <7(€2) for arbitrary 2 and (Résner [86]) &7, (€2) for Q convex and
w a quasianalytic weight;
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(c) (Vogt [96], [97]; see [101, p. 35]) A(A) is ultrabornological if and only if

1 1 1
VEILVYM3IkVIImC>0Vj §C’max< , )
aj,L,l aj,M,m 4j K,k

There are also negative examples.
ExXAMPLE 3.5. The following spaces X are not ultrabornological.
(a) The kernel of the differential operator 53—;2 + aT; > g (Q) — 2'(Q) acting

T 022

on the set Q1= {(z,y,2) e R? 122 —y?2 — 22 -1 < 8} C R3 is a closed subspace
with Proj' # 0. Indeed, by [48, Example on p. 802] and [38, Proof of Cor. 3|,
2'()/ ker P(D) is not complete. Then, by [32, Cor. 1.4], Proj' ker P(D) # 0. Any
other non-surjective linear partial differential operator with constant coefficients
P(D): 2'(Q2) — 2'(Q2) which is surjective as an operator P(D) : C*°(Q) — C>*(2)
will work as well (see [38] and [32]).

(b) There is a real analytic map ¢ : R? — R? such that {fop : f € &/ (R?)} is a closed
non-ultrabornological subspace of .7 (R?), see [30, Ex. 3.8, Remark 3.9].

(c) By [32, Cor. 1.4], if a quotient space Y/X is not complete for a closed subspace X
of an ultrabornological PLS-space Y then X is a non-ultrabornological PLS-space.
The first example of a non-complete quotient of 2’(f2) was given by [44].

To show the strength of Theorem 3.2 we present a very elegant proof due to Vogt
that Proj' &/ (R) = 0 (comp. also [35, 1.5]).

We will use condition (d) in Theorem 3.2. Observe that <7 (R) = proj ey H([—N, NJ).
If f e H[—M,M]) then f € H((—M — 2¢, M + 2¢) x i(—2¢,2¢)) for some € > 0. Let ~
(denoted by ) be horizontal and let n (denoted by — - - -) be vertical sides of the
rectangle (—M — e, M +¢) X (—¢,¢):

M —N N M

Then, by the Cauchy formula,

271 w—z
We define
fi(z) == QLM/Y Q‘j(iv)zdw € o (R)
fa(z) == 2%” /77 %dw € H*(B(0, M +¢/2))

Clearly, there is a polynomial P such that |fo— P| <1on B(0,M):={2€ C: |z| < M}.
Finally,

f=(i+P)+(f2—P),
where fi — P € &/(R) and f> + P belongs to the 1-ball in H*(B(0, M)) which is the
bounded set B in H([—N, N]) we are looking for. This completes the proof.
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The problem of surjectivity of classical operators was the main reason for introducing
Proj! by Palamodov [79] into the theory of locally convex spaces. Let us recall that the
following diagram of locally convex spaces and operators

0 X 2.y %,z 0
is exact if the image of every map is equal to the kernel of the next map. The diagram is
topologically exact if, additionally, all maps are open onto their images.

Let us consider an arbitrary operator (= linear continuous map) 7': Y — Z, Y, Z
PLS-spaces. It follows from Theorem 3.2 and 3.1 that:

COROLLARY 3.6. If Proj' Z=0,T:Y — Z as above and surjective, then T is open.

Let us assume additionally that 7" is open onto a dense subspace of Z. Then one can
construct easily the following commutative diagram with all the rows except the first one
topologically exact (X = kerT; X = projyeny Xn; Y = projyeny Yn; Z = projyen Zn;
Xn, Yn, Zn DFS-spaces), for a simple argument see [32, pp. 63-64]:

0o . x I vy T, gz

If the above diagram exists then we say that T is locally surjective.
The following result is one of the basic sources of applicability of Proj'.

THEOREM 3.7 (Palamodov [79]). Let T be locally surjective. If Proj' X = 0 then T is
surjective. If T is surjective and Proj' Y = 0 then Proj' X = 0.

COROLLARY 3.8 (Comp. [32, Cor. 1.4]). LetY be a PLS-space and X its closed subspace.
The quotient Y/X is complete (or, equivalently, a PLS-space) whenever Proj' X =0. If
Proj' Y = 0 then the converse implication holds as well.

4. Surjectivity of operators. Floret [38] observed in 1976 that a linear partial dif-
ferential operator with constant coefficients P(D) : 2'(Q) — 2'(2) is surjective if and
only if 2’(Q?)/ ker P(D) is complete and P(D) : C*°(Q) — C*°(£2) is surjective. Now, by
Cor. 3.8, we know that the first condition is equivalent to Proj* ker P(D) = 0. Today the
functor Proj' and criteria like (d) and (e) in Theorem 3.2 have become very powerful
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tools for proving surjectivity of linear partial differential operators, convolution and other
operators (see, for instance, [101, Sec. 3.4], [13], [14], [24], [25], [26], [31, Sec. 4], [39], [60],
[77], [79], [86], [97], [99])-

THEOREM 4.1 (Braun-Meise-Vogt [26], Braun [13], [14], Rosner [86]). Let w be an arbi-
trary weight, Q@ C R? a convex open subset, V := {z € C? : P(—z) = 0}. Then the
following are equivalent:

(a) P(D) : &y () — &7y (Q) is surjective;

(b) Proj' ker P(D) = 0 (i.e., ker P(D) ultrabornological);

(c) The Phragmén-Lindeldf type condition:

VKeEN 36>0,QeN Ve, L>0 3C V ¢ plurisubharmonic on V: (a)+(8) = (v)

() VzeV ¢(z) <supyek(Imz,y) + dw(|z])
(B) YVzeV o(z) <L|Imz|
(v) VzeV ¢(z) <supyeqllmz,y) +ew(|z]) + C.

REMARK 4.2. The case of w non-quasianalytic was proved in [26] and [13] and the quasi-
analytic case in [86]. See also [14], [24] and [12]. In fact, (a)<>(b) follows from the general
theory of Proj' knowing that P(D) is locally surjective and Proj' 1y (Q) = 0 (see
Theorem 3.7). Especially, the second part is far from being trivial. In order to get (c),
one has to translate via the Fourier-Laplace transform the condition (e) in Theorem
3.2 to some condition on holomorphic functions f on V' and then to some condition on
plurisubharmonic functions log |f| on V [71]. It is again not obvious at all.

It seems that the paper of Hérmander [45] on the characterization of surjectivity in
case of P(D) : &/ () — o/ (Q), ) convex, is the first one in which conditions of type (c)
appeared in the context of surjectivity of partial differential operators. For Q) = R? it is
known that P(D) : &7(Q) — </(Q) is always surjective [28]. Evaluation of the obtained
conditions for 2 = R¢ was obtained for d = 3 by Zampieri [103] and Braun [11]; for
d = 4 by Braun, Meise and Taylor in [20] and [23]. Quite recently Langenbruch [60]
(comp. earlier paper [59]) has characterized surjectivity of P(D) : & (Q2) — «7(2),  an
arbitrary domain in R?, using also conditions similar in spirit to the above ones. Other
characterizations of surjectivity of P(D) : &7,3(Q2) — &7.3(€2) in the non-quasianalytic
case but for arbitrary open 2 were given by Langenbruch in [57], [58]. Various Phragmén-
Lindel6f type conditions were analyzed in a sequence of papers (see, for instance, [11],
[12], [13], [14], [16], [17], [18], [22], [23], [24], [26], [45], [68], [70], [71], [72], [75], [82], [86],
[103]).

Similar methods work also for convolution operators.

THEOREM 4.3 (Napalkov-Rudakov [78]). Let F(D) be like in Theorem 2.8. The infinite
order differential operator F(D) : o/ (R) — o/ (R) is surjective if and only if there is
r: Ry — Ry, r(x) = o(z), 6 > 0 such that if F(z) = 0 then either |Imz| > §|Rez| or
[Im z| < r(|z]).

REMARK 4.4. The theorem above was generalized for arbitrary convolution operators
on &/ (R) by Langenbruch [56] and for quasianalytic classes &, (R) by Meyer [77]. The
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result for non-quasianalytic classes &, (R) and convolution operators is contained in
[25]. A similar result for convolution operators on %/, (R) is proved in [39].

The proof of Theorem 4.3 uses the following three main ingredients:

e We prove local surjectivity of F(D).

e We apply Theorem 2.8 to get an explicit sequential representation of ker F'(D) as
A(A).

e We apply Proj' machinery via Example 3.4 (c) and Theorem 3.7.

5. Dependence of the solution on parameters. The last section of the survey will
be devoted to the study of dependence on parameters of solutions of differential equations.
It turns out that the developed theory is also useful in this problem. Let us consider a
linear partial differential equation

1) P(Dyu= f

One of the typical problems was posed by L. Schwartz, who asked when there exists a
linear continuous right inverse for P(D) (or, when we can make the solution u depend
linearly and continuously on the right hand side of (1)). This problem was solved by
Meise, Taylor and Vogt [70] for P(D) : 2" — 2" and in [72] for P(D) : 7, — %, or
P(D) : 81 () — &7,3(Q) for non-quasianalytic w. By now there are plenty of papers
evaluating the conditions obtained for given polynomials P (see, for instance, [18], [19],
[21], [40], [69], [73], [74]). The characterizations are given in terms of Phragmén-Lindel6f
conditions similar to those characterizing surjectivity of partial differential operators on
&7wy- This is not just a coincidence. It is shown in [13] that for a non-quasianalytic
weight w and a homogeneous polynomial P the differential operator P(D) : &,y(RY) —
&y (RY) has a linear continuous right inverse if and only if P(D) : o (RM) — o/ (RM)
(or, P(D) : &y (RM) — &,y (RM)) is surjective for M > N. A similar problem was also
considered for convolution operators on <7 (R) [55]. In case when (1) is an overdetermined
system of equations we obtain the following complex, P(D) = Py(D):

0 —— ker Py(D) —— /() 222 grq) 22 9@

2P g0y —— o

Py (D)
et

(2)

The book of Tarkhanov [89] explains in detail the theory of such complexes providing
plenty of examples.
Surprisingly we have the following very strong result.

THEOREM 5.1 (Domanski-Vogt [33]). If (2) is an exact complez then the operators
have linear continuous right inverses for every j > 1.

REMARK 5.2. The result holds also for complexes over 7 ,(£2). The most curious fact
is that P;(D) being differential operators plays no role! A condition characterizing the
existence of a linear continuous right inverse for Py(D) is also obtained in [33]. Earlier,
Palamodov [82] proved this result for {2 convex and differential complexes using a lot of
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“hard analysis” (Fourier-Laplace transform) but he obtained a better condition for right
inverse of Py(D) in this special case in terms of Phragmén-Lindeldf type conditions.

The proof of Theorem 5.1 is purely functional analytic. First, one proves inductively
that the exact complex (2) must be topologically exact. Indeed, since Proj' 2'(Q) = 0
(see Example 3.4 (a)), P,,(D) is open by Corollary 3.6. By Theorem 3.7, Proj* (ker P, (D))
= 0, but ker P,,(D) = im P,,_1(D) and again P,,_1(D) is open. Step by step the whole
complex turns out to be topologically exact. In the next part of the proof one uses the
sequential representation of 2(2) ~ (s')N (Theorem 2.3). This representation allows us
to prove, by a repeated application of the Vogt-Wagner (2)-(DN) splitting theorem [76,
30.1], the following result which seems to be the most difficult part of the story:

THEOREM 5.3 (Wengenroth [100], Domarnski-Vogt [32]). If X, Y, Z are PLS-spaces, X
is a quotient of 2'(Q)) and Z is a subspace of 2'(QY), then every topologically exact se-
quence of the form

0—-X—-Y—>272-0

splits.

Finally, Theorem 5.1 follows from Theorem 5.3 applied to the sequence

P;(D)
— 7

0 —— ker P;(D) —— 2'(Q) im P;(D) —— 0.

REMARK 5.4. Let us mention here that Proj' stands behind the whole splitting business
(see [95], comp. [42] and [101]) for Fréchet spaces, i.e., also behind the Vogt-Wagner
Theorem.

Another problem of a similar form was posed by Hérmander [46, vol. II, p. 59]. Let
P(z,D)= > aa(z)(=0)*0%,
lo|<m
a4 (z) holomorphic, be a linear partial differential operator depending analytically on a
parameter z € U. Let § be the Dirac distribution. Hérmander asked if it is possible to
find a holomorphic map g : U — 2'(R%) such that
P(z,D)g(z) = .
Treves (see [90] and [91]) proved that P(z, D) must be “equally strong” for every z

and that this necessary condition is sufficient for local dependence.

THEOREM 5.5 (Mantlik [62], [63]). The answer to Hérmander’s question is yes for every
Stein manifold U whenever P(z, D) is of “equal strength” for every z € U.

We finish with a result on analytic dependence of solutions of P(D) : &7 (2) — <7/ (Q2)
using the theory of vector valued real analytic functions:

THEOREM 5.6 (Bonet-Domanski [6], [7]). Let U be a Stein manifold with the strong Li-
ouville property. Let T : o/ (1) — 7 (Q2) be a surjective operator. For every holomorphic
function f € H({U, </ (Q2)) there is g € H(U, %/ (1)) such that

T(9(2)) = f(2) for every z € U.
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REMARK 5.7. A Stein manifold U has the strong Liouville property if every plurisubhar-
monic function on U bounded from above is constant. As I learned from J. Siciak (personal
communication) there are examples of domains of holomorphy in C? which have the stan-
dard Liouville property (= every bounded holomorphic function is constant) but without
the strong Liouville property.

As we have seen, behind Theorem 5.1 stands a splitting Theorem 5.3. Similarly, one
can get vector valued surjectivity results (like Theorem 5.6) using other splitting results.
The splitting theory for Fréchet spaces is rather complete, see [95], [94], [42]. We have
even presentations in a book form in [76] and [101].

PROBLEM 5.8. Construct a splitting theory for PLS-spaces, i.e., find pairs of PLS-spaces
E, F such that every short exact sequence

0 F X E 0

splits.

The problem is of special interest if one of the spaces E or F' is a classical PLS-space
like 2, .@éw), Erwy, (). So far we have only some scattered results which do not give
any complete theory. In [32] and [100] (comp. [101, Sec. 5.3]) some splitting results in the
PLS-category are given in case F or F is isomorphic to 2'(2) or E ~ w (= the space of
all sequences). This theory also works for 7 . The dissertation of Kunkle [53] gives a
surprisingly complete solution for the case where £ and I are the so-called power series
Ko6the PLS-sequence spaces. It is based on an analogue of Retakh’s characterization of the
vanishing of Proj* (Theorem 3.2 (d)) for webbed spaces, see [41]. Other specific splitting
results in the category of PLS-spaces are contained in [29] and in some unpublished notes.

The proof of Theorem 5.6 is based on the observation done in [6] that, in fact, we are
looking for surjectivity of T'® id : &(Q1,X) — &7 (Q2, X) for X = H(U), where

(X)) =d (V)@ X ={f:Q—=X: Vue X uofeca(Q)}

On the other hand, using heavily the Proj' machinery, one can prove [6, Th. 36] that
T®id: B (), X) — B (Q,X) is surjective where

B (2, X):={f:Q— X : [ analytic}.

These observations reduce our problem to the question when o7 (2, X) = Z47(Q, X).
THEOREM 5.9 (Bonet-Domanski [6], [7]). For a Fréchet space (X, (|| - ||n)nen) we have
A (Q,X) =B (Q,X)

if and only if X € (DN), i.e.,
R VIAmC 2 <l el

REMARK 5.10. It is known that H(U) has (DN) if and only if U has the strong Liouville
property [102].

A completely different field of applications of vector valued real analytic functions one
can find in [51] and [52]. For more information on vector valued real analytic functions,
see [5], [8] and [37].
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Theorem 5.9 has an unexpected link to the mathematical work of Wtadystaw Orlicz.
Soon after I had just started my study of the spaces of real analytic functions I found
the following admirable result:

THEOREM 5.11 (Alexiewicz-Orlicz [1]). For every Banach space X we have

Bt (O, X) = o (Q, X).

Acknowledgements. The author is very indebted to J. Bonet (Valencia), M. Lan-
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