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1. Introduction. This paper is a survey on some lattice and symmetric structure prop-
erties of Orlicz function spaces and rearrangement invariant (r.i.) Banach function spaces.
Our main goals are to present separable Orlicz function spaces L0, 1] containing iso-
morphically scales of LP-spaces for p > 2, to study lattice-isomorphic embeddings of
LP-spaces into separable r.i. function spaces on [0,1] (for 1 < p < o0) and to describe
properties of the set Pr of scalars p such that LP embeds lattice-isomorphically into a
separable Orlicz function space L%'[0, 1]. The first part of the paper reviews several central
results on the isomorphic theory of Orlicz spaces. Some open questions are included.

It is a well-known fact that several lattice and structure properties of Orlicz spaces
can be described in terms of the Matuszewska-Orlicz ([M-O]) indices of Orlicz functions.
These indices and their extensions are also a powerful tool in other areas (compactness
of operators, interpolation,... cf. [G], [K-T], [K-M-P], [K-P-S], [M], [Mu]).

The structure of separable r.i. function spaces has been studied in the Memoirs of
Johnson, Maurey, Schechtman and Tzafriri [J-M-S-T| and Kalton [K 93] (also Linden-
strauss and Tzafriri [L-T 79]). While in the case p < 2 isomorphic embeddings of the
function spaces L? into separable r.i. function spaces on [0, 1] are well known and abun-
dant (using probabilistic techniques), in the case p > 2 there is a strong shortage of
separable r.i. function spaces on [0, 1] containing isomorphic copies of LP-spaces. Thus
the existence of an isomorphic embedding of L? (for p > 2) into a separable r.i. function
space E|0, 1] implies the existence of a sublattice of the r.i. function space F|[0, 1] which is
lattice-isomorphic to LP ([H-K]). Only quite recently it has been found that a certain class
of separable Orlicz function spaces L%'[0, 1] have lattice-isomorphic LP-sublattices, whose
construction requires some combinatorial facts ([H-R 98]). We will describe here these
results explaining the connection of this topic with the study of discrete Orlicz spaces
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¢F(I) with uncountable symmetric basis, more precisely with isomorphic embeddings of
¢P(T')-spaces into Orlicz spaces ¢ (I) for uncountable sets I' C I and 1 < p < oo ([H-T],
[H-R 95]).

We also present universality type results for Orlicz function spaces L'[0,1] and for
discrete Orlicz spaces ¢7'(I) with prefixed Matuszewska-Orlicz indices (Theorems 4.1 and
6.1) obtained recently with B. Rodriguez-Salinas ([H-R 03]). Recall that in the sequence
case universal Orlicz sequence spaces were constructed by Lindenstrauss and Tzafriri in
[L-T 72] (see below Theorem 2.1), and that the case of Orlicz function spaces on the
unbounded interval [0,00) was considered in [H-Ru] by C. Ruiz and the author (see
Theorem 3.3).

The notation and terminology in the paper are standard and follow the monographs
[L-T 77, 79]. The text is an expanded version of the talk given at the W. Orlicz Cente-
nary Conference and Function Spaces VII (Poznan, July 2003). The author would like
to express his gratitude to the Organizing Committee for the invitation and the great
hospitality.

2. Orlicz sequence spaces. We start by recalling some classical results on the iso-
morphic structure of Orlicz sequence spaces. We concentrate on separable Banach Orlicz
sequence spaces £¥, hence the Matuszewska-Orlicz indices of the Orlicz function F at 0
satisfy 1 < ap < fBp < oo and the canonical basis is a symmetric basis of £/. The rich
structure theory of Orlicz sequence spaces was developed by Lindberg (|Li]), and Linden-
strauss and Tzafriri in the early seventies ([L-T 71], [L-T 72], [L-T 73]). They introduced

the associated sets
F(tx)
Erq = 0<t<L1
o { E(1) - }
and Cr; = conv(Ep 1), which are compact sets in C[0,1]. A central result in the study
of the structure of Orlicz sequence spaces ¢!, due to Lindenstrauss and Tzafriri [LT 73],
is the following:

An Orlicz sequence space (¥ has a subspace isomorphic to another Orlicz sequence
space (¢ if and only if the function G is equivalent near 0 to a function of the set Cr ;.
In a short form: /¥ > (¢ < G € Cpi.

In particular, for the ¢P-spaces, 1 < p < oo, the following characterization holds:
(F S & 2P € Cpy e p€lar, Br).

The behavior of complemented ¢P-subspaces in Orlicz sequence spaces is more involved.
As these spaces have a symmetric basis, the natural way for getting a projection onto a
subspace is by representing such a subspace as the span of a block basis with constant
coefficients and using the canonical averaging projection. Thus we have:

2P € Bpy =05 > P
~c

However, this form is not the only way to do it. Kalton [K 77] showed that the converse
is not true for p > 1: there exist Orlicz sequence spaces ¢ with 2P ¢ Er; which contain
a complemented ¢P-subspace. This is obtained by constructing Orlicz sequence spaces /£
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(very close to ¢7) such that 27 ¢ Er; and the canonical inclusion /£ C ¢? is not a strictly
singular operator, in this way we can carry the orthogonal projection defined on the
space /P to the space (. Briefly: the space ¢/ has a singular (’-complemented copy.

For a fixed Orlicz sequence space ¢ let us denote by P,r the set of scalars p such
that /7 embeds as a complemented subspace into ¢, i.e.

Pyr = {p >1: o Ep} C [OéF,ﬁF].

The sets Pyr have a varied geometry. Indeed, in many natural examples of Orlicz
functions the set P,r coincides with the whole interval [aF, Sr]. On the other hand,
Lindenstrauss and Tzafriri [L-T 73] proved that the set P, can be empty. This happens
for the class of minimal Orlicz functions at 0 (recall that a function F is minimal at
0 if Ep1 = Eg; for every function G € Ep1). Minimal Orlicz sequence spaces oF
(#£ ¢?,1 < p < o0) have uncountably many mutually nonequivalent symmetric bases
([L-T 73]). Later on, in ([H-R 88]), Rodriguez-Salinas and the author showed that the
set Pyr can be quite arbitrary, precisely it can be any closed subset of any given interval
[, BF|. Moreover, this can be shown by constructing Orlicz sequence spaces ¢ with
only singular complemented copies of ¢ ([H-R 89]). It is an open question whether the
set Pyr is always closed.

There are other interesting open problems concerning the structure of Orlicz sequence
spaces. For instance, whether the class of strongly-minimal Orlicz functions (Kalton [K
90]) provides examples of prime Orlicz sequence spaces (recall that a Banach space F is
prime if every infinite-dimensional complemented subspace of E is isomorphic to E). Up
to now, the only known prime spaces with an unconditional basis are the spaces ¢y and
P for 1 < p < oo. It is unknown whether the Orlicz sequence spaces ¢f» are prime, where

Fy(z) = :c”exp{ i (1 — cos(m logaz/2")) }

The existence of universal Orlicz sequence spaces with given indices was proved by
Lindenstrauss and Tzafriri in ([L-T 72]):

THEOREM 2.1. There exist Orlicz sequence spaces (¥ with given indices 1 < a < 3 < o0,
such that every Orlicz sequence space (<, with indices between o and [ is isomorphic to
a complemented subspace of the space (X (more precisely G € Er1).

There is uniqueness of these universal Orlicz sequence spaces ¢/ with given indices.
This follows easily from the complementation (using the Pelczynski decomposition
method). These universal spaces ¢’ provide interesting examples of Banach spaces with
a symmetric basis, different from ¢, which are isomorphic to their dual spaces (taking «
and [ to be conjugated indices, i.e. 1/a+1/8 =1).

3. Orlicz function spaces on [0, 1]. We now consider separable Orlicz function spaces
L¥[0,1]. The study of the structure of Orlicz function spaces was initiated by Linden-
strauss and Tzafriri in [L-T 73| introducing suitable EF1s CF, sets and using the Kadec-
Pelczyniski disjointification method. The characterization of ¢P-subspaces is the following:

L¥[0,1] > & < p € [oF, BF] U (B, 2) U {2},
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where a%’ and B denote the Matuszewska-Orlicz indices of the function F' at oo. The
case p = 2 is clear (using the Rademacher functions and Khintchine inequality). And the
case of p belonging to the interval (6%°,2) is obtained via p-stable random variables.

For a fixed Orlicz function space L[0,1], we consider the set Ppr of p’s such that
L¥[0,1] has a complemented (P-subspace, i.e.

Pyr:={p>1:L"[0,1] > ¢}

The geometry of the sets P r can be varied. It is clear, by duality, that P, r C [a5°, 6%°]U
{2}. The existence of Orlicz function spaces L0, 1] where the set P, r is the singleton
{2} was proved by Peirats and the author [H-P] by introducing minimal Orlicz function
spaces. Later on in [H-R 88, 89] it was proved that the set Prr can be any closed subset
of the interval [a%, 3%°] union {2}. Furthermore this can be done either with natural
(P-copies (averaging projections) or with singular ¢(P-copies. It is unknown whether the
set Prr is always closed. Other distinguished classes of complemented subspaces in Orlicz
function spacesL?'[0, 1] have been studied in e.g. [Ru], [Ra] and [A-M-S].

We concentrate now on discussing isomorphic embeddings of the function spaces
LP|0, 1] into separable Orlicz function spaces L'[0, 1] and, more general, into separable r.i.
function spaces E[0,1] (i.e. L¥[0,1] D L? and E[0,1] D L?). Note that there is no ambi-

guity in this short notation since LP-spaces on [0, 1] and on [0, c0) are lattice-isomorphic.
A systematic study of the symmetric structure of r.i. function spaces, in particular Or-
licz spaces, was carried out in the Memoir of Johnson, Maurey, Schechtman and Tzafriri
[J-M-S-T]. A remarkable predecessor was the work of Bretagnolle and Dacunha-Castelle
[B-Dc¢]. Other important contributions are due to Kalton ([K 79], [K 93]). We present
here a sample of some representative results chosen by their relevance to our purposes.

It turns out that the structure of r.i. function spaces on [0, 1] is quite more rigid than
those in the sequence case or in the case of function spaces on the unbounded [0, c0)
interval. Thus ([J-M-S-T]):

THEOREM 3.1. Let E[0,1] be an r.i. function space which does not contain isomorphic
copies of £5° uniformly and F'[0, 1] be a separable r.i. function space (# Lo) with nontrivial
indices. If E[0,1] D F[0,1] then either E[0,1] D F[0,1] or the Haar basis of F|0,1] is
equivalent to a disjoint sequence in E|0,1].

In particular for Orlicz spaces LY'[0, 1], due to the impossibility of embedding isomor-
phically Orlicz function spaces into sequence spaces, we have that L'[0,1] > L[0,1]

(# L?) = LF[0,1] D L¢[0,1]. This inclusion property obtained from the existence of
an isomorphic embedding is also true when we have disjointness preserving operators
between order continuous r.i. function spaces on [0, 1] (in particular for lattice homo-
morphisms [A]). It follows that reflexive Orlicz function spaces on [0, 1] have a unique
representation as Orlicz function spaces:

LF10,1] = L9[0,1] = L*[0,1] = LF[0,1]

In general all separable Orlicz function spaces on [0, 1] have a unique structure as r.i.
function spaces on [0, 1] (see the recent survey of Tzafriri [Tz]).
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On the other hand, an Orlicz function space L[0,1] cannot contain complemented
copies of other Orlicz function spaces: if LF[0,1] D L¢[0,1](# L?) then L¥[0,1] =

L€[0, 1]. Moreover, reflexive Orlicz function spaces L'[0, 1] are primary spaces (i.e. every
decomposition of L¥[0,1] into a direct sum of two closed subspaces has at least one of
the factors isomorphic to L0, 1]).

A general result of Kalton [K 93] (obtained earlier under some extra conditions in
[K 79] and also in [J-M-S-T)) claims that a separable r.i. function space E[0,1] contains
an isomorphic copy of L' if and only if E[0,1] = L[0,1], up to an equivalent renorming.
This is obtained in two steps: first, a separable r.i. function space E[0,1] containing an
isomorphic copy of L' must also contain a lattice-isomorphic copy of L'; from this it is
deduced next that E[0,1] = L'[0, 1] up to an equivalent renorming, i.e.

E[0,1] D> L' = E[0,1] > L'= E[0,1] = L'[0,1]
~ ~e

We will present several extensions of these statements, replacing the space L' by L?
for 1 < p < co under some suitable conditions.

A useful criterion for the lattice-embedding of function spaces into r.i. function spaces
E(I) over an interval I was given in ([J-M-S-T]). Let g be a positive normalized function,
we can consider the sublattice generated by the function g, defined by E,(I) = {f :
fxge E(IxI)} since E(I x I) is lattice isomorphic to E(I). In the case of Orlicz
function spaces E(I) = L*(I) it turns out that the sublattice (L"), (I) coincides with an
Orlicz function space L’%(I) associated to a certain Orlicz function F,. Let us denote by
> p1 the set of Orlicz functions G of the form

6= [~ Tt

for > 1, where 4 is a probability measure on (0, c0) such that [ ﬁdu(s) < 1. Thus
we have the following ([J-M-S-T] Thm 7.7):

THEOREM 3.2. Given a separable Orlicz function space L' [0,1], if G€ "7 then L7[0,1]
D> LY[0,1]. Furthermore, if L¥'[0,1] is p-convex for some p > 2 and E[0,1](# L?) is an
~¢

r.4. function space which embeds isomorphically into L¥[0,1], then E[0,1] = LE[0,1], up
to an equivalent renorming, for some Orlicz function G € Z?l

In general, the sets 2?1 are noncompact and that is an obstacle when looking inside
them for a concrete function.

Universal Orlicz function spaces on [0,00). Before we go any further let us briefly men-
tion some results for function spaces on [0, c0), showing the abundance of separable r.i.
function spaces on [0, 00) containing LP-sublattices ( 1 < p < 00).

The structure of separable Orlicz function spaces L[0, ) has several peculiar and
interesting properties which have been studied in [J-M-S-T], [N], [H-R 92], [K 93] and [H-
S]. For example, the characterization of ¢P-subspaces in terms of the Matuszewska-Orlicz
indices of the function at 0 and at co is now:

LF[OaOO) 2£p<:>p€ [OzF,ﬂF]U[OL%O,ﬂ%o}U( %072)U{2}U(5}070aaF)'
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Universal Orlicz function spaces L'[0,00) with prescribed indices were given by C.
Ruiz and the author in [H-Ru]: the classical spaces L + L7, regarded as the Orlicz
function spaces L= /@’ [0,00), are universal in the following sense:

THEOREM 3.3. Given 1 < a < 3 < 00, the space L + L” is lattice universal for the class
of all Orlicz function spaces L¢[0, 00) with indices strictly between o and 3, i.e.

L*+ L 5 LE)0,00).
~/f

In particular L® + L? > LP for every a < p < (3. The embedding behavior is varied
~

in the extreme cases of Orlicz spaces L[0,00) with one of their indices equal to o or 3.
For example if @ < 2 < S or if 2 < o < f3, the space L? is not isomorphic to a subspace
of L* + LA([G-H], [H-K])

The proof uses some “interpolation" arguments connecting the behavior of a function
near 0 and near oo in order to represent every Orlicz function G in an integral form with
respect to the function z® A z”, and some ideas from the works [B-Dc| and [J-M-S-T]|
(also [D 90] for the special scale L? + LP).

Returning to [0, 1], the study of isomorphic embeddings of L?-spaces into separable r.i.
function spaces on [0, 1] leads to distinguish essentially two different cases: the 2-concave
case and the opposite.

The 2-concave case on [0,1]. In the 2-concave case there is a large amount of separable
r.i. function spaces containing isomorphically scales of LP-spaces for p < 2. This is a well-
known fact and requires some probabilistic tools (Poisson process, or p-stable variables
and ultrapowers). Thus ([J-M-S-T| Section 8, [L-T 79] p. 212):

Let E[0, 1] be an r.i.function space. If the function =/ € E|[0,1] for some 1 < p < 2,
then E[0,1] D LP (isometrically).

In particular for 1 < g < p < 2, we have L?[0,1] D LP (isometrically), a classical

result of Bretagnolle, Dacunha-Castelle and Krivine [B-Dc-K].

Numerous authors have carefully analyzed which other classical function spaces with
(and without) symmetric structure can be isomorphically embedded into the spaces
L1[0,1] for 1 < g < 2. For example for the class of Orlicz function spaces we have :
L'[0,1] D L¥[0,1] if and only if the Orlicz space L*'[0,1] is 2-concave (Bretagnolle and
Dacunha-Castelle [B-Dc], Schiitt [S 95]). For the Lorentz function space class, similar
results were obtained by Schiitt in [S 89] (see also Raynaud and Schiitt [R-S], the recent
survey of Dilworth [D 01] and the references there).

The non-2-concave case on [0,1]. In contrast with the above case, there is a strong
shortage of separable r.i. function spaces on [0, 1] containing isomorphically scales of LP-
spaces, for p > 2. Recall for example that for the spaces L]0, 1] (with ¢ > 2), the Banach
lattices that can be isomorphically embedded into L?0, 1] are essentially L7(u)-spaces for
some suitable measures p (cf. [L-T 79] p. 202). In particular, the r.i. function spaces on
[0, 1] which are isomorphic to a subspace of L?[0, 1], for ¢ > 2, are just L?[0, 1] or L2[0,1]
(|[J-M-S-T| p. 41, [Tz)).
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Given any 2 < p < o0, for quite a time no example was known of a separable r.i.
function space E[0,1] (# L?[0,1]) such that E[0,1] D LP. The impossibility of finding
such examples inside the class of Lorentz function spaces was showed by Carothers ([C
81, 87]). In [H-R 95], Rodriguez-Salinas and the author constructed the first (nontrivial)
examples of separable r.i. function spaces (indeed Orlicz spaces L’'[0,1]) containing an
isomorphic copy of LP for a given p > 2. This shortage of r.i. function spaces is related
to the following fact proved by Kalton and the author in ([H-K] p. 827):

THEOREM 3.4. Let E[0,1] be a r.i.function space with some concavity and p-convez for
some p > 2. If a r.i. function space F[0,1](# L?) is isomorphic to a subspace of E[0,1]
then F[0,1] is lattice-isomorphic to a sublattice of E[0,1] .

In particular, the existence of an isomorphic embedding of an LP-space for p > 2 into
a separable r.i. function space E|0, 1] implies that there exists also a lattice-isomorphic
embedding of L? into E[0,1] (ie. for 2 < p < o0, E[0,1] D L? = E[0,1] D LP).

This phenomenon occurs also in other situations. Thus for Banach lattfces which are
complemented subspaces of separable r.i. function spaces ([H-K]| p. 831): Let E[0,1] be
a separable T.i. function space which contains no complemented sublattice isomorphic to
2. If a p-convex Banach lattice F, for some p > 2, is isomorphic to a complemented
subspace of E|0,1] then F is lattice-isomorphic to a complemented sublattice of E|0,1].

We finish this section by mentioning that Kalton’s result on isomorphic L!-embeddings
(given in Section 3) can be extended to isomorphic LP-embeddings for p > 2 under some
extra conditions ([H-K] p. 828).

THEOREM 3.5. (1) If a p-convez (p > 2) r.i. function space E[0, 1], with some concavity
contains an isomorphic copy of L, then E[0,1] = LP[0, 1], up to an equivalent renorming.

(%) If a p-concave r.i. function space E|0,1] which is also r-convezx (for some r > 2),
contains an isomorphic copy of L, then E[0,1] = LP[0, 1], up to an equivalent renorming.

4. Universal Orlicz function spaces L!'[0, 1]. The existence of separable Orlicz func-
tion spaces L]0, 1] containing lattice-isomorphically scales of LP-spaces for different val-
ues of p has been proved in [H-R9 8]. In particular for scalars p > 2 this provided the
first examples of separable r.i. function spaces on [0, 1] containing isomorphically scales
of LP-spaces. A more general result on universality given recently in [H-R 03] is the
following:

THEOREM 4.1. Given 1 < a < 8 < oo, there exists an Orlicz function space L¥~#[0,1],
with indices a%‘;ﬁ =« and ﬁ}’iﬁ = (3, such that every a-convex 3-concave Orlicz function
space LE[0, 1] is lattice-isomorphic to a sublattice of L¥#[0,1].

Thus the spaces L7~¢[0,1] satisfy Lf~#[0,1] > L0, 1], in particular for every o <
p < 3 we have Lf=5[0,1] O LP. ‘

The above universal furfction spaces L=.#[0,1] are neither a-convex nor (-concave

(see Theorem 3.5). On the other hand, the hypothesis of a-convexity and -concavity of
the function spaces LZ[0, 1] cannot be removed.
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The method used in the proof of last Theorem involves some combinatorial facts
and properties of Banach spaces with uncountable symmetric basis. More precisely, the
existence of discrete Orlicz spaces ¢ (I) containing isomorphic copies of ¢7(T")-spaces for
uncountable sets I' C I. The following two sections are devoted to describe this.

5. Banach spaces with an uncountable symmetric basis. The structure of Ba-
nach spaces with an uncountable symmetric basis has a behavior quite different to the
countable case of sequence spaces. Let us review some representative results. Recall that
a family of vectors (e;);cs in a Banach space E is a symmetric basis if it is an uncondi-
tional basis and for every pair (i) and (i;) of sequences of different elements indices in
I we have that (e;, ) and (e;;) are equivalent basic sequences.

Using renorming arguments, Troyanski [T 75| proved that: if a Banach space E with
an uncountable symmetric basis (e;);cr contains an isomorphic copy of ¢*(I') for some
uncountable I' C I, then E = (*(I).

A similar result holds for the space c¢o(I'). Namely if a Banach space E with an
uncountable symmetric basis verifies E D ¢o(T') for some uncountable ' C I then E =

¢o(I). This was also proved by Troyanski in [T 75]. In the uncountable case, there is
uniqueness of symmetric basis (Drewnowski [Dr]), in contrast with the behavior of the
countable case. A special type of block basis is of interest in the study of spaces with
an uncountable symmetric basis: a basic set (v;),er in a Banach space E is a block basis
generated by one vector y = Y., ane;, if there exist disjoint infinite subsets (j(k))2 ;
in I, for each j € T, where j # [ or k # m implies j(k) # I(m), such that every
v = Y peq arejr) for each j € I'. A key result is the following structure theorem due to
Troyanski [T 90] (also valid for quasi-Banach spaces [H-T]):

THEOREM 5.1. Let E be a Banach space with an uncountable symmetric basis. If (u;)jer
is an uncountable symmetric basic set in E, then (u;);cr is equivalent to a block basis
generated by one vector.

Using this it is shown that Lorentz spaces d(w,p,I), 1 < p < 0o, do not contain any
isomorphic copy of ¢P(I") for uncountable I' C I (compare with the positive results in the
sequence case cf. [L-T 77]).

A natural question is to study possible extensions of Troyanski’s result on ¢!(T')-
embeddings to the case 1 < p < 0o, i.e. whether there exist Banach spaces (# ¢F(I)) with
an uncountable symmetric basis containing an isomorphic copy of ¢?(I") for uncountable
I'. The answer is yes, and the first examples were certain non-reflexive Orlicz spaces with
symmetric basis given by Troyanski and the author in [H-T].

For a fixed discrete Orlicz space £ (I), we consider the set ), of all Orlicz functions

G(z) = /0 I;((SS”“;) du(s) (for 0 <z < 1),

where y is a probability measure on (0, 1]. The inclusion ), C Cr,1 holds, and the set
> .1 is in general noncompact. Other properties of the set > pyareif G € > F then
the Young conjugate G* & > . , and 293 5 = >~ ., for every ¢ > 0. The following
criterion is useful ([R], [H-T):
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THEOREM 5.2. Given an Orlicz space (¥ (I) with the function F satisfying the As-con-
dition at 0. Then (¥ (I) contains an isomorphic copy of ¢ (T) for T C I uncountable sets

if and only if G € 3 _p ;.

6. Fundamental lemmas. In this section we indicate the methods used in the proofs
of the above results. We concentrate on the existence of reflexive Orlicz function spaces
L€[0, 1] containing a lattice-isomorphic copy of L? with given indices o = o and 8% = 3
and a < p < (.

Let us first point out that this result can be quite easily deduced after solving a
related problem for the uncountable discrete case, i.e. the existence of discrete Orlicz
spaces ¢¥'(I) containing an isomorphic copy of ¢?(T") for uncountable I' C I. Indeed, by
transfer arguments, we consider some r > (3 and define then an Orlicz function G near
oo by

G(z) :=2"F(1/x)

where F is a certain Orlicz function defined near 0 such that ¢f'(I) D ¢?(T) for uncount-
able I' C I. Using Theorem 5.2, the criterion for lattice embedding L? spaces into Orlicz
function spaces L¢[0, 1] given in terms of the set >Ga (Theorem 3.2) can be applied to
get the LP-embedding.

We now focus on the construction of discrete Orlicz spaces ¢/ (I) such that ¢£'(I) D
¢P(T") for uncountable I' C I and prefixed indices. A crucial point in doing this is the
existence of series of positive terms with the following “shift uniformly bounded” property:

LEMMA 1. There exist sequences (o) and (€,)52 of positive numbers with Y- a,
= oo and constants A > 0 and B > 0 such that

e
A S Z AnEntk S B

n=0
for every natural k =0,1,2,...

The existence of these sequences () and (e,) is proved using the following combi-
natorial fact: given an arbitrary sequence (h;)2,, of positive integers with hy = 1, there
exists a set of couples of positive integers {(m;, k;)} with m; > k; such that for each n:

(i) there exist precisely h, couples (m;,k;) such that m; — k; = n.

(ii) there exist at most (n + 2)? couples (mj, k;) such that k; — m; = n.

This property is precisely formulated as follows ([H-T], [H-R 95]):

LEMMA 2. Given (h;)2, a sequence of positive integers with ho = 1, there exist two
positive integer sequences (k;)52, and (m;)2, with m; > k; = Z;;g mj fori=1,2,...

and lim; o (m;11 —m;) = oo, such that if f = o) X[mi,mi+1) then
S fntk)=hn, > flki—n) < (n+2)>
i=0 i=0

Let us indicate now other steps of the proof of ¢ (I) D ¢’(I'). We can assume a =

1 < p < B =p-+e. The other cases can be deduced from this using ¢-concavification and
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r-convexification reductions and properties of the > 1 sets. We consider the function

(o)
= Zgnx(2*(n+1),2*”]

n=0

where the sequence (&,,) is given by Lemma 1. And define the Orlicz function F' at 0 by

F(z) = / (x — P2 £ (1)dt.
0
It turns out that the function f satisfies the following key property:
= x
A< =) <nB
<Y anf(5:) <

for 0 < x < 1. From this, the following inequalities are obtained by integration:
P = x P
Ao ansz<_) <"
p(p—1) ,;) 2n plp—1)

for 0 < z < 1. Thus, if we consider the discrete measure 4 on (0,1] defined by p(27") :=
2P F(27™), we deduce that the function G, defined by

Glz) = /O I;(g)du O<z<1)

satisfies that 2P = G' € ) . Hence, using Theorem 5.2, we deduce that the Orlicz space

)

0¥ (I) verifies ¢¥'(I) D ¢°(I") for uncountable I C 1.

Finally, using properties of the sequence (g,,) constructed in Lemma 1, the associated
indices of the Orlicz function F' can be computed to obtain ap =1 and Gr = p + <.

A more general result is the existence of universal Orlicz spaces ¢! (I) which is proved
using a similar technique ([H-R 03]):

THEOREM 6.1. Let 1 < a < 3 < co. There exists an Orlicz space (¥~ (I), with indices
ag, , = a and Br, , = 3, such that (Fa5(I) contains an isomorphic copy of any a-conver
B-concave Orlicz space (¢ (") with T' C I arbitrary sets.

There is no uniqueness up to isomorphism of these universal spaces ¢f=:#(I) as in
the sequence case (see Theorem 2.1). The above theorem provides also new examples of
universal Orlicz sequence spaces ¢~ with given indices a and 3 different from those
given by Lindenstrauss and Tzafriri [L-T 72]. Indeed these universal sequence spaces (1=

do not have any complemented copy of other sequence spaces ¢©.

7. Properties of the sets Pr. Given a separable Orlicz function space L' [0, 1], let us
consider now the associated set Pr of scalars p such that LP embeds lattice isomorphically
into LF[0, 1], i.e.

Pr:={p>1:L"[0,1] 2, LP}.

In this last section we present some properties of these sets Pr. To this end, it is use-
ful to consider a third parameter (different from the Matuszewska-Orlicz indices): the
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“inclusion” index %" associated to F'. Define
log F(x)

> = limsup ————=.
TE z—>oop log x
It turns out that

7% = inf{p > 1: LP[0,1] c L¥[0,1]}

It is easy to check that af® <% < 8%°. And these inequalities can be strict.
Clearly if p is a scalar such that L¥[0,1] D LP, then v < p < 3%°. Hence
~e

Pr C [v%, 8% ]

Many natural Orlicz functions F' are such that their associated set Pp is just the
empty set: for example the class of submultiplicative functions at co. On the other hand
notice that the universal Orlicz function spaces Lf=#[0,1], given in Theorem 4.1, have
inclusion index 7})’2.5 = O‘%i.g and that in this case the sets Pr reach their biggest possible
size filling all of the interval [«, 0], i.e. Pr = [, 5].

The following result shows in particular that the “size” of the sets Pr can be arbitrarily
small comparing with the size of the interval [«, 5]([H-R 98]):

THEOREM 7.1. Let 1 < a < v < 3 < co. There exists an Orlicz function space L¥'[0,1]
with indices aF = o, Yg = v and By = [ such that LP is lattice-isomorphic to a
sublattice of L¥'[0,1] for every p € [y, 3] .

Thus for these spaces L¥'[0, 1] we have Pr = [v, 3] C [«, 3]
Given an Orlicz function space L]0, 1] such that L'[0,1] D LP, the canonical inclu-
~0

sion L?[0,1] C L*¥[0,1] is always disjointly strictly singular, although the space L'[0, 1]
contains a sublattice lattice-isomorphic to L”. The interesting case is p = v (for p > 7%
it is easily deduced by factorization). Recall that an operator T' from a Banach lattice
to a Banach space is disjointly strictly singular if the restriction of T to any subspace
generated by a sequence of disjoint functions is never invertible. Using this notion, a
characterization of L![0, 1] among r.i. function spaces is the following (|G-H-S-S]): an r.i.
function space E[0,1] coincides with L'[0,1] if and only if for every r.i. function space
F[0,1] with F[0,1] C E[0,1] and F[0,1] # E[0,1] the inclusion F[0,1] C E[0,1] is always
disjointly strictly singular.
Let us mention also that the sets Pr are not always closed:

THEOREM 7.2. Let 1 < a < v < 8 < 00. There exists a 3-concave Orlicz function space
L¥[0,1] with indices o = o, = v and 3% = 3 such that L'[0,1] D L” if and only
~e

ifp € vy, BF)-

It is an open question whether or not the sets Pr are always convex. In other words,
given p < r < q and a separable Orlicz function space L'[0,1] with L¥'[0,1] D L and

~e
L¥[0,1] > L4, does it follow that L'[0,1] D L"? A similar question can be formulated
~y ~f

for separable r.i. function spaces on [0, 1]. Thus it would be interesting to find other classes
of separable r.i. Banach function spaces on [0, 1] containing lattice-isomorphic copies of
LP-spaces.
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Finally let us remark that several of the above universality type results can be also
stated in the quasi-Banach case. And that Kalton’s result on isomorphic L!-embeddings
and Troyanski’s result on isomorphic ¢! (I')-embeddings fail to be true in this setting.

Acknowledgments. The author would like to thank L. Drewnowski, Y. Raynaud and
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