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1. Introduction. During the last twenty years, there has been a growing interest in the
following questions:

What is the natural domain of definition of a given differential equation?

Which function spaces are best suited to the regularity of the solutions?

How far beyond the natural domain we have the existence and uniqueness results?
Can we detect analytic and geometric features of the solutions in these spaces?

These questions are due, to a large extent, to profound new developments in the geometric
function theory [1], [45], calculus of variations [3], [20], [21], [34], [35] as well as some areas
of applied mathematics [4], [61], [62]. An extensive use of new function spaces has been
made in the setting of so-called very weak solutions of nonlinear PDEs [49] and mappings
of finite distortion [44], [45]. Wladystaw Orlicz, a prominent Polish mathematician, did
not perhaps suspect that the spaces he invented in 1932 [64], [2], [5], [6], [39], [54], [55],
[56], [57], [65], [69], [72], [73], [74], [75] would enjoy such a high status today. A large
part of this article is dedicated to a detailed exposition of the role of Orlicz spaces in
modern approaches to nonlinear analysis, desirable and necessary. We shall in fact focus
largely on topics related to our own research, though we mention a few contributions
of a general nature. The aim is to illustrate some evidence of the necessity for using
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86 T. IWANIEC AND C. SBORDONE

old and introducing new spaces of functions. We do not give the in-depth description of
those topics, but we hope that there will be enough said to make it self-contained and
interesting.

We are most grateful to the organizers of the meeting in Poznan. It was a special
pleasure and honor for us to address a conference in the town of Witadystaw Orlicz.

2. Notation. The implied constant. A few brief comments on the notation used
here are in order. Constants that arise in analysis are most often unconsidered constants.
Whenever we see the inequality X < CY we tacitly understand that it holds with some
positive constant C' independent of X and Y. Having accepted such convention there is
actually no need to use the letter C' at all. We therefore propose the abbreviation X < Y.
Sometimes, however, it will be desirable to know the implied constant (the one omitted
from the inequality). Both symbols < and the reverse one = will give us not only a neat
appearance to the estimates, that look awkward otherwise, but also will allow the implied
constant to vary from line to line without confusion.

3. The Orlicz space .#7(Q). It will be necessary to have at hand a slightly more
general definition than the usual ones.

An Orlicz function is any %€ °°-smooth increasing function P : [0,00) — [0,00) such
that P(0) = 0 and P(00) = limy_,o, P(t) = co. Let 2 be an open subset of R", or any
o-finite measure space. The Orlicz class .Z*(£2) consists of measurable functions fon (2
such that

IVMD=Hﬂ&wm)$5ﬁ{§:1¥%kU@ﬂﬁmgl}

is finite. If P is convex we usually call it a Young function. In this case the Luxemburg
functional || ||p is a norm making .#*(Q) into a Banach space. In what follows we will
be largely concerned with spaces very close to .#!(2), that is, when P exhibits a growth
not far away from the identity function.

DEFINITION 3.1. An Orlicz function P is said to increase almost linearly if
tP'(t)
=1. 1
o P(t) (1)
We should recall that the behavior of P = P(t) on any finite interval will play no role
in our discussion. However, we shall conveniently assume that P(t) = O(t?) at t = 0. To

every such P there corresponds the so-called adjacent function. For the definition there
are two cases to consider:

e P satisfies the so-called divergence condition

A@P@m:m_ )

52
Then its adjacent function is defined by the rule

P+(t):t/0 P(S)ds. (3)

52
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e P satisfies the convergence condition

* P(s)ds
/0 2 < oo (4)
Then its adjacent function is:
° P(s)ds
P(t) = t/t e (5)

Both P, and P_ are Orlicz functions. A glance at the second derivatives shows that
&’Py P
a2t
Thus P, is always convex while P_ is always concave. Condition (1) just amounts to
saying that the adjacent functions increase to infinity substantially faster than P, that

respectively.

is,

def Pi(t)
For reasons to be clarified later on we refer to A as the improvement gquotient. The
importance of the adjacent Orlicz functions is borne out by several results concerning
higher integrability of null Lagrangians, see Section 13. By way of digression, under the
divergence condition we have the following inequalities [37], [51], [52]:

IMfllp <1 fllp, < IMfp (7)

where M stands for the Hardy-Littlewood maximal operator, {2 being a cube in R". The
familiar case of E. Stein [71], [69] arises when P(t) = lt—jt, so P (t) =tlog(1+t). More
generally, if the maximal function of a Borel measure ; on  belongs to .2 ¥ (Q) then 1 is
absolutely continuous and its Radon-Nikodym derivative ;' (x) is a function in the Orlicz

space .2+ (Q),

— o0 ast— oo, (6)

I e, < | My p. (8)

Later we shall briefly discuss it in the context of Hardy-Orlicz spaces. Here are some pairs
of adjacent Orlicz functions and the corresponding improvement quotients:

Py~ texp (£VI0ED), A~ vIogE.
Py = t(logt)*!, A= logt,
Py = t(loglogt)*!, A =~ (logt) loglogt.
Observe the pattern:

The closer Py is to the identity function, the larger improvement quotient appears.

The adjacent functions get arbitrarily close, but never reach, the identity function. In

view of Condition (1) all the improvement quotients A(t) = 1}(%) have limited growth,

controlled by the equation
< dt
" . 9
o ©)

Special Orlicz spaces will be discussed in the subsequent sections.
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Fig. 1

4. The space BMO(2). At the other end of the scale of the functions to be discussed
lies BMO() [53]. Let  be an open subset of R™. A function u € .4} (1) is said to have
bounded mean oscillations if

T FR—— {f@ u—ug|: Q Q} < oo (10)

where the supremum runs over all cubes @ (or balls) in Q. As usual the symbols fQ and
uq stand for the integral mean over the set (). Both cubes and balls are well suited to
various geometric constructions in R™. However there is a simple technical innovation
that leads to dimension free results. To this effect one must work with uneven cubes, call
them building blocks. By definition, a block is a Cartesian product of closed intervals,
B=1I xIy x... x1I,, where |I;| < 2||, for k,l = 1,2,...,n. These building blocks
supersede quite effectively the traditionally used dyadic cubes. While on this matter, let
us observe that bisecting along the largest edge breaks a block into two building blocks.
To illustrate the utility of this concept we introduce the BMO-norm

ltllpneorey = sup{fB|u—m| BC Q} (1)

where in this case B are the building blocks in (2. Here is a particularly elegant variant
of the celebrated John-Nirenberg Lemma, see [43].

LEMMA 4.1. Let Q be a building block in R™ and u € BMO(?). Then

erXp (M) dz < 36. (12)

7 lullanmoe)
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To our knowledge such dimension free estimates were never published. Weighted global
exponential integrability of u € BMO(R"™) are also of interest to us. We forgo dimension
free estimates in order to allow for other BM O-norms.

LEMMA 4.2. There exists a constant N = N(n) > 0 such that

|u(x) — ug| ) ] dz
exp <7 - 1|—— <1 (13)
/n { N lull g aro@m 1+ [zt
where ug stands for the integral mean of w over the unit cube in R™.

Roughly speaking, u behaves like log(e+|z|) near oo in an average sense. More precise
statement requires introducing so-called decreasing weights. These are measures in R" of
the form dy = w(|z|)dx, where w : [0,00) — [0,00) can be any function decreasing to
zero, fast enough so that fRn dpu =1.

LEMMA 4.3. For every p > 1 we have
u — UQ

S — 4
log (e + [z])

Lr(R", dp)

(14)

p ||u||BMO(1R")

We emphasize explicitly that the implied constant does not depend on the weight.

One usually takes p =1 and du = %dx to obtain

|u(z) — ug|
/]Rn W dr < ||u||BMo(R”)' (19)

5. The exponential class Ezp(2). One major unfavorable feature of the space
BMO(S) is that the point-wise inequality |v(x)| < |u(z)| with u € BMO(Q2) does not
guarantee that v too has bounded mean oscillations. By contrast, the Orlicz space Exp (Q2)
does have this dominated type property.

We say that a function u belongs to the exponential class Fxp (Q2) if

) 1 eMu@)| _ 1
”uHEzp(Q) = inf {X : /QW dzr < 1} (16)

is finite. This expression gives us an order preserving norm in Fxzp (€2). Lemma 4.2 tells
us that

||U - u@HEwp(Q) < NHUHBMO(R") (17)
Although the exponentially integrable functions need not have bounded mean oscillations

they can be majorized by such functions.

PROPOSITION 5.1. Let v € Exp(Q) on some measurable set Q) C R™. Then there exists
u € BMO(R"™) such that

|v(z)| < u(x) almost everywhere in Q, (18)
HUHBJMO(K"L) < CnHUHEwp(Q)' (19)
Proof. Tt involves no loss of generality to assume that |v||gup) = % Thus, by the

definition of the exponential norm,

/ (™ ~1)de (20)
Q

1 + ‘x|n+1
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We then conveniently regard v as a function defined on the entire space R", say equal to
v ()]
< € Z*(R™). We can now define

zero outside 2. This gives us a function ®(z) = T[T

the majorant of v by the rule

u(x) = (log M) () + log(1 + [a] "), (21)
Next we appeal to R. Coifman and R. Rochberg [18], who proved that logM® €
BMO(R™). We also obtain from [18] the uniform bound

1
HUHBMO(R") < E Cn = Cn ||U||EI;D(Q) (22)

where c¢,, is a universal constant. For the inequality (18) we need only observe that
u(z) > log ®(x) + log(1 + [x|"*1) = |v(z)|

in 2, completing the proof of Proposition 5.1. =

6. Nonisotropic degenerate elliptic PDE. One of the motivations for the study of
BM O-majorization was to solve the Dirichlet problem [50]

{ div A(2)Vu = div A(z)F, (23)

u(z) =0 on 0

where A(z) is a symmetric matrix function with measurable entries satisfying the ellip-
ticity condition

K7 (2) €] < (A(x)¢, &) < K(x)[¢]*,  €eR, (24)

where K € Exp(Q). The natural domain of definition for such equations is the Sobolev
class of functions vanishing on 02 and having finite energy

E[Vu] = /Q<A(;v)Vu, Vu) dz < oo. (25)

If a given vector field F' = F(x) also has finite energy, meaning that (AF, F') € £(Q),
then the existence and uniqueness follow by variational arguments. In this natural set-
ting we have the fundamental estimate &[Vu| < &[F]. Before jumping to a desirable
conclusion we point out that by Holder’s inequality the assumption K € Exzp(Q)) places
the solution fields €& = Vu and B = A(Vu — F) in the Orlicz space £2log™ (),
which is rather unsatisfactory. The finite energy assumption on F' is insufficient for the
Z?-conclusions. If, instead, we assume that K F € £?(Q,R") and that ||K||gzp0) is
rather small, then the #2-estimate takes the form

(@WMHW@WM<LW@WMMw (26)

The proof is based on a celebrated result of harmonic analysis, the ##'-BMO duality.
In brief outline, the equation gives us a point-wise inequality

[E(@)P + |B(2)]* < K(2) (£(x), B(w)) + K*(x)|F ().
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At this point the interested reader may consult [50] for far reaching extensions of this
idea. We aim to give a meaning to the integral

/ K(2) (E(x), B(z)) da.
Q

To this end, we observe that (B, £) is a div-curl couple: div B = 0 and curl £ = 0. There-
fore, the scalar product (B, &) lies in the Hardy space #'(f), as shown by Coifman,
Lions, Meyer and Semmes [17]. On the other hand, K is majorized by a function with
small BM O-norm. Using 5#1-BMO duality we arrive at the estimate (26).

The next two sections shed more light on these topics.

7. The Hardy space (). Fix a nonnegative function ® € 4°(R") supported in
the unit ball and having integral 1. It generates a one parameter family {®;};~o of mol-
lifiers ®;(z) =t "®(¢t 'z). To every Schwartz distribution f € 2'({2) there correspond
smooth functions fi(x) = (f * ®;)(x) defined on O = {x € Q : dist(x, 9N) > t}. Now the
maximal operator on 2’(f2) is defined by the rule

(M f)(z) = sup{ |fe(x)] : 0 < t < dist(z,00)}.
We say that f € #1(Q) if its norm

1l erqy = /Q () () (27)

is finite.

8. Null Lagrangians. The Fundamental Theorem of Calculus tells us that

/abf'(:c) dxz/ubg'(x) dx

whenever two functions f,g € AC|[a,b] coincide at the endpoints of the interval. One
might ask which integral expressions enjoy the indentity such as this. Let us clear up
this question with another example. Suppose F' = F(z,y) is a given function of class
%' (la,b] x R) and E(z,y,2) = aa—f + z%—g. We again find ourselves in a situation when
the values of any function f € AC|a,b] inside the interval have no impact on the energy
integral

b b
ENE | B, f f)de = iF(Jﬁ,f) dz = F(b, f(b)) — F(a, f(a)).
a a dx

In higher dimensions there are many examples of nonlinear partial differential expressions
whose integral over any domain reduces to the boundary integration. Most familiar is the
Jacobian determinant 9 fl}

8xj

of a mapping f = (f!,...,f") : Q@ — R"™. Stokes’ formula yields integration over the
boundary

J(z, f) = det [

/J(:c,f)dx:/dfl/\dfz/\.../\df”
Q Q
:/d(fldfz/\.../\df"):/ Fraf A Adfm. (28)
Q N
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While it is beyond the scope of this survey to provide details, we can at least indicate
that more general wedge products of exact differential forms enjoy such integral identities.
Among them is the wedge product du A dv of exact differential forms of degree 1 and
n — 1, respectively. It is customary to identify du A dv with a scalar product of the vector
fields:

(29)

E = du, thus curlE =0,
B =~ dv, thus divB =0.

The concept of a div-curl couple owes much of its importance to Maxwell’s equations.
We call du Adv = (E, B)dx the div-curl product.

With these preliminary examples we can broadly state that a nonlinear differential
operator N (z, D) is called a null Lagrangian if

/Q./\/(x, Du)dx = /Q/\/’(a:,Dv) dx (30)

whenever u = v on Jf). When discussing weakly differentiable Sobolev functions, this
definition extends in the same guise as long as the integrals are meaningful. Mathematical
principles of continuum mechanics, nonlinear elasticity theory and so forth grew out of
the classical task to minimize the so-called stored energy functionals

Eu] :/QE(x,Du)dx (31)

subject to certain boundary conditions.

From this point of view, the null Lagrangians pertain to the integrands (nonlinear
differential expressions) whose variational Lagrange-Euler equations are satisfied identi-
cally. The fundamentally analytic issue is the self improving regularity, a phenomenon
that can be traced back at least to H. Wente (1969) and F. W. Gehring (1973), in relation
with their studies of existence theorems for surfaces of constant mean curvature [76] and
LP-theory of quasiconformal mappings [30]. Today this subject has a life of its own [17],
[60], [50], [36], [52], [48]. Null Lagrangians proved extremely useful in nonconvex calculus
of variation. For example, the concept of polyconvex energy functionals originated from
null Lagrangians [3].

9. J#'-regularity of null Lagrangians. Let f = (f!,..., f"): Q — R" be a mapping
of Sobolev class # 1" (2, R™). We take on stage the Jacobian determinant

aft
593;‘]
as an example of null Lagrangians. The cofactors of the differential matrix Df are also
null Lagrangians. We accomodate all cofactors in a matrix denoted by D! f. Hadamard’s
inequality tells us that

J(x, f) = det Df (z) = det [ (32)

(2, )] < [D¥ ()| 7T < |Df ()" (33)
PROPOSITION 9.1. We have

ldet Dflria) < [ D@77 do < [ D))" da. (34)
Q Q
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Proof. The first inequality holds if we assume that f € #'"~1(Q,R") and |D!f| €
& 71 (). There are two crucial ingredients in the proof of this inequality: the use of a
weak form of isoperimetric inequality and a new maximal operator that combines both
the Hardy-Littlewood and the spherical maximal operators.

It was the first time that the .Z’?-theory (p > "7 ) of the spherical maximal operator
[11], [70] was successfully exploited in the study of Jacobians. However, as this theory
fails for p = "5, we actually worked out the following operator. For each parameter
6 >1and h e ZP(R"), we set

a5 [ (g [, o an) o]

The Hardy-Littlewood operator is none other than M, while the spherical one arises by
letting 6 go to infinity. The operators My have the advantage of being bounded in .#?(R™)
for all p > In particular, My is always bounded in .Z 7T (R™). Unfortunately, we

n
n—1+%"
cannot put these beautiful arguments into play here [47]. Let us put more details on a
somewhat weaker estimate

| det D] 1) < / Df()|"dx (35)

as these details will spark the forthcoming generalizations. To simplify matters we only
consider mappings f € %5°(R",R"). Given a test function ¢ € €5°(R™) we look at
the differential 1-form ¢ df!' and its Hodge decomposition into the exact and co-exact
component

pdf! =da+d*s. (36)
Stokes’ theorem tells us that
/ det Df = s dft A Adf™ :/R d(frdf2A---Adf™) = 0.
By the same reasoning
/ daAdfPA---Adf"=0.
Therefore,

/ gp(gc)J(x,f)dm:/ <pdf1/\~-~/\df":/ (A*B) AdfZA - Adf"
< [1aa1- ) < 0l 10

Both exact and co-exact components can be expressed by means of a singular integral
(Riesz transform) of ¢ df!, say d*3 = T (¢ df'). We rewrite it in the form of a commu-
tator of T and the operator of multiplication by ¢:

d*6 = (Tp — ¢T)df". (37)
This formula is justified since T vanishes on exact forms, by uniqueness in the Hodge

decomposition. A point to emphasize here is that individually each term T(ph) and
©(Th), for a general h, may not possess the desired regularity, but their difference does.
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As shown by Coifman, Rochberg and Weiss [19] the p-norms of the commutator

Ty — T: LP(R") - LP(R"), 1<p<oo, (38)
are controlled linearly by the BM O-norm of the multiplier ¢. In particular, we have
1d*Blln < 1€l anro 1DFln (39)
and hence
| e@d@ s de < el | D@ ds (40)

This remains valid for mappings of Sobolev class #1'"(R™, R"). Since 45°(R") is dense
in VMO(R™), we see that J(z, f) defines a bounded linear functional on VM O(R"). As a
last step we appeal to the BMO-#"! duality argument [23] to conclude with the desired
estimate at (35). =

10. The Rochberg-Weiss commutator. There are more commutators coming into
play. As a starting point, we consider a singular integral operator T and the nonlinear
operator
T!°8(h) = T(hlog|h|) — (Th)log |Th| (41)
defined for h € £P(R"), with 1 < p < oo. Setting ® = |h| + | Th|, we find the identity
h Th
T'°8(h) = T(ph) — ¢Th+ T (h log %) — (Th)log %

where H = M® > |h| + |Th| stands for the Hardy-Littlewood maximal function of @,
and ¢ = logM® € BMO(R™). We then infer, in a rather straightforward way, that

IT* 5|, < [[Al],. (42)

The above estimate is in effect a particular case of a general nonlinear interpolation theory
of abstract bounded linear operators

T: 2°X,p) - Z°X,p), 1<s<oo.

We record the main estimate in the qualitatively best possible way, which accounts for a
uniform bound of the modulus of continuity [51]

O, O, + h
st = s < il tog e+ Ll T ) (43)
1f = hly

There has since been a systematic study of nonlinear commutators. In this connection we
mention Rochberg and Weiss studies of analytic families of Banach spaces [67] as well as
N. Kalton’s [54] and Milman-Rochberg’s related works.

11. The Zlog.¥-estimate. Just as in (36), we may decompose
(df) log|df| = da +dB, (44)

where df = (df*!,...,df"), da = (dat,...,da™) and d*3 = (d*3',...,d*B") are n-
tuples of 1-forms. The co-exact component satisfies

1d*Blln < [|df]ln (45)
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by the inequality (43). On substituting (45) into the inequality

/ (log [df)dff Adf2 A~ Adf" = / BN A Adf™ < [[d*B] | DAL

we arrive [36] at a rather surprising estimate

| @ noeips@) de < [ D5 do. (40)

At first glance this estimate seems to lack homogeneity, but in fact it does not.

12. The space .£?log . Z (). Local variants of (46), first observed by S. Miiller [60], are
also available. A precise statement requires a brief introduction to the Zygmund classes
ZLPlog ().

Let (X, ) be a sigma finite measure space and 1 < p < oo. The Zygmund class
ZPlog Z(X) C £P(X) consists of functions ¢ : X — R such that

P %
19]| 20 1052 = /|<I>|plog et 2] < o (47)
]|,

This expression defines a norm, though the triangle inequality is far from being obvious.
The space dual to .Zlog .2 (X) is Exp (X), while for p > 1 the dual to .Z?log.Z(X) is
another Zygmund space .Z?log' (X), p+q=p-q.

Suppose now that the Jacobian determinant of a Sobolev mapping f € # 1" (Q,R")
is nonnegative. In what follows we refer to Sobolev mappings with nonnegative Jacobian
as orientation preserving mappings. Then for each relatively compact subset X C 2 we
have

Idet D |1 20 < [ 1D7(@)I" d (49)

where the implied constant depends only on n, X and 2. This seemingly insignificant
improvement of the degree of summability of the Jacobian turns out to be critical in
many situations: existence of minima of nonconvex variational integrals [60], regularity
of mappings with finite distortion [45], and so forth.

Actually, S. Miiller, Qi Tang and B. Yan [62] established local . log .Z-integrability
of J(z, f) with the only requirement being that the cofactors of the differential matrix
belong to .# 71 (£2). This is also a consequence of our earlier .7 !-estimate at (34) when
confronted with [69].

13. A study of null Lagrangians in Orlicz spaces. There are a number of impor-
tant questions in modern geometric function theory concerning nonnegative Jacobians
(orientation preserving mappings) and other null Lagrangians. Here we shall focus on self
improving integrability. Let us reveal in advance that this phenomenon can be observed
only in the Orlicz classes that are sufficiently close to .#!, as described in Definition
3.1. We have already mentioned the £ log #-integrability of the Jacobians of orienta-
tion preserving mappings in the Sobolev classes #'1'™ (2, R"). A somewhat dual question
is concerned with the .#!-integrability under minimal assumptions on the differential
matrix. The first stepping-stones were made in [48]. For each relatively compact subset
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X C Q we have

[Df(z)|" d
J(z, f) de < Cp (X,Q) (49)
} [ )

In other words, the condition |Df|* € £ (Q), where P(t) =~ t log~'(t), implies local
integrability of the Jacobian. At this point it is worth mentioning that the Jacobian also
obeys the rule of integration by parts. Precisely it means that

/¢ J(z, f) de = — /fd¢Adf2 AdfT (50)

for every test function ¢ € 65°(€2). The same result holds if we only assume that the
cofactors of the differential matrix Df belong to .Z7 Tlog '.Z, that is, | D¥ f |n+1 €
Z7(Q), see [31].

A device needed to carry through these estimates is the isoperimetric inequality
on cubes carefully crafted from Whitney’s decomposition of the level sets {z € Q :
(MD?f)(x) > t}. As a matter of fact the only assumption needed for local integrability
of the Jacobian is that P satisfies the divergence condition (2). Some additional, usually
minor, assumptions on P are in order, but we need not bother about it here. The general
rule reads:

|Df["
or e Z7(Q) implies ~ det Df € £+ () (51)
D]
where P, denotes, as in (3), the convex adjacent to P. This improvement of integrability
is sharp. Note, in particular, that the condition |Df|" € Zlog ¥ implies a slightly
better result than (49), namely det Df € Zloglog.Z, see G. Moscariello [59].

If we move into the class of Orlicz spaces .#*(Q2) with P satisfying the convergence
condition (4), then the Jacobian determinant is no longer integrable. However, we still
observe a phenomenon of higher degree of summability as long as P exhibits a nearly
linear growth, see Condition (1). As before;

IDf|" € 27 () implies det Df € £~ () (52)

loc

We then reiterate the principle of Section 3 in the language of null Lagrangians.

The highest improvement of regqularity of null Lagragians
takes place near £1(9).

14. The power type commutator. The motivational philosophy behind the nonlinear
commutators is to achieve some sort of cancellation of terms. For instance, in view of
inequality (43), the logarithmic terms in the commutator

T8 b = T (hlog|h|) — (Th)log|Th|
turned out to be harmless for the estimates in Section 11. There are also possible other
types of cancellations in nonlinear commutators that can be effectively exploited for the

regularity theory of null Lagrangians. Let T: (X, u) — Z*(X,u), 1 < s < o0, be a
bounded linear operator. The object of our discussion is the commutator of T and the
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power function h — |h|? h, where h € £P (X, 1) and 2 is a complex parameter in the half
plane Re z > % — 1. It is trivial that the nonlinear operator

T h L T(|h)* h) — | Th|* Th (53)
is bounded from .#P(X, 1) to £ 7%= (X, 11). Moreover
z 1+Re z
TR car < Cp(2) [ 2]l (54)

Although the constant C = C(z) vanishes when z = 0, it is still far from being obvious
that C(z) is in fact small near the origin. Broadly speaking, the function z +— T#h being
analytic in z satisfies the Schwarz lemma. In this way we strengthen the estimate to the
following [49] :

[T g < C’p~|2|~lth”%” (55)

1+Re z

for all z sufficiently small, say |z| < . We should realize, however, that this estimate
is by no means a trivial consequence of the Schwarz lemma. As an application, consider
the Hodge decomposition

|df|~“df = da+d*3 (56)

for a Sobolev mapping f € #1'"~¢(R" R"), ¢ being a small positive number. By argu-
ments similar to those in (46) we obtain

/ Df(@)| " T(x.f)de < e / IDf(z)"* d. (57)
R™ R™

The local variants of this inequality are just as easy to deduce. For example, let f : Q2 —
R” be an orientation preserving map of Sobolev class # %"~ (), R"). Then for every
pair of concentric balls B C 2B C (2 we have

(n—e)(n+41)
2

J(J?,f) dz ( nnfl) " n—e
B |'Df($)|6 s 2B |Df| T 2B |Df| (58)

One is tempted to pass to the limit as € — 0 but that is illegitimate in general. We must

assume here that the latter term converges to zero or at least stays bounded. In this way
we are naturally led to an investigation of the so-called grand space .Z™ ().

15. Grand spaces .ZP)(Q). Let (X, 1) be a finite measure space. For 1 < p < oo we
shall consider functions on X which are integrable with every power s < p. The grand
space £P) (X) consists of those functions f € N, _, <pZ°(X) for which

1£lly = sup ( /Ifl” > T <o (59)

This makes .#?)(X) into a Banach space. The restriction on ¢ is immaterial, different
restrictions yield equivalent norms. In the similar fashion we define .#)(Q) as a metric
space. Note that .#?(X) is not dense in the grand space .#?)(X). Its closure, denoted by
ZP)(X), consists of functions satisfying

lim ¢ /X FP< = 0. (60)



98 T. IWANIEC AND C. SBORDONE

To illustrate, let us take on stage the Marcinkiewicz class .27, (X), which is contained
in 7 (X) but not in £ ) (X). The Orlicz class ZPlog™'.Z(X), on the other hand, is
contained in .£7 (X).

Returning to our estimate at (58) we conclude that orientation preserving mappings
f:Q — R™ in the grand Sobolev space # 1™ (Q, R") have locally integrable Jacobian.
There is one interesting example to look at: f(z) = z/|z| in the unit ball B C R".
The norm of the differential matrix |[Df(z)| = 1/|z| lies in £7,, (B) C £™(B), but
not in fon) (B). Its Jacobian determinant vanishes almost everywhere and, by trivial
means, belongs to .. (B). However, the formula of integration by parts at (50) fails.
This anomaly is due to the fact that the right hand side of (50) represents a Schwartz
distribution supported at the origin, the Dirac mass. It is the condition |Df| € fon)(Q)
that guarantees integration by parts.

16. Measure in the right hand side. Applications of grand spaces .Z?) () and
£y )(Q) are much wider than we just discussed, see [24], [26], [28], [27], [38]. We add
to this discussion one result concerning the nonlinear n-harmonic equation

{div |Vu|"2Vu = p,

u=20 on 01, (61)

where 1 is a signed Radon measure [38], [50]. This Dirichlet problem admits exactly one
solution u € #;"™ (), meaning that

¢ [ IVu@)P e < (@) (62)

for all 0 < € < n — 1. Furthermore, if 4 is absolutely continuous then |Vu| € fon)(Q),
that is,

lim / Vu[" = 0. (63)
e—0 Q

17. The Hardy-Orlicz space 7 (Q2). A distribution f € 2'() is said to be of
Hardy-Orlicz class 5#F () if its maximal function M f lies in £¥ (). We write

def
I fller ) = IMfll 2P @) (64)

Of course the only interesting cases occur when P is nearly linear in the sense of Definition
3.1. It is instructive to analyze a few basic results. In [51] it was shown that the divergence
condition at (2) is necessary and sufficient for all positive distributions f € 27 (Q) to
be represented by locally integrable functions. Furthermore, for each relatively compact
subset X C €2 we have

11l ) < N1 lloer @) (65)

To some degree the converse also holds, namely £+ (X) C 4L (Q). A natural question
arises whether all distributions in /7 (), regardless of their sign, are the Radon mea-
sures. This is the case for 7#!({)), and any other case when P is convex. In the concave
case the answer is in the negative [52]. In fact each space /¥ () contains a distribution
which is not a measure whenever P(t) = o(t) at infinity.
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One important discovery that brought new life to Hardy-Orlicz spaces is the regularity
phenomenon of null Lagrangians. In this category of interesting results we include the
following guideline rule for higher regularity:

The Jacobian determinant of a Sobolev mapping with |Df|" € £ (Q)
belongs to the Hardy-Orlicz space 4L, (S2).

loc

This principle has been confirmed in a number of cases [52].

18. The grand Hardy space .#")(Q). We finally push one step further the require-
ment about the integrability of M f. A distribution f € 2'(Q2) belongs to the grand Hardy
space V) (Q) if its maximal function lies in £V (Q), that is,

6/ MM f(z)|' 5 dz = O(1) as € — 0.
Q

As an example, the Dirac mass at a point in Q is a distribution in # (). Tts maximal
function lies in the Marcinkiewicz class .2}, (Q) C £V (). This example persuades us

weak
to introduce the weak Hardy space ., () as well. Accordingly,

weak
‘%\A}eak(g) C %1) (Q)

Up to this point we have only looked at how function spaces facilitate understanding
PDEs and some nonlinear differential forms, Jacobians and div-curl products. There is
also reverse interaction. It is hard to resist the temptation to round out our survey with
an example of such interaction. In a recent project [10] we exploited div-curl products
as generators of .1 (Q) to investigate the function b - b, where b € BMO(Q) and
h € #1(2). In general, b - h need not be locally integrable. Nevertheless, by virtue of the
#1-BM O pairing we can give a meaning to this function as a Schwartz distribution. It
operates on a test function ¢ € €5°(Q) by the rule: (b - h)[¢] = (¢ b)[h], where we view
the BMO-function ¢b as a linear functional on #*(f)). Among the many interesting
properties of the distribution b-h we found that it lies in the grand Hardy space ./#) (Q2).
Let Q be a cube. Then we also have a uniform bound

16 6llen ) < IbllBMo) (1Bl @)

provided the integral mean of b is equal to zero. Actually, a slightly better result holds.
The BMO-5#1 product admits a decomposition

b-h=g+/f
where g € Z1(Q) and f is a distribution in the Hardy-Orlicz space /7 (Q),
P(t) =tlog (e +1).

Let us end this section by noticing that both .#1(2) and J#¥'(Q)) are contained in the
grand Hardy space. In symbols

BMO - #" = ' + 7 ¢ #V.

19. Mappings between manifolds. Sobolev mappings between Riemannian mani-
folds have come into widespread usage in modern geometry [12] and topology [77], [7],
[22], [40], [14]. We have recently recounted in [41] some nuances of mappings f: X — Y
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between smooth compact oriented Riemannian manifolds, dim X = n > 2 and dim
Y = m > 2. First, it is highly desirable to know whether smooth mappings f € ¥ (X,Y)
are dense in the metric topology of a Sobolev class # 17 (X, Y). The collapse of the smooth
approximation for the exponents below the dimension of X, p < n, lies fairly deep in the
concept of the topological degree [68]. After several attempts [8] this situation was fi-
nally settled by F. Hang and F. Lin [42], but their result required certain topological
assumptions on both the domain and the target manifold. Despite this peculiarity, it is
still possible to relax all those topological constraints for mappings of the Orlicz-Sobolev
class #1'F(X,Y) slightly below # 1" (X,Y). These results are necessary if one wants to
build the theory of deformations with unbounded distortion on manifolds. Let us illustrate
the Marcinkiewicz-Sobolev class of mappings whose tangent bundle map Df : TX — TY
lies in .Z" , (X), that is, |{z € X: [Df(z)| >t} | =0@™).

weak

THEOREM 19.1. The closure of €°(X,Y) in the metric topology of the Marcinkiewicz-
Sobolev space w (X)Y) consists of mappings such that

weak

{z € X:|Df(z)| >t} =0(t"") ast— .

The arguments establishing smooth approximation in a manifold setting are really
different than one might a priori expect. These ideas, which involve so-called web like
structure on X, also work with great effectiveness for mappings in the Orlicz-Sobolev
classes # 19 (X, Y), with Q(t) = P(t"). Here the defining function P must satisfy, among
other technical conditions, the divergence condition (2). For example:

tTL
Q) = In(1+1¢) Inln(e +¢)---Inln ... In(e+1¢)"

We again see how the divergence condition (2) plays a crucial role in geometric analysis.
THEOREM 19.2. The space €>(X,Y) is dense in #'1?(X,Y).

Concerning integrability of the Jacobian determinant, the situation is dramatically
different when X and Y are spheres [41]; just to illustrate:

EXAMPLE 19.3. Every Orlicz-Sobolev class #'* @ (S™,S") in which Q(t) = o(t") contains
an orientation preserving mapping whose Jacobian fails to be integrable.

This example rises several natural questions concerning function spaces of weakly
differentiable mappings between given manifolds, for which the integral of the Jacobian
represents the degree of a mapping.

Epilog. There are many more profound interactions between function spaces and non-
linear PDEs than we could possibly present here. The benefit is: wider applications of
results and a greater understanding of the nature of nonlinear differential analysis. Let us
just stress that the above advances were sparked by the early work of Wladystaw Orlicz.
This is a testimony to his fantastic vision.

Spaces we need most are spaces we haven’t discovered yet.
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