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Let T = R/2πZ, L(T) be the set of all integrable functions f : T → C. We associate

with a function f ∈ L(T) its trigonometric Fourier series

f ∼
∞∑

k=−∞
f̂(k)eikx, f̂(k) =

1

2π

∫

T
f(x)e−ikxdx.

For n ∈ N define the n-th partial sum of f as

Sn(f ;x) =

n∑

k=−n
f̂ke

ikx.

Let ϕ : [0,∞)→ [0,∞) be a nonconstant convex function. Denote

ϕ(L) =

{
f ∈ L(T) :

∫

T
ϕ(|f(x)|)dx <∞

}
.

By C1, C2, . . . we denote absolute positive constants.

The paper is motivated by Ul’yanov’s question: does there exist a sequence {Nj} such

that for every function f ∈ L(T) there is an increasing sequence {nj} such that nj ≤ Nj
for all j and Snj (f) → f almost everywhere? Note that existence of a nonrestricted

sequence {nj} with almost everywhere convergence Snj (f)→ f follows from the classical

theorem of Kolmogorov [K]. On the other hand, for any increasing sequence {nj} of

positive integers there exists a real function f ∈ L(T) such that Snj (f) diverges almost

everywhere [G] or even everywhere [T]. Ul’yanov’s problem is still open. However, for an

Orlicz function space not coinciding with L(T) a sequence {Nj} depending on the space

does exist.

Theorem 1. If ϕ(u)/u→∞ as u→∞ then there exists a sequence {Nj} such that for

every function f ∈ ϕ(L) there is an increasing sequence {nj} such that nj ≤ Nj for all j

and Snj (f)→ f almost everywhere.
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Without loss of generality we can assume that

(1) ∀u ≥ 0 φ(u) ≥ u,
∫

T
ϕ(|f(x)|)dx ≤ 1.

The main part of Theorem 1 is the following lemma.

Lemma 1. There exists a sequence {Nj} (j ≥ 0) such that for every ε > 0 there is a

sequence {nj} such that Nj−1 < nj ≤ Nj for all j and Snj (f) → f on a complement to

a subset of T of measure less than ε.

Theorem 1 easily follows from Lemma 1. Indeed, if {nj} = {nj}(ε) is a sequence from

the lemma, then there are j(ε) and a set E(ε) ∈ T such that

(2) |E(ε)| < 2ε

and

(3) ∀j ≥ j(ε), x ∈ T \ E(ε) |f(x)− Snj (f ;x)| ≤ ε.
We can assume that j(2−ν−1) ≥ j(2−ν) for all ν ∈ N. Take nj arbitrary for j < ν(1),

nj = nj(2
−ν) for j(2−ν) ≤ j < j(2−ν−1),

E =
⋂

J

⋃

j≥J
Ej .

Then we have |E| = 0 and Snj (f ;x)→ f(x) for x ∈ T \ E.

By Mf we denote Hardy–Littlewood’s maximal function of f :

f(x) = sup
y<x<z

1

z − y

∫ z

y

|f(x)|dx.

Let M > 0 and

E1 = {x ∈ T : Mf(x) > M}.
Then E1 is an open set. Note that, by (1),

(4)

∫

T
|f(x)|dx ≤ 1.

Using the weak-type (1, 1) inequality for Mf (see, for example, [D, p. 31]), we get |E1| ≤
2/M . We can write E1 as a union of disjoint intervals

E1 =
⋃

µ

(yµ, zµ).

Denote

E2 =
⋃

µ

(2yµ − zµ, 2zµ − yµ).

Then |E2| ≤ 3|E1| ≤ 6/M . Hence, if M ≥ 7/ε, then

|E2| < ε.

Our aim is to construct appropriate sequences {Nj}, {nj} such that

(5) Snj (f ;x)→ f(x) almost everywhere on T \ E2.
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We use the well-known Calderón–Zygmund decomposition of f [CZ]. Let g(x) = f(x)

for x ∈ T \ E1 and

g(x) =
1

zµ − yµ

∫ zµ

yµ

f(x)dx

for x ∈ (yµ, zµ) ⊂ E1. It is easy to see that |g(x)| ≤ M almost everywhere. Indeed, if

x ∈ (yµ, zµ) and we assume |g(x)| > M , then
∫ zµ+δ

yµ

|f(x)|dx > M(zµ + δ − yµ)

for some δ > 0, and hence Mf(zµ) > M , but this is impossible. Further, almost every-

where on T \ E1 we have

|g(x)| = |f(x)| ≤Mf(x) ≤M.

Therefore, since g is essentially bounded, by Carleson’s theorem [C] Sn(g) → g almost

everywhere, and (5) is equivalent to

(6) Snj (f − g;x)→ f(x)− g(x) = 0 almost everywhere on T \ E2.

By the way, we have proved that for any µ we have

(7)

∫ zµ

yµ

|g(x)|dx ≤
∫ zµ

yµ

|f(x)|dx ≤M |zµ − yµ|.

Applying Jensen’s inequality to a convex function ϕ we get

(8)

∫ zµ

yµ

ϕ(|g(x)|)dx ≤
∫ zµ

yµ

ϕ(|f(x)|)dx.

First, we construct sequences of positive numbers {Lν} → ∞ and {δν} → 0. We take

Lν ≥ 1 so that

(9) φ(Lν)/Lν ≥ ν.
Let δ1 = 1/2. If δν has been chosen, define

(10) δν+1 = δ11
ν /L

2
ν .

We define {Nj} to be

(11) N0 = 1, Nj = [1/δj4 ] (j ≥ 1).

We may assume that ε < 1. Since |E2| < ε, the length of any interval (yµ, zµ) is less

than 1/3. Now for any ν ≥ 1 we define

fν(x) =

{
f(x), x ∈ (yµ, zµ), δν+1 < zµ − yµ ≤ δν ,
0, otherwise,

gν(x) =

{
g(x), x ∈ (yµ, zµ), δν+1 < zµ − yµ ≤ δν ,
0, otherwise.

Clearly,

(12) f − g =
∑

ν

(fν − gν).
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For any j ≥ 2 we have, by (4),

j4−1∑

ν=(j−1)4

∫

T
|fν(x)|dx ≤

∫

T
|f(x)|dx ≤ 1.

Therefore, there exists ν0 ∈ [(j − 1)4, j4) such that

(13)

∫

T
|fν0

(x)|dx ≤ 1/(j4 − (j − 1)4) < 1/j3.

By (7), also

(14)

∫

T
|gν0

(x)|dx < 1/j3.

Denote

h1 =
∑

ν<ν0

(fν − gν), h2 = fν0
− gν0

, h3 =
∑

ν>ν0

(fν − gν).

Identity (12) can be rewritten as

(15) f − g = h1 + h2 + h3.

By (13) and (14), ∫

T
|h2(x)|dx < 2/j3.

Therefore, using [K], we obtain that for any n there exists Fj,2 ⊂ T such that

(16) |Fj,2| ≤ 1/j2, |Sn(h2;x)| ≤ C1/j (x ∈ T \ Fj,2).

Now, let us consider partial sums of the function h1. We shall show that it is possible

to choose nj ∈ (Nj−1, Nj ] such that |Snj (h1)| will be small on a large subset of T \ E2.

First, we deduce from (8) and convexity of ϕ that

(17)

∫

T
ϕ(|h1(x)/2|)dx ≤ 1

2

(∫

T
ϕ(|f(x)|)dx+

∫

T
ϕ(|g(x)|)dx

)
≤
∫

T
ϕ(|f(x)|)dx ≤ 1.

Let

(18) h1 = h1,1 + h1,2,

where h1,1(x) = h1(x) for |h1(x)| ≥ 2Lν0
and h1,1(x) = 0 otherwise. We estimate partial

Fourier sums of the function h1,1 in the same way as for the function h2. By (9) and (17),
∫

T
|h1,1(x)|dx = 2

∫

T
|h1,1(x)/2|dx ≤ 2

ν0

∫

T
|ϕ(h1,1(x)/2)|dx

≤ 2

(j − 1)4

∫

T
ϕ(|h1(x)/2|)dx ≤ 32

j4
.

Therefore, using [K] again, we obtain that for any n there exists Fj,1,1 ⊂ T such that

(19) |Fj,1,1| ≤ 1/j2, |Sn(h1,1;x)| ≤ C2/j
2 (x ∈ T \ Fj,1,1).

Now, let us estimate partial Fourier sums of the function h1,2. Using (7) and (1) we

have ∫

T
|h1,2(x)|dx ≤

∫

T
|f(x)|dx+

∫

T
|g(x)|dx ≤ 2

∫

T
|f(x)|dx ≤ 2.
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Therefore,

(20)

∫

T
|h1,2(x)|2dx ≤ 4Lν0

.

Fix x ∈ T \ E2. We use the well-known formula

(21) Sn(h1,2;x) = Sn,1(x) + Sn,2(x),

where

Sn,1(x) =
1

2π

∫

T
h1,2(t) cot

(
t− x

2

)
sin(n(t− x))dt,

Sn,2(x) =
1

2π

∫

T
h1,2(t) cos(n(t− x))dt.

Now, observe that the supposition h1,2(t) 6= 0 implies t ∈ (yµ, zµ) for some µ with

zµ − yµ ≥ δν0
. Also, since x ∈ T \ E2, we get x 6∈ (2yµ − zµ, 2zµ − yµ). Thus,

∣∣∣∣cot

(
t− x

2

)∣∣∣∣ ≤ cot(δν0
/2),

and, by (20), we have
∫

T

(
h1,2(t) cot

(
t− x

2

))2

≤ C3Lν0
/(δν0

)2.

Now, we can use Parseval’s identity

(22)
∑

n

|Sn,1(x)|2 ≤ C3

4π
Lν0

/(δν0
)2.

For x ∈ T \E2 denote

N1(x) = {n : |Sn,1(x)| > δν0
}.

By (22), we have

|N1(x)| ≤ C3

4π
Lν0

/(δν0
)4.

By integration we get

(23)

∫

T\E2

|N1(x)|dx ≤ C3Lν0
/(δν0

)4.

Similarly, if we denote

N2(x) = {n : |Sn,2(x)| > δν0
}.

then

(24)

∫

T\E2

|N2(x)|dx ≤ C3Lν0
/(δν0

)4.

Denote

N ′j = Nj−1 + [Lν0
/(δν0

)5] + 1.

It follows from (23) and (24) that there exists n, Nj−1 < n ≤ N ′j such that

(25) |Fj,1,2| ≤ 2C3δν0
< 2C3/Nj−1,

where

Fj,1,2 = Fj,1,2(n) = {x ∈ T \ E2 : n ∈ N1(x) ∪N2(x)}.
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By the definition of δν0+1 and Nj we have n < [1/δν0+1] ≤ Nj , and we can take nj = n.

So, by (21), we have

(26) ∀x ∈ T \ E2 \ Fj,1,2 |Snj (h1,2;x)| ≤ 2δν0
< 2/Nj−1.

Now we will prove that for n ≤ N ′ the partial sums Sn(h3) are uniformly small. Using

(7), for any k ∈ Z and any µ we have
∣∣∣∣∣

∫ zµ

yµ

(f(x)− g(x))e−ikxdx

∣∣∣∣∣ =

∣∣∣∣∣

∫ zµ

yµ

(f(x)− g(x))
(
e−ikx − e−ikyµ

)
dx

∣∣∣∣∣

≤ |k||zµ − yµ|
∫ zµ

yµ

|f(x)− g(x)|dx ≤ 2|k||zµ − yµ|2M.

Therefore,

|ĥ3(k)| =

∣∣∣∣∣∣
1

2π

∑

zµ−yµ≤δν0+1

∫ zµ

yµ

(f(x)− g(x))dx

∣∣∣∣∣∣
≤ 1

2π

∑

zµ−yµ≤δν0+1

2|k||zµ − yµ|2M

≤ 1

π
δν0+1|k|M

∑

zµ−yµ≤δν0+1

|zµ − yµ| ≤ 2δν0+1|k|M,

and thus for any positive integer n

|Sn(h3;x)| ≤
∑

|k|≤n
|ĥ3(k)| ≤ 4δν0+1n

2M.

In particular,

(27) |Snj (h3;x)| ≤ 4δν0+1(N ′j)
2M.

It follows from the definition that N ′j ≤ C4Lν0
/(δν0

)5. Consequently, by (10), δν0+1(N ′j)
2

≤ (C4)2δν0
, and after combining the last inequality with (27) we obtain

(28) |Snj (h3;x)| ≤ C5Mδν0
≤ C5M/Nj−1.

To finish the proof, we define

Fj = Fj,1,1 ∪ Fj,1,2 ∪ Fj,2.
By (16), (19), and (25),

|Fj | ≤ 2/j2 + 2C3/Nj−1.

Taking into account that, by construction,
∑
j 1/Nj <∞, we get

(29)
∑

j

|Fj | <∞.

Further, we combine (16), (19), (25), and (28) with (18) and (15). Thus, if x ∈ T\E2\Fj ,
then

(30) |Snj (f − g;x)| ≤ C1/j + C2/j
2 + (C5M + 2)/Nj−1 → 0 (j →∞).

By (29) and (30), Snj (f − g;x) → 0 almost everywhere on T \ E2. This proves (6) and

completes the proof of Lemma 1.

For the whole class L(T) we can construct a sequence {Nj} with a weaker property

than in Ul’yanov’s problem.
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Theorem 2. There exists a sequence {Nj} such that for every function f ∈ L(T) there

is an increasing sequence {nj} such that nj ≤ Nj for infinitely many j and Snj (f)→ f

almost everywhere.

Without loss of generality we can assume that

(31)

∫

T
|f(x)|dx ≤ 1.

The following lemma is the main part of Theorem 2.

Lemma 2. There exists a sequence {Nj} (j ≥ 0) such that for every ε > 0 there is

S = S(ε) and also for sufficiently large j there are numbers Nj−1 < n1 < · · · < nj ≤ Nj
such that

(32) max(|Sn1
(f ;x)− f(x)|, . . . , |Snj (f ;x)− f(x)|) ≤ S

on a complement to a subset of T of measure less than ε.

Theorem 2 follows easily from Lemma 2. Indeed, let

εµ = 2−µ, δµ = εµ/S(εµ) (µ ≥ 1).

For every µ there exists a trigonometric polynomial Pµ of degree mµ such that
∫

T
|f(x)− Pµ(x)|dx ≤ δµ.

Denote gµ = f−Pµ. By Lemma 2, for any µ there exist j(µ), Eµ ⊂ T, n1(µ), . . . , nj(µ)(µ)

such that j(µ) > j(µ− 1) for µ > 1, Nj(µ)−1 > mµ, |Eµ| < εµ, Nj(µ)−1 < n1(µ) < · · · <
nj(µ)(µ) ≤ Nj(µ), and

(33) max
j
|Snj(µ)(gµ;x)− gµ(x)| ≤ εµ

for x ∈ T \ Eµ. Since f − gµ is a trigonometric polynomial of degree less than nj(µ) for

j = 1, . . . , j(µ), (33) can be rewritten as

max
j
|Snj(µ)(f ;x)− f(x)| ≤ εµ.

We define a sequence {nj} to be the union of the sets {n1(µ), . . . , nj(µ)(µ)} over j ≥ 1.

Define

E =
⋂

J

⋃

µ≥J
Eµ.

Then nj(µ) ≤ Nj(µ) for all µ, |E| = 0, and Snj (f ;x)→ f(x) for all x ∈ T \ E.

In the proof of Lemma 2 we may assume that ε < 1. We define E1, E2, g as in the

proof of Lemma 1. We consider that M > 18/ε. Then

(34) |E2| < ε/3.

It is enough to prove the existence of appropriate S, n1, . . . , nj such that

(35) max(|Sn1
(f − g;x)|, . . . , |Snj (f − g;x)|) ≤ S

everywhere on T \ E, where

(36) E2 ⊂ E, |E| < ε.
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A sequence {δj} will be constructed in the following way. Let δ1 = 1/2. If δν has been

chosen, we consider the set K of continuous functions h : T→ C such that for all x, y ∈ T
|h(x)| ≤ 1/δν , |h(x)− h(y)| ≤ |x− y|/δ2

ν .

K is a compact subset of C(T). Hence, there is a finite 1-net {h1, . . . , hLν} for K (that

is, for any h ∈ K there is l ≤ Lν such that ‖h− hl‖C(T) ≤ 1). Observe that an 1-net with

the same cardinality Lν exists if the function class is defined on some compact subset

of T, since every function can be extended from the subset to T without change of the

uniform norm and the Lipschitzian constant. Define

δν+1 =
(
1/δν + νL2

ν

)−2
.

We define {Nj} to be

N0 = 1, Nj = 1/δj4 (j ≥ 1).

(Observe that 1/δν is an integer for any ν.)

We define fν , gν , choose ν0 ∈ [(j − 1)4, j4) for any j ≥ 2 and further define h1, h2, h3

as in the proof of Lemma 1. We will seek for n1, . . . , nj from the segment (1/δν0
, N ′j ]

where

N ′j = 1/δν0
+ ν0L

2
ν0

= (δν0+1)−1/2.

Similarly to (16) we prove that for some set Fj,2 we have

(37) |Fj,2| ≤ 1/j, max(|Sn1
(h2;x)|, . . . , |Snj (h2;x)|) ≤ C1/j (x ∈ T \ Fj,2),

Similarly to (27), we have a uniform estimate

(38) max(|Sn1
(h3;x)|, . . . , |Snj (h3;x)|) ≤ 4δν0+1(N ′j)

2M = 4M.

It suffices to estimate partial sums of the function h1 on T \ E2.

Let us recall some well-known definitions and facts. For any function h ∈ L(T) define

the conjugate function

h̃(x) =
1

2π
lim
δ→0

∫

δ≤|t|≤π

−h(x+ t)

tan(t/2)
dt.

By the theorem of Lusin and Privalov (see, for example, [Z, 4.3 and 7.1]) this limit exists

almost everywhere.

Lemma 2.1. There exists an absolute constant C6 such that for any function h ∈ L(T)

and any α > 0 ∣∣∣∣
{
x : |h̃(x)| > α

∫

T
|h(t)|dt

}∣∣∣∣ < C6/α.

This is the result of [K].

For a positive integer n define a modified Dirichlet kernel of order n:

D∗n(t) =
sin(nt)

tan(t/2)
.

Lemma 2.2. Let

S∗n(h;x) =
1

2π

∫

T
D∗n(t)h(x+ t)dt.
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Then

S∗n(h;x) = Sn(h;x)− (ĥ(n) exp(inx) + ĥ(−n) exp(−inx))/2.

Therefore,

|Sn(h;x)| ≤ |S∗n(h;x)|+ 1

2π

∫

T
|h(t)|dt.

See the first statement in [Z, 2.3]. The second statement follows immediately from the

first one.

Denote h(n)(x) = h(x)einx.

Lemma 2.3. We have

(39) S∗n(h;x) = i exp(−inx)h̃(n)(x)− i exp(inx)h̃(−n)(x)

provided that the right-hand side of (39) is defined. Therefore,

|S∗n(h;x)| ≤ |h̃(n)(x)|+ |h̃(−n)(x)|.
This result is contained in [Z, 7.3].

We will use Lemmas 3–5 for functions h(n), h = h1, and for x ∈ T \E2. Note that for

such x and h1(x+ t) 6= 0 we have |x− t| ≥ δ = δν0
. It is easy to see that

| cot(x/2)| ≤ 2/δ, | cot(x/2)− cot(y/2)| ≤ (2/δ2 + 1)|x− y| (|x|, |y| ∈ [δ, π]).

Using also that, by (7) and (31),

(40)

∫

T
|h1(x)|dx ≤

∫

T
|f(x)|dx+

∫

T
|g(x)|dx ≤ 2

∫

T
|f(x)|dx ≤ 2,

we have for any integer n and x, y ∈ T \ E2

|h̃(n)
1 (x)| ≤ 1/δ, |h̃(n)

1 (x)− h̃(n)
1 (y)| ≤ |x− y|/δ2.

Therefore, by the pigeon-hole principle, for j ≥ 3 there exist n1, . . . , nj , 1/δν0
< n1 <

· · · < nj ≤ N ′j , such that for all x ∈ T \E2 and µ = 2, . . . , j we have

|h̃(nµ)
1 (x)− h̃(n1)

1 (x)| ≤ 2, |h̃(−nµ)
1 (x)− h̃(−n1)

1 (x)| ≤ 2.

(We have used that ν0 ≥ j for j ≥ 3.) Consequently, by Lemmas 2.2 and 2.3, and (40),

we get

(41) max(|Sn1
(h1;x)|, . . . , |Snj (h1;x)|) ≤ |h̃(n1)

1 (x)|+ |h̃(−n1)
1 (x)|+ 5.

By Lemma 2.1, there is a set Fj,1 ⊂ T such that

(42) |Fj,1| < ε/3

and for any x ∈ T \ Fj,1 we have

|h̃(n1)
1 (x)|+ |h̃(−n1)

1 (x)| ≤ C7/ε

and thus, by (42), for x ∈ T \ E2 \ Fj,1
(43) max(|Sn1

(h1;x)|, . . . , |Snj (h1;x)|) ≤ C7/ε+ 5.

Denote

E = Fj,1 ∪ Fj,1 ∪ E2.
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By (34), (37), and (42), the conditions (36) are satisfied for sufficiently large j. Using

(15), (37), (38), and (43), we have

max(|Sn1
(f − g;x)|, . . . , |Snj (f − g;x)|) ≤ C1/j + 4M + C7/ε+ 5

for all x ∈ T \ E. This proves (35) and completes the proof of Lemma 2.
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