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Abstract. Spherical designs constitute sets of points distributed on spheres in a regular way.
They can be used to construct finite-dimensional normed spaces which are extreme in some
sense: having large projection constants, big or small Banach-Mazur distance to Hilbert spaces
or /,-spaces. These examples provide concrete illustrations of results obtained by more powerful
probabilistic techniques which, however, do not exhibit explicit examples. We give a survey of
such constructions where the geometric invariants can be estimated quite precisely.

1. Introduction. Dvoretzky’s theorem and the study of Hilbertian subspaces of high-
dimensional Banach spaces has been the subject of intensive investigation which typically
involve probabilistic techniques and the concentration of measure phenomenon, [D], [MS].
Below a certain dimension, “typical” subspaces are Hilbertian whereas for higher dimen-
sions, the maximal Banach-Mazur distance to Hilbert spaces can now be estimated quite
precisely, at least for classical spaces like the /,-spaces. Very often such spaces are ve-
ry badly complemented and thus have very large projection constants, e.g. for Kashin’s
subspaces of ¢, [Ka], or Gluskin’s spaces yielding the correct diameter estimate for the
Banach-Mazur compactum, [G]. “Typical” subspaces here is meant in a probabilistic way,
i.e. with respect to the Haar measure on the Graffmann manifold of n-dimensional sub-
spaces of N-dimensional spaces where n < IV.

In this note, we present some more explicit constructions of Hilbertian subspaces of
classical Banach spaces and of spaces with large projection constants which rely on the
existence of regular point distributions on spheres—spherical designs—instead of random
point set distributions.

As for notation, £, denotes K", K € {R,C}, equipped with the norm

N 1/p N N
lellp = (D lwsl?) ) = (), €KY
j=1
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The Banach-Mazur distance between two isomorphic Banach spaces X and Y is defined
to be
d(X,Y) =inf{||T|| |T7*|| | T : X — Y linear isomorphism}.

Let n,k, N € N. A spherical design of order 2k in n variables with N nodes consists of
N points on the euclidean unit sphere z1,...,7xy € S" !(K) and a discrete probability
measure on them, pq,...,uny >0, Zi\le s = 1 such that all even polynomials of degree
2k in n variables Pgy %" are integrated exactly over the normalized Haar measure o on
the sphere S"~! by the quadrature formula defined by (zs, ), i.e.

N

Sowpa) = [ po)dotw), pe PR (1.1)

s=1 gn—1
For K = C, C" ~ R2" are identified for the purpose of integration; “even polynomials”
then means polynomials in (z,Zz) which are homogeneous of degree k each in z and in Z.
It suffices to have (1.1) for polynomials which are homogeneous of the highest degree 2k,
since lower order (2¢)—homogeneous parts can be multiplied by 1 = (y,y)*~* to get the
same degree (2k) of homogenity when restricted to S™~!. Spherical designs in the classical
sense of Delsarte, Goethals and Seidel [DGS] are more restricted having ps = 1/N but
(1.1) is more suitable for our purpose. In the case of k = 1, polynomials of degree 2, take
p(y) = (y®y)i; = viy; for y = (y;)j—; € K". Since [4,_, p(y)do(y) = 1/n d;;, a spherical
design of degree 2 just means

N
nz HsTs @ xg = Idgn. (1.2)
s=1
John’s theorem typically yields such points which as contact points of a norm additionally
satisfy ||xzs||x = ||zs||x+ = 1. The points (z;) in (1.2) are orthogonal projections of an
orthonormal basis in ¢} onto a suitable n-dimensional subspace:

P = (/’L5<x57xt>)i\7{t:1 : KN — KN
Here K" should be thought of being imbedded into KV by z +— (u,{z, x4)) ;.

2. Hilbertian subspaces of /,-spaces. Let ¢ > 0 and 1 < p < oo. By Dvoretzky’s
theorem for /,-spaces, given n € N there exists ¢, > 0 such that if N € N satisfies

<np<
N> cpn/2 1<p<2 ,
cpnP 2<p< o0

the N-dimensional space E;V contains almost Hilbertian subspaces Y,, C K;V of dimY,, =
n, d(Yy,,04) <1+¢, [FLM]. We say that (5 embeds (1 + ¢)-isomorphically into £}

We consider the case of isometric imbeddings, i.e. ¢ = 0 and n > 2. Do isometric
imbeddings of ¢4 into éév exsist? The answer is yes if and only if p is an even integer,
p = 2k € 2N. That p needs to be even can be found in Lyubich’s paper [L], that isometric
imbeddings of ¢4 into KII,V exist for p = 2k was shown by Gromov, Milman [M]. In fact,
even in the infinite-dimensional case, isometric imbeddings of ¢ into ¢, only exist if
p = 2k € 2N as was proved by Delbaen, Jarchow and Pelczynski [DJP]. They also prove
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that general n-dimensional subspaces of L, are imbedded isometrically into ¢2) if N is
sufficiently large.

The following proposition states the equivalence of imbedding /5 isometrically into
¢% with the existence of appropriate spherical designs. It is a generalization of results
of Delsarte, Goethals and Seidel [DGS] and Reznick [R| and was stated in [K]. The
equivalence (1) < (2) was also obtained by Lyubich and Vaserstein [LV].

PROPOSITION 1. Let n,k, N € N. Then the following are equivalent:

(1) There ezists an isometric imbedding of (3 into (1.
(2) There exists a spherical design (zs, 115)Y_1 of order 2k in n variables with N nodes.
(3) There ezist points z1,...,xx € S" 1K) and pus > 0, ng:l is = 1 such that

N
> eplwa)® = [ [ )P dot@doty) = em. (21)
s,t=1 Sn-tJgnt

Condition (2.1) gives a criterion to check whether (x4, ui5) is a spherical design which
defines an imbedding. We sketch the important directions (3) = (2) and (2) = (1) in the
real case; (1) = (3) is not difficult either.

Proof. (3) = (2). For z € R" and £ € N, denote & = 2®---®x € R"" the (-fold tensor
product. Then (z®¢ y®¢) = (x,y)* which for even ¢ coincides with |(z,y)|. Given points
zs € S" tand p, >0, Zi\le s = 1, form the tensor

N
nZk
£:=) usal™ —/ y®**do(y) e R .
s=1 S

n—1

Evaluating the scalar product 0 < (£,¢) in R"Qk, we find

N N
0< Y ppul(ms, z)|* =2 s /Sn
s=1

s,t=1

oo+ [ [ @),

The integral in the second sum does not depend on s since |z5] = 1 and o is rotation
invariant; it equals ¢, as defined in (2.1). Hence
N
0< Z Lspee[{Ts, xt>\2k — Cnk (Sidelnikov’s inequality).
s,t=1

Thus (2.1) means that £ = 0. In coordinates this means that all homogeneous polynomials
of degree 2k are integrated exactly by the quadrature formula defined by (z, ius) and (2)
follows from this.

(2) = (1). Given the design (s, ), consider the imbedding
i ly — Zévk-’ L= ((ﬂS/an)1/2k<xaxS>)iV=17

Denoting p,(y) := (z,y)?* for any fixed z € R", we have
N

liall3 = >~ (nefens)ps ) = (1) [ palu)doty) = [of*,

j:1 Sn—1

i.e. 7 is isometric. m
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REMARK. If (x4, us) are given explicitly, the imbedding 7 is defined explicitly as the proof
shows. The usefulness of (2.1) is best illustrated by a few examples.

EXAMPLES.

(1) K=R, n =2 N =k+1 Take z, = exp (%s)"_ € C~R2 p, = I/N. It

is easy to check that (2.1) holds, so /2 — ES;I imbeds isometrically. In particular
i G withi(B3) = {y € 6 | 20 y: =0, y= ()3, }-

(2) K=C,n=2, k=2, N=4: (3(C)— ¢{(C) by using us = 1/4 and the vectors
x1 = (1,0), zs = %(1, V2 w2, s =2,3,4 with w = exp(27i/3).

(3) K=R, n=24, k=5, N = 98280: this uses vectors of the Leech lattice, see [R]
or [DGS].

It is of course of interest to determine the minimal dimension N of the Ei,v -space, p = 2k,
where ¢4 imbeds isometrically into; for quadrature formulas this means the minimal
number of nodes.

DEFINITION. N(n,k) :=min{N € N | ¢ — ¢X¥ imbeds isometrically}.

PROPOSITION 2. Let 2 < n,k € N. Then

n+k—1 n+2%k—1
< =
( i )gN(n,k)_( o ) K =R,

w1\ (- w1y’
(b)) s () e

For the upper bound, see [M], for the lower e.g. in the real case [R]. Note that (
is the dimension of the (real) polynomials in n variables which are homogeneous of degree
k. For fixed k¥ and n — oo, the lower and upper bounds differ in an essential way.

(2.2)

n+llz—1)

The lower bound is O(n*) whereas the upper bound is O(n2*). Integrating polynomials
of degree 2k with dimension O(n?*), one might expect the upper bound to be tight;
looking at Dvoretzky’s theorem, just putting ¢ = 0, one might suspect the lower bound
O(n*) = O(nP/?) to be tight. The right order is unknown so far, except for & = 2. The
lower bound is an equality for tight designs; they have been characterized by Bannai [B]
and Hogger [H]:

PROPOSITION 3. Let n,k € N and assume that the lower bound in (2.2) is an equality.
Then the nodes (zs)Y_; C S"~1 and the measure (1us)_, of any design with (2.1) satisfy
s = 1/N and for any 1 < s #t < N the value |(zs,x+)| is a zero of a certain explicit
polynomial of degree k (in terms of Jacobi polynomials even/odd if k is even/odd). For
k=2, (zs,z)] = 1/VE+2R) or = 1/vVk + 1(C) for s # ¢ and N = n(n+1)/2(R) or
n?(C). This is equivalent to the existence of the mazimal possible number of “equiangular
lines” Kxg in K™.

Designs attaining the lower bound are called tight. They do not exist for k¥ > 5, but
there are a few cases if k¥ < 5 ([B], [H]): they exist for
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K=R: k=2 n=2,37,23 when N = 3,6,28,276 (equiangular lines)
k=3, n=8,23 when n = 120, 2300
k=5, n =24 when N = 98280 (points in the Leech lattice)
n=2, N=k+1 (n-theroot of unity in C ~ R?)
K=C: k=2 n=2/3,8when N =4,9,064
k=3, n=4,6 when N = 40,126
n=2, k=2,3,5 when N =4,6,12.
In these cases, /5 — ¢} imbeds isometrically and N is the smallest dimension for this
to hold. The examples following Proposition 1 were of this form.
To find a sequence of almost tight 4-designs in K™ with (2.1) we use sets of equiangular
vectors in C" which attain almost the maximal possible number n? of such vectors. We use
the number-theoretic Bs-sequences employed by Rudin in his constructions of A(4)-sets.

PROPOSITION 4 ([K]). Letn =p™+1, p prime. Then there exists an isometric imbedding
2
05— 0 over C.

Proof. Let N = n? — n + 1. There exist integers 0 < d; < ---d,, < N such that all
numbers from 1 to N —1 = n(n — 1) occur exactly once as residue mod N of a difference
d;j —dy (j # k), of which there are N — 1 = n(n — 1), cf [HR]. Define

1 271 "
Ty = exp d; s>> es~cycc”;, s=1,...,N. 2.3
N < (N ") = (23

These vectors are equiangular with |(z,,z:)| = vn — 1/nforall 1 < s #t < N as seen by
calculating |(zs, 7;)|? by using that D itk exp(2(d;j—dy,)0) = —1foralll <© < N—1.
These vectors do not quite suffice to have equality in (2.1) with us = 1/N. However,

adding the n unit vectors e; = (0...0,1,...0), j=1,...,n; ie. letting xNﬂ = ej, We
have n?+1 vectors which satisfy (2.1) if one puts in addition us =t yfor1<s<N
and pny; = 5 4 for 1 < j < n. There ¢,5 = 2/[n(n + 1)] for K = C. Hence

2
03— 07 T over C. m

These complex cubature formulas give rise to real cubature formulas of degree 4 in
= 2n real variables with M = 3(n? + 1) = 2(m? + 4) nodes as follows from the chain
of imbeddings

(P (R) = £3(C) — £7H(C) = 67T (BR)) — 67 (BR) = £ D(R).

Also these have only O(m?) nodes and thus asymptotically are of the lower asymptotic
order in Proposition 2 as m — oo.

Similar constructions for Bjy-sequences for k£ > 3 do not seem to work; one would
have to add more vectors than just the unit vectors e;. For kK = 3 one can add O(n?)
vectors but to satisfy (2.1) some of the weights ps; would have to be negative which is
not allowed since ;1 would not define a (positive) probability measure. It is an important
open problem whether the lower bound in Proposition 3 gives the right asymptotic order
as n — oo also if k£ > 3 is fixed. A positive answer would mean that one could put € =0
in Dvoretzky’s theorem for Ki,v if 0 = 2k.
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3. Projection constants. Spherical designs and equiangular lines also show up in es-
timating projection constants and in the construction of spaces with maximal projection
constants. Any separable, in particular any finite-dimensional Banach space X may be
imbedded into /.,. Take any fixed linear isometric imbedding X C /., and define the
projection constant of X by

MX) :=inf{||P|| | P? = P : {ss — X C {4 is a linear projection onto X}.

This value is independent of the particular imbedding and /., is the “worst” superspace:
if dim X < oo and X is isometrically imbedded into some Banach space Y, there is a
projection Q? = Q : Y — X C Y onto X with ||Q|| < A\(X). For n-dimensional Hilbert

spaces, \({5) ~ \/g\/ﬁ (K=R) and ~ \/77?\/5 (K = C). Kadec and Snobar [KS] showed
that A(X) < +/n holds for any n-dimensional space X. This estimate was improved in
[KT1] where the following dual characterization of extremal projection constants was
proved; the supremum on the right side is attained in some cases by spherical designs:
ProposITION 5 ([KT1]). Let n € N, K € {R,C}. Then

N N
sup{A\(X,) | dim X,, <n} = nsup{ Z Wstit] (Ts, Tt )] } N € NU{oo}, ug > O,Zut =1,

s, t=1 t=1

N
Id, = nZutxt ® xt}. (3.1)
t=1

Both suprema are in fact attained as mazima.

The proof uses the trace-dual characterization of projection constants in terms of
1-summing norms; i = (p) is the corresponding Pietsch measure. Since

N N 172
w3 pend(@e el <n( Y mlize w)?) T = Vi

s,t=1 s,t=1
under the constraints on (z, y), the Kadec—Snobar result is an immediate consequence
of (3.1). An improvement can be derived by estimating |u| < a+bu? — cu* for appropriate
a,b,c > 0 with u = (x4, ;) and by using the Sidelnikov inequality mentioned in the proof
of Proposition 1. This way one proves

THEOREM 6 ([KT1]). Let n = N. Then for any n-dimensional Banach space X,
2+(n-1)vnt2)/(n+1), K=R
< v/n.
14+ (n—=1)vn+1)/n, K=C
There is X,,, dim X,, = n, with A\(X,,) = G(n) if and only if there exist N(n) equiangular
lines in K" where
[ n(n+1)/2, K=R
N ={ "R SR

i.e. if and only if there is a tight 4-design in S"1(K) C K".

If (zg,ps = N(ln))g/:(?) is such a tight design, the norm of X, = (K",|| - ||) with

A < 6l = {

A(X,) = G(n) may be defined as ||z|| = maxi<s<n(n) [(z,2,)|. Thus X,, C XM g very



APPLICATIONS OF SPHERICAL DESIGNS 133

badly complemented. Taking the ¢4-norm, instead of the /.,-norm, however, one gets
isometrically a Hilbertian subspace of éiv(”) onto which in addition uniformly bounded
projections exist. For K = R and n = 2,3 spaces with maximal projection constants
derived from this are those whose unit balls are the regular hexagon and the regular
dodecahedron. However, in general spaces with extremal projection constants are not
unique since a corresponding imbedding into £} instead of /) may yield a different space
with the same projection constant:

PROPOSITION 7 ([KT2|). Let Xoo C Y, dim X, = n be such that \(Xo) = sup{\(Y) |
dimY = n}. Then there exists a probability measure = (us)™_; on {1,..., N} such
that when the same space X, is considered as a subspace of (% (u), then written as
X, C (), one has A(Xo) = M(X1).

For K = R and n = 2 one gets the hexagonal space in both cases. In general, however,
the spaces X, and X; are very different. For K = R and n = 3, x; = diagonals of the
icosahedron, X, is the space with dodecahedron unit ball and X; the space whose unit
ball is the dodecahedron intersected with the ¢-multiple of the face-centrally inscribed
icosahedron, ¢ = (1 + v/5)/2. The second unit ball has as its faces 12 pentagons—as the
dodecahedron—plus 20 triangles, cf. [KT2].

Taking the almost maximal number of equiangular vectors xs given by (2.3) in C"
wheren = p™+1land s =1,..., N := n?—n+1, we may define a space X, = (C",||-||) C
(N by letting

||| :== sup [(z, )]
1<s<N

In this case, one can check that X, has almost extremal projection constant. More
precisely, cf. [KT3],

MXx) = G(n) = 1/n*? > n—1/v/n.
In particular, lim, ., A(Xs)/v/n = 1 when n is a sequence of integers of the form

n = p™ + 1 tending to infinity. The spaces X, also have extremal distance to ¢5 and
extremal unconditional basis constant ubc, i.e.

d(Xoo, ly) = V1,  ubc(Xeo) = V/n.

As subspaces of K;V , denoted X, they have uniformly bounded Banach-Mazur distance
to ¢5 provided that 1 < p < 4; onto these spaces, as subspaces of EZZ,V , there are also
uniformly bounded projections. For these facts see [KT2|, [KT3|.

Further beautiful applications of spherical designs to the Borsuk and Knaster conjec-

tures are given in papers of Hinrichs and Richter [HR1], [HR2].
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