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Abstract. The modern form of Hardy’s inequality means that we have a necessary and sufficient
condition on the weights v and v on [0, b] so that the mapping

H : LP(0,b;v) — L0, b;u)

is continuous, where H f(x) = [ f(t)dt is the Hardy operator. We consider the case 1 < p <
q < oo and then this condition is usually written in the Muckenhoupt form

(%) A1 := sup Aum(z) < oo.
0<z<b

In this paper we discuss and compare some old and new other constants A; of the form (), which
also characterize Hardy’s inequality. We also point out some dual forms of these characterizations,
prove some new compactness results and state some open problems.

1. Introduction. We consider the general one-dimensional Hardy inequality

(L1) (/ b f<t>|qu<t>dt)1/q <o [ b PO oar) v

with a fixed b, 0 < b < oo, for measurable functions f satisfying f(0) = 0, weights v and
v and for parameters p, ¢ satisfying 1 < p < ¢ < co. (1.1) is usually characterized by the
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(Muckenhoupt) condition

(1.2) Ap = sup Apy(x) < oo,
0<z<b

Ap(t) = ( /x bu(t)dt)l/q( /0 Ivlp/(t)dt>1/p,.

It is nowadays also well-known that A; can be defined in terms of other functions of ¢
than Aps(t) (see e.g. the book [10] and the PhD thesis [17]). In this paper we prove a
new scale of conditions A4(s) < oo (1 < s < p), which can replace (1.2) [and so that
A4(p) = Ai], see Theorem 1, Remark 2 and cf. also [17]. Moreover, by using standard
duality arguments we can even point out some more conditions of the type (1.2). We sum
up our investigations by formulating a more general theorem, where the Hardy inequality
in (1.1) is characterized not only by (1.2) but by seven different (mutually equivalent)
conditions and a corresponding better estimate of the best constant in (1.1); see the
“seven conditions” Theorem 2.

where

It is also well-known that some of the constants A; (or more precisely, the corre-
sponding functions A;(x)) mentioned below are useful also in other circumstances (e.g.
when studying limiting procedures and compactness properties of the Hardy operators
in weighted Lebesgue spaces). Therefore it is of interest to further discuss and compare
the constants above and in particular the equipped functions corresponding to Aa/(¢).
In Section 3 we present and discuss some results in this direction and, in particular, our
main compactness result corresponding to Theorem 1 is proved there (see Theorem 3)
and also its dual form is pointed out (see Theorem 4). Finally, in Section 4 we make some
concluding remarks and raise some open questions.

2. Some weight characterizations of Hardy ‘s inequality. First we present a new
weight characterization of Hardy’s inequality which also can be found in [17] for the case
b = oo.

THEOREM 1. Let 1 <p<g< oo, s € (1,p), and 0 < b < co. Then the inequality

(2.1) </Ob (/:f(t)dt)qu(x)dx)l/q < C(/Ob fp(x)v(x)dx)l/p

holds for all f > 0 iff

b . 1/q
(2.2) Aw(s,q,p) := sup V(t)51/p(/ u(z)V (2)1F )da:> < 00,
0<t<b ¢

t

where V (t) = [, v(2)' =P dx. Moreover, if C is the best possible constant in (2.1), then

(=L )p 1/p p—1 1/p
2.3 su — P Aw(s,q,p) < C < inf Aw(s,q,p).
o) o (o) vt <0<, (F20) At

We note that the inequalities (1.1) (with f(0) = 0) and (2.1) are equivalent.
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Proof. Let fP(x)v(z) = g(x) in (2.1). Then (2.1) is equivalent to

(2.4) </Ob (/Oxg(t)%v(t)_%dt)qu(x)dx>1/q < C(/Obg(x)dx) "

Assume that (2.2) holds. By applying Holder’s inequality, the fact that V'(t) = v(t)! 77 =
v(t) ~?'/P and Minkowski’s inequality, we have

(/b(/ ORION pdt> e )dx)”q:

b 1 s—1 s—1 1 q 1/q
= ( (/ g(t FV(t)TV(t)Tu(t)zdt> u(x)da:)
0 0
b ERTPY a/p’ 1/q
<( (/ gV (t)*~ 1dt) (/ Vit ()_Pdt) u(x)dx)
0 0
D 1/p b . a/p e (s—1)p’ 4 1/q
= t STt Vix P dx
(=) (] ([ aovera) v ute)is)
p— 1/p’ b b . p/a N\ 1/p
< (=) ( sov ([ v uwa) )
p— 0 +
b 1/p
< < > w (s, q,p)(/ g(t)dt> )
0
Hence (2.4) and, thus, (2.1) holds with a constant satisfying the right hand side inequality

in (2.3).
Now we assume that (2.1) and thus (2.4) holds and choose the test function
P
p _ o _ o
o) = (2 ) VO Xy o) + V)o@ i o),
where ¢ is a fixed number > 0. By inserting this function into (2.4) we find that

(p P ) ( / bv(@@i“u(wdx)l/q < 0((p - ) + o 1)1/10””1‘””’

i.e. that

() + ) v ([ vt <o

or, equivalently, that
(pP )P 1/p N b 1os) 1/q
— P V()™ p(/ Viz)" 7w qu(:c)dx) <C.
<(pLS)” + 55 > ¢

We conclude that (2.2) and the left hand side of the estimate of (2.3) hold. The proof is
complete.

Next we note that the function Ay, (z) from the introduction can be written as

Ap(z) = ( / bu(t)dt>1/qV1/”/ (@),
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where N
Vix) := / v P (t)dt < 0o for every x € (0,b).
0

Here, and in the sequel, p’ = p/(p—1). We also need to introduce the following additional
auxiliary functions:

Ar(z) = ( /O Iu(t)Vq(t)dt)l/qV_l/p(x),
1/4’

oy (L mu a/p’+1 T )
Antaig) = (oo [CuOl + vOr” @) L g >0

and
b 1/q
Aw (z,s) := (/ u(t)Vq(p_s)/p(t)dt> VED/P(g), 1<s<p.

Further we denote

A1 = sup A]M(x)v
z€(0,b)

Ag:= sup Ar(x),

2.5 ret)

(2.5) Ag:= inf sup Ap(w;g),
9(x)>0z¢(0,b)

A4(S) = Ssup AW(x7S)’ I<s< p.

z€(0,b)

We have noted in our introduction and Theorem 1 that each of the conditions A; < oo
and A4(s) < oo, respectively are necessary and sufficient for the Hardy inequality (1.1)
to hold. It is also known that the conditions As < oo and A3 < oo characterize Hardy’s
inequality ( see [7] and [14]).

REMARK 1. Here the subscripts M, T', B and W are equipped with the names B. Muc-
kenhoupt, G. Tomaselli, P. R. Beesack and A. Wedestig. The oldest result is due to
Beesack [2] (1961) with Ap(z) for p = ¢, while the form given here for p < ¢ is due to
P. Gurka [7] (1984). G. Tomaselli [16] characterized Hardy’s inequality via the function
Ar(z) for p = g in 1969 and L.-E. Persson and V. D. Stepanov [14] for the case p < ¢ in
2002. B. Muckenhoupt published his result connected to the function A/ (x) for p = ¢ in
1972 [13] and in 1978 J. S. Bradley [4] generalized this result for the case p < q. For the
case b = oo the newest condition A4(s) < oo was proved in the PhD thesis of A. Wedestig
[17] and our proof here in Theorem 1 is similar. More details concerning the history of
Hardy’s inequality can be found in [9].

REMARK 2. Note that Ay (z,p) = Aa(x), so that A; < oo may be regarded as a limiting
case of the Wedestig scale of conditions A4(s) < co (1 < s < p). Moreover, we have

(2.6) Aw(z,8) > Ay (), 1<s<p.

In fact, since V (t) is increasing and p > s, we have

1/q
(2.7) Aw () = (/bu(t)vq@s)/p(t)dt) Y=/p()
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> (/: u(t)dt) 1/qV(p_S)/p(x)V(S_l)/p(aU)

- (Abu(t)dt>l/qv(pl)/p(x) = Au(x).

In fact, by modifying this argument we see that Ay (x, s) is nonincreasing in s on (1, p).

Next, we note that the constants A, Ay, A3 and A4(s) can all also be used to estimate
the best constant C in (1.1). For example the following is known (see e.g. [10] and [17]
and the references given there):

I < ¢ <

1> Al X Ui,
with

F((qﬁﬁlp q—p/qp
28 h=hpg=ladu=u(pg= (r(gr(f’(“))) |
q—p q—p

and C

ZQ S A_2 g U2,
with
(2.9) lp=1la(p,q) =1, w2 =uz(p,q) =p';
furthermore

I3 < E <u

3> A3 >~ U3,
with

' /q)"/ (p/)l/q
2.10 Il3=1 s = 7 ) us =1u > =\ )
e A AV
and, for 1 < s < p,
C
[ < <
4(8) = A4(S) = ’ll,4(8),
with
p 1 -1/p
l4(3):l4(35p7q):<pp5)((pps) +51) ’

(2.11)

wls) = usto.m) = (2= 1)”’)'.

p—s
Next we will point out the fact that there are also other criteria for the validity of (1.1).
These are based on the following duality principle:

Let p,q > 1 and consider the Hardy operator

H = dt.
(@) = [ s
If the mapping

(2.12) H : LP(0,b;v) — L(0,b,u)
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] contmuous, then the conjugate Hardy opemtor H iz f f(t)dt maps the space
LY (0,b,ut~ ¢ ) continuously into o (0, b; v~ P ) with the same operator norm (=the least
constant such that the corresponding inequality holds), see e.g. [9, p. 13].

We consider the following (dual) analogue of Ar(z) :

Al (z) = < / bulp’(t)< /t bu(s)ds>pldt) W( /m bu(t)dt) o

Moreover, the dual analogues to Ap(z;g) and Ay (x, s) read:
1 b ) b p'/a+l N 1/p
Nytio) = (i [ Oa0+ [Cutas| ) T gt >0
x

and, for 1 < s < ¢,

A%mﬁz(Aﬂfﬁw([Z@mQMdﬁﬁmfm(ézwﬁfswf

respectively. We also put
A5 ‘= Sup A%(’JJ),

0<z<b
Ag = inf sup A%L(z
(2.13) 6:= i, s AB 5(2,9),
Az(s) == sup A (z,5),1<s<q.
0<z<b

With these notations and in view of the duality principle we conclude that the Hardy
inequality (2.1) holds if and only if any of the conditions A5 < 0o, Ag < 0o or A7(s) < oo,
1 < s < ¢, is satisfied. Moreover, we have the following estimates:

C
< —<

l5 < A5 SUu
with
(2.14) Is =1s5(p,q) =1, us=us(p,q) = ¢;
furthermore

lg < Q <u

6 > A6 >~ U6,
with

(q/p)"/" g\
2.1 = — - (L
( 5) ZG 16(p7Q) (1+ )1/q(1+ )l/p” Ug UG(p7Q) p/ B
and, for 1 < s < ¢,
C
< <
I7(s) < ) S ur(s),
with
/ / q 1 -1/q
l7(s) = l7(s,p, q) (q,q )((qqs) 51) :

(2.16)
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Summing up the investigations we are now ready to formulate the following improve-
ment of the usual characterization of Hardy’s inequality mentioned in the introduction
as the following seven conditions Theorem:

THEOREM 2. Let 1 < p < q < oco. Then

(2.17) (/Ob (/:f(t)dt)qu(x)dx)l/q < C(/Ob fp(x)v(x)dx)l/p

holds for all measurable functions f > 0 if and only if any of the (mutually equivalent)
numbers Ay, Ag, Az, Ay(s), 1 < s < p,As,Ag or A7z(r), 1 <r < ¢, is finite. Moreover,
the best constant C in (2.17) can be estimated as follows:

sup A;l; < C <inf A;u;,
z’ 3

where A; are defined by (2.5) and (2.18) [Ay = A4(s), Ay = A7(7)], l; and u; are defined
by (2.8)-(2.11) and (2.14)-(2.16) [l4 = 14(s), Iz = I7(r), ua = ua(s),ur = uz(r)] and the
infimum is taken over i =1,2,...,7, 1 <s<pandl1<r <.

REMARK 3. Analogously to Remark 2 we note that
Ay (z,q") = Ap ().

Moreover, since the function U(t) = ftb u(s)ds is decreasing, we find as in Remark 2 that
A3y (x, s) is nonincreasing in s on (1, ¢'] so that in particular

Ay (z,8) > Apm(z), 1<s<d.

3. Some comparisons of the conditions and compactness results. First we note
that according to our Theorem 2 the (best) constant C' in (1.1) satisfies C' =~ A; for
i =1,2,...,7, so that we can easily estimate any of the constants A; with help of any
other A;, j # i. However, it would be useful to estimate mutually not only the suprema of
the functions involved, but also be able to compare the functions themselves. One reason
for this claim is based on the fact that the mapping (2.12) is continuous due to the Hardy

inequality
1/q 1/p
b |(H f)(2)|" u(x)dz / <C ’ |f(x)]” v(z)dx /
0 0

if and only if any of the numbers A; is finite and is, moreover, compact if and only if in
addition
(3.1) lim Ap(z) =0, lim Ap(x) =0,

z—04 r—b—

see e.g. [11, Theorem 7.3]. This fact reflects the question whether or not also the other
?defining” functions corresponding to some of the constants A; characterizing the Hardy
inequality (1.1) have some additional properties of the type (3.1) which guaranties also
the compactness of the Hardy operator between weighted Lebesgue spaces. One situation
which directly gives a positive result is when the defining functions are equivalent but
this is not always true. For example we know that A; < oo is equivalent to that A; < 0o
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but it does not in general hold that

Ay (z) = Ap(x),
i.e., that there exist positive constants C7, Cs such that
(3.2) C1Anm(z) < Ap(z) < CoApm ().

EXAMPLE 1. Let us take u(t)=t*, v(t)=t", a, 8 € R. The condition V (z)= [ o P (t)dt
< 00 leads to the restriction
B<p—1.

(i) Let us first consider the case b = oo, i.e. investigate the validity of (1.1) on the
interval (0, 00). Then all functions Aps(z), Ar(x), Aw(z,s) and also Ag(x;g) for g=V
are of the form

_B+1
Ai(z) = Cpa® Va5,

for simplicity, we omit the s and put V =g in Ay (x,s), Ap(z,g) writing simply A;(z),

with some positive constants C;. Consequently, the numbers A; := supz > 04,(x) are
finite if and only if the pair {«, 5} satisfies
1 1
arl PELL g
q

For this pair, inequality (1.1) holds and the mapping (2.12) is continuous, but cannot be
compact since the conditions (3.1) cannot be satisfied.
(ii) Let us now consider the interval (0,b) with b < oo, say b = 1. Then we have again

Ap(z) =Craz*, A= —— -5~ 41
q p
and the mapping H will be continuous provided
1 1
atl 5; +1>0.
q p
On the other hand,
1— ot

N @
A = C S - P
m (@) M( a+1 ) *
with @ > —1 and § < p — 1. Consequently, the mapping H will be continuous if (3.2)
holds, and moreover, it will be compact since A (0) = Ap(1) = 0. But a comparison
of the formulas Ap/(z) and Ap(z) shows that we never can expect that it could be
Ar(z) = Ap(z) for z € (0,1) due to the behavior in the neighborhood of = 1 where

Apr(x) vanishes but Ap(1) = Crp > 0.
Next we note that according to Remarks 2 and 3 we have only the estimates
(3.3) Aw (z,8) > Ap(z) and Ajy(x,8) > Ap(x)

so we cannot use (3.1) to directly obtain a similar compactness result by using the func-
tions Ay (x,s) or Ajy, (z,s). However, the following compactness result hold:

THEOREM 3. Let 1 <p < g <o0,1<s<pandletu andv be weight functions on (0,b).
Moreover, let
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b 1/q
AW(JT,S) = (/ u(t)vq(p—s)/l’(t)dt) V(S_l)/p(x),
and denote

Ay(s) == sup Aw(z,s).
z€(0,b)

Then the Hardy operator (2.12) is compact if and only if
lim A = lim A =0.
zilg+ W(QZ,S) 0, xi»ril— W(l‘,S) 0

Before we give the proof we formulate the following assertions whose proofs can be
found e.g. in N. Dunford and J.T. Schwartz [5]:
(A) Let 1 < p < oo. The sequence {u,} C LP(a,b) converges weakly to v € LP(a,b) if
and only if the following two conditions are fulfilled:

(o) sup, Hun”Lp (a,p) < OO

(B) [y un(t)dt — [, u(t)dt for every measurable subset M C (a,b).
(B)Let T: X - Y. {u,} C X , Uy, converges weakly to u. Then T'u,, converges strongly
to Tu.

(C) Let T: X — Y. Then T is compact if and only if T:Y — X, with T the conjugate
operator of T" and X Y duals of X,Y, is compact.

Proof. I) Assume that H is compact. Then (3.1) is true and it follows that A4; < oco.
Now,

A, 5) = ( / " u(tyvae-ie )dt) e ing)

/ b wo A ( [ bu(y)dy) _(p_i)dt) i)

<af(f bu<t>( / bu(y)dy)_(mdt)l/qv“Wp(x)

b (s—1)/q(p—1)
/ u(t)dt) V=D ()

)
i - 1) N Ap (( /xb U(t)dt> 1/qvl/p' (w)> (s=1)/(=1)
) aFa

(s—1)/(p— 1)( ).

So in view of (3.1) it follows that lim, .o+ Aw (z,s) =0 and lim,_,— Aw(z,s) = 0.
IT) Now assume that A4(s) < oo and

lim A = lim A =0.
Jm, wl(z,s) =0, Jim w(z,s) =0
According to Remark 2 it yields that Ay (x,s) > Apy(x) for 0 < z < b. This implies

that (3.1) is satisfied and we conclude that the operator H : LP(0,b;v) — L%(0,b;u) is
compact. The proof is complete.
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Finally, we state that a similar result holds also with A4(s) replaced by A7(s) and
correspondingly Ay (z, s) replaced by Ajy, (z, s).

THEOREM 4. Let 1 < p < ¢ < 00, 1 < s < ¢’ and let u and v be weight functions on
(0,b). Moreover, let

A5 (2, 5) = (/Oxvl_pl(t)(/tbu(s)ds)p/(q/S)/qldt)l/pl(/xbu(t)dt)(s1)/q/7

where ,
U(t) :/ u(s)dz,
t
and denote

Az(s) := OiugbAT/V(a:, s).

Then the Hardy operator (2.12) is compact if and only if
xll,r&_AW(x’ s) =0, IlgilfAW(x’ s)=0.

Proof. The proof is completely similar to that of Theorem 3; this time we just use the
relation A}y, (x,s) > Ap(z) pointed out in Remark 3 and the following observation:

: b P =s)/d NP b (s=1)/d!
Ay (z,8) = </ vt P (t)(/ U(y)dy) dt) </ “(t)dt)
t x
/ , 1/p' b (s—=1)/d
< Ap '(q'—s)(a— 1)( )V—q(q —s)/4q (t)dt) (/ u(t)dt>
T , , , 1/p’ b (s=1)/d’
qu —s)(a— 1)(/ 1-p (t)V—q(q —s)/q (t)dt) </ u(t)dt)
M=)V (- a- 1) ' e
Ald'—s)(a— s—1)(g—1)/p
< — qfl ) ( V(z) (t)</z u(t)dt>
1/p' (=83 a—1) Uy b 1/ay (s=1)(a—1)
A q —s)lg— P
<81 S ) ( (V(x) (t)(/x u(t)dt) )

VP @—s)a-1) 4 (e-1)a-1)
A== 4s=D(a=1) 1y
<<s1><q1>) 1 v )

4. Concluding remarks and open questions

IN

REMARK 4. The reason to introduce the constant A, in [14] for characterizing (1.1) was
the idea to find, via a limiting procedure, a weight characterization for the weighted
Polya-Knopp inequality

ay  ([ew (L [ mson) uow) " <o [ serear)senn

The problem which appears when we try to solve the same problem by using the usual
Muckenhoupt condition (1.2) is described in detail in [17] and necessary and sufficient
conditions could only be proved in the power weight case (cf. also [8]).
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REMARK 5. The new scale of conditions A4(s) < oo introduced in [17] for b = oo for cha-
racterizing (1.1) has the same property as Az concerning the limiting procedure described
in Remark 4 and we end up with another weight characterization of (4.1). Actually, A4(s)
are constructed in such a way that the same characterization as that by B. Opic and
P. Gurka [11] is obtained (but with a somewhat better lower bound for C). For details
see [17].

REMARK 6. Let us note that some analogues to the "dual” criteria pointed out in Section 2
appear also in slightly modified forms in papers by other authors, e.g. by G. Bennett [1]
for the discrete analogue of Hardy’s inequality, by E. Sawyer [15] for the two-dimensional
Hardy inequality (see (4.2) and Question 3 below). Also in S. Bloom and R. Kerman [3]
we can find a criterion corresponding to A%.(x).

In the previous sections we have given some relations between the constants A4; (and
the corresponding defining functions) which all characterizes the Hardy inequality (1.1)
but obviously many open questions remains to be solved. Here we just point out the
following;:

QUESTION 1. Is it possible to find a fixed constant C' so that
Aw(z,8) < CAp(z) or Ajy(x,s) < CAp(x),
ie. Aw(z,s) = Ap(2), 1 < s <p,or Ay (z,8) = Ap(z), 1 < s < ¢ (see (3.3))? More

generally, is it possible to estimate some of the defining functions A4;(z) from above and
from below by some other function A;(z), j # i?

QUESTION 2. Our Example 2.1 shows that the function A7 (x) cannot satisfy a condition
like (3.1) so the question is whether it is possible to characterize compactness of the Hardy
operator in terms of A and its corresponding defining function Ar(z).

In view of the new explanations and complements of the remarkable E. Sawyer result
[15] for the two-dimensional Hardy operator H :

(4.2) Hy f(x1,22) = /Oxl /:2 f(y1,y2)dy1dys,
which was presented in [17] we suggest that some similar results as those presented here
can also hold in some two-dimensional cases. We only pose the following:
QUESTION 3. Is it possible to characterize the compactness of the mapping
Hy : LP([0,b1] x [0,b2] ;v) — LA(]0,b1] x [0, ba] ;u),

where H> is defined by (4.2), in a similar way as in the one-dimensional case (see Theorem
7.3 in [12] and (3.1))? According to the result in [17] it seems to be easier to solve this
question when v is of product type i.e. v(x1,x2) = v1(21)v2(22).

FINAL REMARK. Some complementary result concerning necessary and sufficient condi-
tions for the weighted Hardy inequality for the case 1 < p < ¢ < oo can also be found in
the paper [6].

Finally we remark that this paper coincides with a talk given by the second named au-
thor at the Wladystaw Orlicz Centenary Conference and Function Spaces VII in Poznan,
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