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Abstract. Pairs of compact convex sets naturally arise in quasidifferential calculus as sub- and
superdifferentials of a quasidifferentiable function (see [1]). Since the sub- and superdifferentials
are not uniquely determined, minimal representations are of special importance. In this paper
we give a survey on some recent results on minimal pairs of closed bounded convex sets in a
topological vector space (see [11]). Particular attention is paid to the problem of characteriz-
ing minimal representatives of a pair of nonempty compact convex subsets of a locally convex
topological vector space in the sense of the Radstrém-Hérmander theory.

1. Notations and preliminaries. For a topological vector space X = (X, 7) let us
denote by A(X) the set of all nonempty subsets of X, by B*(X) the set of all nonempty
bounded subsets of X, by C(X) the set of all nonempty closed convex subsets of X, by
B(X) = B*(X)NC(X) the set of all bounded closed convex sets of X and by K(X) the
set of all nonempty compact convex subsets of X. For A, B € A(X) the algebraic sum
is defined by A+ B={z =a+b|a € Aandb € B} and for A € R and A € A(X)
the multiplication is defined by NMA = {z = Xa | a € A}. The Minkowski sum for
A, B € A(X) is defined by

A+B=c({z=a+blac Aandbe B}),

where cl(A) = A denotes the closure of A C X with respect to 7. By relint(A) we denote
the relative interior of A C X with respect to 7.
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For A, B € A(X) we define: A VB= conv (AUB),AVvB=A VB=d conv(AU B)
and by AY B =, 550, a1p=1 (®A + BB) the skeleton of A and B. It is easy to observe

that AY B C AV B C AV B. In the case when A and B are convex sets then AY B =
AV B. For two elements a,b € X the interval with end points ¢ and b will be denoted
by [a,b] = {a} v {b}.

For compact convex sets, the Minkowski sum coincides with the algebraic sum, i,e.,
for A,B € X(X) we have A+ B = A+ B and also A V B = AV B. We will use the
abbreviation A+ BV C for A+ (BV C) and C + d instead of C + {d} for all bounded
closed convex sets A, B,C € A(X) and a point d € X.

A convex subset B of a convex set A C X is called an extreme subset if for every
z,y € A and some t € (0,1) the condition tz + (1 — t)y € B implies that z,y € B. An
extreme subset which consists of a single point only is called an extreme point and E(A)
denotes the set of extreme points of A.

A convex set which is the convex hull of finitely many points is called a polytope.
The set of all polytopes of a vector space X is denoted by P(X). An extreme subset of
a polytope is called a face and a one-dimensional extreme set of a polytope is called an
edge.

If (X, 7) is a topological vector space and X* its dual space, then for A € X(X) and
f € X* we denote by

Hpy(A)={z€ A| f(z) = r;leagf(y)}

the (mazimal) face of A with respect to f.

Finally, we will call a set A € B(X) a summand of B € B(X) if there exists a set
C € B(X) such that A+ C = B.

The following statements hold for convex sets:

Addition of mazimal faces:

PROPOSITION 1.1. Let X be a topological vector space, f € X* and A, B € X(X). Then
Hy(A+ B) = Hy(A) + Hy(B).

Proof. Assume that t =a+b€ Hy(A+ B) witha € Aand b€ B. Thena € Hyf(A) and

b € Hy(B). Indeed, assume for instance that a ¢ H¢(A). Since A € K(X) is compact,
there exists an element o’ € A with f(a) < f(a’). From this it follows that

f(@) = fla) + f(b) < f(a) + f(b) = f(a’ +b) < sup f(u+v) = f(z)

vEB
because v € H¢(A + B). This implies the inclusion
Hi(A+ B) C Hf(A)+ Hy(B).
The reverse inclusion can be proved in the same way. Assume that a € Hf(A) and

be Hy(B). Then x = a+b € H¢(A+ B). Let us assume that this is not true. Then there
exists an element ' = a’ + b € A+ B with f(z) < f(2’). But this implies

fla) + f(b) = f(z) < f(a) = f(a) + (V)
and hence f(a) < f(a') or f(b) < f(V'), which completes the proof. m
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Additivity of the convez hull:
PROPOSITION 1.2. Let X be a vector space and A, B C X. Then
conv A + conv B = conv(A + B).
Proof. First observe that
convA+ B = U (conv A+ b) = U [conv(A+b—b) + b]

beB beB
C U (conv]conv(A + B) — b] + b) = conv(A + B).
beB

Since A+ B C conv A+ conv B we have conv(A + B) C conv A+ conv B. Now it follows
from the above observation that

conv(A + B) C conv A + conv B C conv(A + conv B)
C conv[conv(A + B)] = conv(A + B). m

2. The ordered semigroup of convex sets. From the algebraic point of view the
set B(X) of all nonempty closed bounded convex subsets of a real topological vector
space (X, 7), endowed with the Minkowski addition, is a commutative semigroup which
contains X(X), i.e. the set all nonempty compact convex subsets, as a sub-semigroup.
Both semigroups B(X) and X(X) are ordered by inclusion, i.e. for A, B € B(X), A< B
if and only if A C B.

Now we state two fundamental properties of the semigroups B(X) and K(X), the
order cancellation law [13], [16] and Pinsker’s formula [12].

The order cancellation law:

THEOREM 2.1. Let X be a topological vector space. Then for any A € A(X), B € B*(X)
and C € C(X) the inclusion

A+BCC+B implies ACC. (olc)

Proof. Let U be a base of neighborhoods of zero in the topological vector space X. Given
any neighborhood U € U we define a sequence (V},),cy such that

Vo+Vo CU and Vi1 +Vup CV,.
From A + B C C + B it follows that for every V € U we have
A+BCC+B+YV,
and hence for every n € N we have
A+BCC+B+V,.
Now let a € A and b; € B. Then

a+by=c+by+v, forsome ¢y €C, by € B, v €V,
a+by=co+bg+vy forsome co € C, bg € B, vy € Vs,

and in general, for every n € N,

a+b, =cyn+bpy1 +v, forsome ¢, €C, b1 € B, v, €V,.



162 D. PALLASCHKE AND R. URBANSKI

Hence

1 1 1
a= E(cl+...+cn)+E(bnﬂ—bl)—l—ﬁ(vl—i—...—i—vn), n eN
and thus by the convexity of C' and the boundedness of B we get for sufficiently large
n € N that
acC+Vo+Vi+...+V, CC+U.
Thus A C C + U for every U € U, and therefore, A C C. u

The implication A+ B C C+ B = A C C'is called the order cancellation law and
the weaker implication A+ B = C + B = A = C is called the cancellation law.

The Pinsker formula:

Next we prove an identity for bounded closed convex sets which was first observed by A.
G. Pinsker [12] for locally convex vector spaces and will be called the Pinsker formula.
For its proof we need the following three lemmas:

LEMMA 2.2. Let X be a vector space and A, B,C C X subsets. Then

AUB + C=(A + O)U(B + O).
Proof. For x € AU B + C, there exist ¢ € C and d € AU B such that x = ¢ + d. Hence
z€(A+C)U(B+C),ie. AUB+CC(A+C)U(B+C).

Conversely, for z € (A+ C)U (B + C) there exist elements c€ C andd € Aord € B
such that xt =c+d. Hencezr € AUB+C,ie. (A+C)U(B+C)CAUB+C. n

LEMMA 2.3. Let X be a vector space, A, B,C € A(X) and C be a convez set. Then
conv(AU B) + C = conv[(A+ C)U (B + C)].
Proof. From Lemma 2.2 and Proposition 1.2 it follows that
conv[(A+C)U(B+C)] =conv[[AUB)+ C]=conv(AUB)+C. n

LEMMA 2.4. Let X be a topological vector space, and A, B,C € A(X) and C be a convex
set. Then
(A+C)V(B+C)=C+(AVB).
Proof. By Lemma 2.3 we have:
C + conv(A U B) = cl(cl(conv(A U B) + ¢cl(C)) = cl(conv(AU B) + C)
=cleconv((A+C)U (B+())

cleonv(cl((A4+ C)U (B + ()
= cleconv(cl(A+ C)Ucl(B+C)

)
);
since for every D C X we have clconv(D) = clconv(cl D). u

This implies the Pinsker formula:

PROPOSITION 2.5. Let (X, 7) be a topological vector space, A, B,C € A(X) and C be a
convez set. Then
(A+C)Vv(B+C)=C+(AV B).

Altogether we can state:
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THEOREM 2.6. Let (X, 7) be a topological vector space. Then (B(X),+, <) is a commu-
tative ordered semigroup with satisfies the order cancellation law and contains X(X) as a
sub-semigroup. Moreover the distributivity law holds for the mazimum operation and the
Minkowsk: addition.

3. Order cancellation law and the separation law. The order cancellation law
represents an algebraic property of the semigroup B(X). There exists an equivalent ge-
ometric property for closed bounded convex sets which we will call the separation law.
Therefore let A, B, and S be nonempty subsets of a vector space X. We say that the set
S separates the sets A and B if [a,b] NS # () for every a € A and b € B. The separation
of two sets by another set is a natural generalization of the separation of two disjoint sets
by a hyperplane. Note that in this general case the sets A and B can have a nonempty
intersection. If a set S separates the sets A and B, then AN B C S. The set S is called
minimal separating if S separates A and B and if for every S’ C S which also separates
A and B we have S’ = S.
This definition of separation of two sets by another set is illustrated in Fig. 1.

Fig. 1

THEOREM 3.1. Let A, B be nonempty subsets of a topological vector space X and assume
that AV B € B(X). Moreover, let S be a closed conver subset of X. Then S separates
the sets A and B if and only if

A+BCAVB+S. (s1)

Proof. Necessity. Let a € A and b € B. Then there exist a, § > 0, a + 3 = 1 such that
aa+ b € S. Therefore, a+b = Ba+ab+aa+pbe AVB+S. Hence A+B C AVB+S.

Sufficiency. Fix any a € A and b € B. Then it follows from the assumption A+ B C
AVB+ Sthata+ BCAVB+Sandb+AC AVB+ S Hence BCAVB+S—a
and A C AV B + S — b. By these inclusions and Lemma 2.4 we have AV B C AV B+
(S—a)V(S—b)=AV B+ (S+ [~a,—b]). Now we obtain from the order cancellation
law (olc) that 0 € S + [—a, —b]. Hence [a,b] NS # 0. m

COROLLARY 3.2. Let A, B € B(X) and S be a closed convez subset of X. Then S sepa-
rates the sets A and B if and only if

A+BCAVB4+S.
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REMARKS. 1. The assumption AV B € B(X) in Theorem 3.1 is essential. Note that in
general the convex hull of the union of two bounded sets A and B is not a bounded set.
Take for example

i) X =1LP)0,1 = {f | f:]0,1] — R, Lebesgue-measurable

1
such that | ]|, = / F(O)Pdt < 00,0 < p < 1}.
0

Let B(0,1) = {f € L? | | f||, < 1} be the unit ball. In [6] p. 161-162 it is shown that B(0, 1)
is a bounded set in L?[0,1] and that convB(0,1) = L?. Now take A = {0}, B = B(0,1)
then AV B = LP[0, 1] is an unbounded set in L?[0,1] for 0 < p < 1.

i) X=1I"= {x = @)en | 2l = 3 Jail? < oo} for 0 < p < 1.

i=1
As in the space L”[0, 1] the unit ball B(0,1) = {z € {7 | ||f|l, < 1} is bounded (see [6];
p. 161-162). Now denote for i € N by e; = (;;) ;cy the i-th unit vector of I, where &;; is
the Kronecker symbol. Obviously e; € B(0, 1) for every ¢ € N but the elements

1
Tn=—(e1+...+ey) € convB(0,1)
n

are unbounded since ||z,||, = n(1/n)” = n'"P. As in the case of L? we can take A =
{0}, B=DB(0,1) and AV B is an unbounded set in I? for 0 < p < 1.

Note that it is obvious that in a locally convex vector space, the convex hull of bounded
sets is also a bounded set.

2. Note that the separation law does not imply the separation of sets if one of the sets
A or B is unbounded.

Take for instance X = R?, A = {(z,y) | 1/x <y, 2 > 0}, B = {(2,0) | = € [0,1]}
and S = {(0,y) | y € [0,1]}. Then A+ B= A, AV B+ S = {(z,y) | , y > 0}. Hence
A+ B C AV B+ S but S does not separate A and B (see Fig. 2).

yA
A
S
00 B T
Fig. 2

THEOREM 3.3. In a locally convex vector space (X, T) the order cancellation law and the
separation law are equivalent.

Proof. Necessity. The proof of this part is identical to the proof of the second part of
Theorem 3.1.
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Sufficiency. Now assume that the separation law (sl) is satisfied. Let A, B, C € A(X)
and assume that B is bounded and C' is closed and convex. Now take any a € A and
b€ B. From A+ B C B+ C it follows that a + (B —b) C (B — b) + C. Therefore,
{0} + (B —b) C (B—1b)V{0}+ (C —a). Now from (sl) it follows that the set C — a
separates the sets {0} and B—b. Hence 0 = a0+ 30 € C —a for some o, 3 > 0, a+0 = 1.
So, wehave 0 ¢ C —a. Hence AC C. =

By the same proof we get

THEOREM 3.4. Let X be a topological vector space. Then for B(X) the order cancellation
law and the separation law are equivalent.

4. Pairs of closed bounded convex sets. We will now consider inclusions of mini-
mal representatives of the Radstréom-Hormander lattice of equivalence classes of pairs of
nonempty closed bounded convex sets in a locally convex topological vector space X (cf.
(8], 191, [10])-

Therefore we assume that (X, 7) is a real locally convex vector space. An equivalence
relation between pairs (4, B), (C, D) € B?(X) of closed bounded convex sets is given by
the relation (A4, B) ~ (C, D) if and only if A+ D = B + C and the ordering in B(X) is
extended to pairs by (A, B) < (C,D) with A C C,B C D. From the order cancellation
law it follows that “~” is an equivalence relation in B?(X). The equivalence class of
(A, B) € B3(X) is denoted by [A, B].

For compact convex sets we have the following result:

THEOREM 4.1. Let (X, T) be a topological vector space. Then for any pair (A, B) € X?(X)
there exists a pair (C, D) € [A, B] which is minimal.

Proof. Using the Kuratowski-Zorn lemma it is sufficient to show that for any totally
ordered subset ¥ = {(C, D) € [A, B] | (C,D) < (A, B) } of [A, B] there exists an element
(A*,B*) € [A, B] such that for any (C, D) € X the relation (A*, B*) < (C, D) holds.

For any 0 = (C,D) € ¥ we will denote by A, the set C and by B, the set D. The
ordering on ¥ yields that oy < o9 if and only if A,, C A,, and B,, C B,,.

Now we fix 09 € ¥ and define the sets A* = [,y A, and B* = (), .y, Bo, where
Yo = {0 € ¥ | 0 < 0p}. By the Cantor intersection theorem (see [2]; Theorem 3.1.23)
the set A* is nonempty. Moreover A* is a closed subset of A, and hence it is compact.
The convexity of A* follows immediately from the convexity of A, for o € ;. Since the
same arguments hold for B* it follows that (A*, B*) € KX?(X).

It remains to show that (A*, B*) € [A, B]. By definition of the equivalence relation,
for any pair (C,D) € [A, B] and for any o € ¥, the equation A, + D = B, + C holds.
This implies that A* + D C B, + C for every o € . Hence for any z € A* + D and
any o € Y we can find a representation of the form z = b, + ¢,, where b, € B, and
¢, € C. Since the net {b, | 0 € Xy} is contained in the compact set B,, there exists a
subnet {b,, | § € A} converging to some by € B,,. Hence for any neighborhood U (bg) of
by € By, there exists an index J € A such that for any o5 < o5, we have b,, € U(bg)
and therefore B,, NU(by) # 0. Now let 0 € ¥ be an arbitrary element. Since the set
Yo is totally ordered we have o5, < o or 0 < o5,. In the first case o5, < o we have
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Bgéo C B, and hence B, NU(by) # 0. In the other case where o < o5, we can find an
index 0; € A such that o5, < o and for any o5 < g5, we have B,, N"U(by) # () and hence
B, NU(by) # 0. Thus we have shown that for any neighborhood U(by) and any o € X
the set B, N U(by) is not empty. Since the sets B, are compact, it follows that by € B,
for any o € ¥y and consequently by € B*. The subnet {c,, | § € A} converges to the
point z — by which by the compactness of C' belongs to C. Thus A* + D C B* + C and
by a similar argument we get B* + C C A* + D. Hence it follows that (A%, B*) € [A, B].
The Kuratowski-Zorn lemma yields now that [A, B] has a minimal element. m

This is not longer true for closed bounded convex sets. Here we have:

THEOREM 4.2. Let (X, 7) be a reflexive locally convex vector space. Then every class
[A, B] € B%(X)/~ contains a minimal element (C, D) € [A, B].

Proof. In the case of finite-dimensional vector spaces, bounded closed sets are compact,
and the theorem follows from Theorem 4.1. Let us denote by 7 = o(X, X*) the weak
topology for X. To avoid confusion, we will indicate during this proof the topology under
consideration by an index at B and X. In a reflexive locally convex vector space every
bounded closed convex set A € B, (X) is compact in the topology 7% and consequently
belongs to K~ (X). Observe that every A € K~ (X) is also closed in 7 since 7* C 7. Take
any (A, B) € B2(X) C X2.(X). Then

A+ BeX,«(X) and A4 B € X, (X).

Therefore, the convex set A + B is closed in 7 and contained in A 4 B, which is a
bounded set in X with respect to 7. This implies that A+ B € B.(X) and consequently
A+ B = A+ B holds in all reflexive topological vector spaces (X, 7). Hence [A4, B] C
[A, B];« € X2.(X)/~, where [A, B],~ is the class of equivalent pairs of compact convex
sets in the space (X, 7*) which contains (A, B). According to Theorem 4.1, the equivalence
class [A, B],« contains a minimal element (C, D) € X2.(X) such that C C Aand D C B.
Since C, D are closed in 7, convex and contained in bounded sets it follows that (C, D) €
B2(X). Moreover, (C, D) € [A, B] C [A, B],«. Therefore, (C, D) is a minimal element in
[A, B] and, of course, (C,D) < (A,B). =

ExAMPLE 4.3. Let [, be the Banach space of all bounded real sequences endowed with
the supremum norm ||(z,,)|| = sup,, |z»| and let ¢ and ¢y be the subspaces of I, consisting
of all convergent sequences resp. all sequences convergent to zero. Obviously ¢y C ¢ C lso-
Note that all three spaces are Banach spaces and that none of them is reflexive.

Let B(0,1) be the unit ball in ¢y and A = {a € B(0,1) | a,, > 0, for all n € N}.
PutB:—AandAm:{a€A|a1:...:am:%} and B,, = —A,, for m € N. Then
(A, By) € B%(cp) and A+ B, = A,, + B for all m € N and A+ B = B(0,1). Thus
(A, By) is a decreasing chain of pairs in [4, B], i.e.

(AvB) > (AlaBl) > ... 2 (AmaBm) > ...

with empty intersection, i.e. (1, Am = (), Bm = 0. Now observe that the proof of
Theorem 4.1 on the existence of minimal pairs of compact convex sets is based on the
Cantor intersection property for compact sets. Therefore, we have:
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THEOREM 4.4. For each of the spaces X = cg, ¢, and I there ezists a class [A, B] €
B%(X)/~ which contains no minimal element.

OPEN QUESTION. The following question remains open: Given any non-reflexive topo-
logical vector space X. Does there exist an equivalence class [4, B] € B%(X)/. which
contains no minimal elements?

For nonempty compact convex sets the situation is much simpler:
Let (X,7) be a locally convex vector space. For A € X(X) we consider a set 8§ C

X*\ {0} such that
conv ( U Hf(A)) = A.
fes

The sets 8§ C X* \ {0} of this type can be ordered by inclusion. A minimal element will
be called a shape of A and will be denoted by S8(A). For a shape $(A) we consider subsets

Sp(A) :={f € 8(A) | card(H(A)) = 1}
which may be empty and

81(4) := 8(4) \ 8,(A).
Let A, K C X be nonempty compact convex sets of a real locally convex topological
vector space. Then A is said to be a summand of K if there exists a nonempty compact
convex set B C X with
A+B=K
for the Minkowski sum.

The criteria presented here are of two different types. The first type of criteria uses
conditions which ensure that two compact convex sets are in a certain “general position”,
while the second type of criteria uses information about exposed points of the Minkowski
sum of compact convex sets.

We begin with a criterion for minimality which is of the first type:

THEOREM 4.5. Let X be a locally convex vector space, and let A, B C X be nonempty
compact convex sets. Let us assume that there is a shape S(A) of A which satisfies the
following conditions:

i) for every f € 8(A), card (H;(B)) =1,
ii) for every f € §,(A) and every b € B, the condition 8§;(A) + (b — Hy(B)) C A
implies b= H;(B),
iil) for every f € 8,(A), Hy(A) — Hy(B) € E(A— B)
or conversely, by interchanging A and B. Then the pair (A, B) € X?(X) is minimal.

Proof. Let us assume that A’ C A and B’ C B are nonempty compact convex sets such

that
A+B =B+ A’

Choose an element f € §(A) . Since
Hy(A) + Hy(B') = H(B) + Hy(A')
and since H¢(B) = {b}, this can be written as
Hi(A)+ Hy(B') =b+ Hp(A').
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Now choose an element b’ € Hy(B’) and determine, for every extreme point e € E(H(A)),
an element a. € Hy(A’) such that

e+b =b+a..
Now the following two cases are possible:

p) Let us assume that f € §,(A). Then e — b = a. — b'. Since, by condition iii),
e—be E(A— B), we have a. = e and I/ = b. Hence H(B') = Hy(B) = b and therefore,
Hy(A) = Hy(A).

1) Now we assume that f € §;(A). In this case we have for an arbitrary v’ € H¢(B’)
that

Hy(A)+b0 Cb+ Hp(A).

Therefore,
Hp(A)+ (' —b)CA'CcA

and condition ii) gives b = '. Hence Hf(A') = Hs(A).
Thus for all f € 8§(A) we have Hy(A’') = H¢(A) and therefore,

A" D cleonv ( U Hf(A’)) = clconv ( U Hf(A)) = A,
fes fes

i.e. A’ = A. Now from the equality A+ B’ = B + A’ we get by the cancellation law that
B’ = B, which completes the proof. m

The next criterion for minimality is based on a sufficient condition on the indecom-
posability of a nonempty compact convex set and is formulated in terms of its exposed
points. It uses a modified version of the Krein-Milman Theorem.

THEOREM 4.6. Let X be a Banach space and let (A, B) € X?(X). If for every exposed
point a+b € Eg(A+ B) with a € Ey(A), b € Ey(B) there exists by € Eog(B) or a; € Ey(A)
such that a + by € E(A+ B) and a — by € E(A—B) or a1 +b € Ey(A+ B) and
a1 — b € E(A — B), then (A, B) is minimal.

Proof. Let (A, B) € X?(X). By Proposition 1.1 for every f € X*,
Hi(A+ B) = H¢(A) + H¢(B).

This implies the unique representation of every exposed point of A + B as the sum of
exposed points of A and B.

Let us show that the pair (4, B) € X?(X) is minimal. Therefore, we choose a pair
(A',B') € X*(X) with A’ C A, B CBand A+ B =B+ A'.Fora+bc &(A+ B)
we can assume without loss of generality that for a € £¢(A) there exists by € E(B) such
that a + by € Eg(A+ B) and a — by € E(A — B). Hence there exists a continuous linear
functional fy € X* such that

Hyy(A+ B) = {a+bo)}.

By Proposition 1.1 we have Hy,(A) = {a} and Hy,(B) = {bp}. From A+B’' = B+ A’ =Y
it follows that Hy (A) + Hy,(B') = Hy,(B) + Hy,(A’). Hence there exist elements a’ €
Hi(A)C Aand b € Hy (B') C Bsuchthat a+b’ =by+a’. Since a—by € E(A—B) it
follows that a = a’, by = b’. From the equality a = o’ it follows that B+a C B+ A’ =Y.
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Hence a + b € Y, and since a + b € Eo(A + B) it follows from V. Klee’s modification of
the Krein-Milman Theorem (see [5]) that A+ B =Y.
Hence by the cancellation law we have

A+B=A+B, ie. A=A

and
A+B=A+B', ie. B=DB.

Therefore, (A4, B) € X?(X) is minimal. m
EXAMPLE 4.7. To illustrate these criteria, we will give two typical examples for X = R2.

i) Let R be a positive real number and put z = %\/ﬁR, y=1iR, a1 =(0,R), ap =
(z,—y), as = (—z,—y) and let A =a;1VazVaz and B = —A. It follows from Theorem
4.5 that the pair (A, B) i.e. the Star of David (see Fig. 3) is minimal.

A+B

Fig. 3

ii) Let R > 0 be given and let us define the linear map
T:R®—R® by T(r1,22)=(~22,21).

For 2y = (1V2R,0) take the balls K; = B(zg, R), K2 = B(—zo,R). Put A = K; N
K3, B=T(A). Then A+ B = A—B = B((0,0), R). It is easy to see that the conditions
stated in Theorem 4.6 give the minimality of the pair (A, B) of orthogonal lenses (see
Fig. 4).

A+B

Fig. 4
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It was proved by S. Scholtes and J. Grzybowski that minimal pairs in the two-
dimensional space are unique up to translation. This is not true for higher dimensions as
shown by a counter-example of J. Grzybowski (cf. [3], [15]).

In December 2000 S. Rolewicz posed the question whether the set of equivalent min-
imal pairs, which are not related by translation may be finite and of cardinality greater
than one.

Recently J. Grzybowski and R. Urbanski gave a negative answer to this question.

THEOREM 4.8. Let (X, ) be a topological vector space and (A1, By), (A2, Bs) € X?(X)
be two equivalent minimal pairs which are not related by translation. Then there exists an
uncountable family (Ax, Bx), A € A of minimal pairs that are all equivalent to (A1, By)
and no (Ax, By) is a translate of (A, B,,) for X # p.

5. The invariance of dimension. In this section we discuss invariants which belong
only to minimal pairs of compact convex sets and do not belong to the whole class. Such
invariants are the affine dimension and codimension of the union of a minimal pair of
compact convex sets. We begin with the following result:

THEOREM 5.1. Let (X, 7) be a topological vector space and let (A, B),(C, D) € X%(X) be
equivalent pairs. Furthermore let us assume that the pair (C, D) € X*(X) is minimal. If
AUB C Xy C X, where Xy is a closed subspace of X, then there exists a point xo € X
such that CUD C Xg + xg.

Proof. By assumption the pairs (A, B), (C, D) € X?(X) are equivalent, i.e.
A+D=B+C. (5.1)

Hence for every ag € A and dy € D there exist points by € B and ¢y € C with ag + dy =
bo + co. Therefore, we have

(A—ao) + (D—do)=(B—bo) + (C—cop).

If we put A9 = A—ag, B =B —0by, Cg =C —c¢cy and Dy = D — dy, then we can
rewrite equation (5.1) as

Ao+ Do =Bg+Cy with 0€ AgNByNCyN Dy (52)

Now we consider the sets C' = Cy N Xy and D' = Dy N X;. By equation (5.2), for every
x € Ag and y € D’ there exist elements b € B and ¢ € C such that

z+y=(b—bo)+ (c—co)
Since
c—co=(x+y) — (b—"by) € Xo+ Xo+ Xo + Xo = Xop,
we obtain ¢ — ¢y € Cy N Xg = C’, and hence Ay + D’ C By + C’. Analogously By + C’ C
Ag + D’ and hence
(Ao, Bo) ~ (Co, Do) ~ (C', D).
Since the pair (Cp, Do) is minimal, we get

C—cg=C" and D—dy=D".
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Hence, we have C' — ¢y C Xy and D — dy C Xj. These inclusions imply that
CCXo+eo=(Xog—bo)+by+co=Xo+ (bo+ o)
and
D C Xo+do=(Xo—ag) + ap+do = Xo + (ap + do).
Hence C C Xg + 29, D C Xo + xo with 2o = (bg + ¢p). =

REMARK. Let (X, 7) be a locally convex vector space and C' € K(X) be a nonempty
compact convex subset. Then for every y € C the set

Cy:m:cl({ZEX\z:zn:)\i(cify), c;€C,neN, )\ieR})
=1

is the smallest closed linear subspace containing C' — y or equivalently the intersection of
all closed linear subspaces containing C' — y. The affine hull of C' is given by

aff hull(C) =Cy +y

and it is independent of the choice of y € C. The affine dimension and codimension are
defined by

dim aff(C) = dim(Cy), codim aff(C) = codim(C,) = dim(X/¢, ).
In particular:

COROLLARY 5.2. Let (X, 7) be a topological vector space and (A, B), (C, D) € X?(X) be
equivalent minimal pairs. Then

dim aff(AU B) = dim aff(C U D), codim aff(4A U B) = codim aff(C' U D).

OPEN QUESTION. Apart from the affine dimension and codimension of the union of a
minimal pair of compact convex sets, no further invariants for minimal pairs of compact
convex sets are known.
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