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Abstract. Approximation theory and functional analysis share many common problems and

points of contact. One of the areas of mutual interest is that of density results. In this paper we

briefly survey various methods and results in this area starting from work of Weierstrass and

Riesz, and extending to more recent times.

1. Introduction. Approximation theory is that area of analysis which, at its core, is

concerned with the ability to approximate functions by simpler and more easily calculated

functions. It is an area which, like many other fields of analysis, has its primary roots in

the mathematics of the 19th century.

At the beginning of the 19th century functions were essentially viewed via concrete

formulae, and sometimes as series or solutions of equations. However largely as a con-

sequence of the claims of Fourier and the results of Dirichlet, the modern concept of a

function distinguished by its requisite properties was introduced and accepted. Once a

function, and more specifically a continuous function, is defined implicitly rather than

explicitly, then it was both inevitable and unavoidable that we would eventually witness

the birth of both approximation theory and functional analysis.

It is in the theory of Fourier series that we find some of the first results of approx-

imation theory. These include conditions on a function that ensure the pointwise or

uniform convergence (of the partial sums) of its Fourier series, as well as the omnipresent

L2-convergence. Similar results were also developed for other orthogonal series, and for

power series (analytic functions). However these results are of a rather particular form.

They are concerned with conditions for when certain formulae hold. In the classical theory

of Fourier series one does not ask if trigonometric polynomials can be used to approxi-

mate, or even if the information provided by the Fourier coefficients is sufficient to provide

an approximation. Rather one wants to know if and how the partial sums of the Fourier

series converge to the function in question.
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The first question we ask in approximation theory concerns the possibility of approx-

imation. Is the given family of functions from which we plan to approximate dense (or

fundamental) in the set of functions we wish to approximate? That is, can we approxi-

mate any function in our set, arbitrarily well, using finite linear combinations of functions

from our given family?

The first significant density results were those of Weierstrass who proved in 1885

(when he was 70 years old) the density of algebraic polynomials in the class of continuous

real-valued functions on a finite interval, and the density of trigonometric polynomials

in the class of 2π-periodic continuous real-valued functions. These theorems were, in a

sense, a counterbalance to Weierstrass’ famous example of 1861 on the existence of a

continuous nowhere differentiable function. The existence of such functions accentuated

the need for analytic rigour in mathematics, for a further understanding of the nature of

the set of continuous functions, and substantially influenced the development of analysis.

If this example represented for some a ‘lamentable plague’ (as Hermite wrote to Stieltjes

on May 20, 1893, see Baillard and Bourget [1905]), then the approximation theorems

were a panacea. While on the one hand the set of continuous functions contains deficient

functions, on the other hand every continuous function can be approximated arbitrarily

well by the ultimate in smooth functions, the polynomials.

The Weierstrass approximation theorems spawned numerous generalizations which

were applied to other families of functions. They also led to the development of two general

methods for determining density. These are the Stone-Weierstrass theorem generalizing

the Weierstrass theorem to subalgebras of C(X), X a compact space, and the Bohman-

Korovkin theorem characterizing sequences of positive linear operators that approximate

the identity operator, based on easily checked, simple, criteria.

A different and more modern approach to density theorems is via “soft analysis”. This

functional analytic approach actually dates back almost 100 years. A linear subspace M of

a normed linear space E is dense in E if and only if the only continuous linear functional

that vanishes on M is the identically zero functional. For the space C[a, b] this result can

already be found in the work of F. Riesz from 1910 and 1911 as one of the first applications

of his “representation theorem” characterizing the set of all continuous linear functionals

on C[a, b].

Density theorems can be found almost everywhere in analysis, and not only in analysis.

(For a density result equivalent to the Riemann Hypothesis see Conrey [2003, p. 345].)

In this article we survey a few of the main results regarding density of linear subspaces

in spaces of continuous real-valued functions endowed with the uniform norm. We only

present a limited sampling of the many, many density results to be found in approximation

theory and in other areas. We also restrict ourselves to real-valued functions and uniform

approximation. A monograph many times the length of this paper would not suffice to

include all results. In addition, we do not prove most of the results we quote. We hope,

nonetheless, that you the reader will find something here of interest. A longer version of

this paper is being prepared which will hopefully appear somewhere.

2. The Weierstrass approximation theorems. We first fix some notation. C[a, b]

will denote the class of continuous real-valued functions on the closed interval [a, b], and
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C̃[0, 2π] the class of functions in C[0, 2π] satisfying f(0) = f(2π). We denote by Πn the

space of algebraic polynomials of degree at most n, i.e.,

Πn = span{1, x, . . . , xn},
and by Tn the space of trigonometric polynomials of degree at most n, i.e.,

Tn = span{1, sin x, cosx, . . . , sinnx, cosnx}.
The paper stating and proving what we call the Weierstrass approximation theorems

is Weierstrass [1885]. It seems that the importance of the paper was immediately ap-

preciated, as the paper appeared in translation (in French) one year later in Weierstrass

[1886]. Weierstrass was interested in complex function theory and in the ability to rep-

resent functions by power series. The results he obtained in this 1885 paper should be

viewed from that perspective. The title of the paper emphasizes this viewpoint. The paper

is titled On the possibility of giving an analytic representation to an arbitrary function

of a real variable. It is interesting to read this paper, as Weierstrass’ perception of these

approximation theorems was certainly different from ours. Weierstrass’ view of analytic

functions was of functions that could be represented by power series. The approximation

theorem, for him, was an extension of this result to continuous functions. Every continu-

ous function could be represented by a polynomial series that converged both absolutely

and uniformly. Similarly, ‘nice’ functions in C̃[0, 2π] enjoy the property that their Fourier

series converges absolutely and uniformly. What Weierstrass also proved was that ev-

ery function in C̃[0, 2π] could be represented by a trigonometric polynomial series that

converged both absolutely and uniformly.

The paper Weierstrass [1885] was reprinted in Weierstrass’ Mathematische Werke

(collected works) with some notable additions. While this reprint appeared in 1903, there

is reason to assume that Weierstrass himself edited this paper. One of these additions

was a short “introduction”. We quote it (verbatim in meaning if not in fact).

The main result of this paper, restricted to the one variable case, can be summarized

as follows:

Let f ∈ C(R). Then there exists a sequence f1, f2, . . . of entire functions for which

f(x) =

∞∑

i=1

fi(x)

for each x ∈ R. In addition the convergence of the above sum is uniform on every finite

interval.

Note that there is no mention of the fact that the fi may be assumed to be polynomials.

We state the Weierstrass theorems, not as given in his paper, but as they are currently

stated and understood.

Weierstrass Theorem 2.1. For every finite a < b algebraic polynomials are dense in

C[a, b]. That is, given an f in C[a, b] and an arbitrary ε > 0 there exists an algebraic

polynomial p such that

|f(x)− p(x)| < ε

for all x in [a, b].
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Weierstrass Theorem 2.2. Trigonometric polynomials are dense in C̃[0, 2π]. That is,

given an f in C̃[0, 2π] and an arbitrary ε > 0 there exists a trigonometric polynomial t

such that

|f(x)− t(x)| < ε

for all x in [0, 2π].

These are the first significant density theorems in analysis. They are generally paired

since in fact they are equivalent. That is, each of these theorems follows from the other.

Over the next twenty-five or so years numerous alternative proofs were given to one

or the other of these results by a roster of some of the best analysts of the period. There

are the proofs by Weierstrass, Picard, Fejér, Landau and de la Valleé Poussin that used

singular integrals, proofs based on the idea of approximating one particular function by

Runge (Phragmén), Lebesgue, Mittag-Leffler, and Lerch, proofs based on Fourier series

by Lerch, Volterra and Fejér, and the wonderful proof of Bernstein. Details concerning

all these proofs can be found, for example, in Pinkus [2000]. We explain, without detail,

three of these proofs.

One of the more elegant and cited proofs of Weierstrass’ theorem is due to Lebesgue

[1898]. This was Lebesgue’s first published paper. He was, at the time of publication, a

23 year old student at the École Normale Supérieure. The idea of his proof is simple and

useful. Lebesgue noted that each f in C[a, b] can be easily approximated by a continuous,

piecewise linear curve (polygonal line). Each such polygonal line is a linear combination

of translates of |x|. As algebraic polynomials (of any fixed degree) are translation in-

variant, it thus suffices to prove that one can uniformly approximate |x| arbitrarily well

by polynomials on any interval containing the origin. Lebesgue then does exactly that.

Explicitly

|x| = 1−
∞∑

n=1

an(1− x2)n

where a1 = 1/2, and

an =
(2n− 3)!

22n−2n!(n− 1)!
, n = 2, 3, . . .

This “power series” converges absolutely and uniformly to |x| in a neighborhood of 0 (for

all |x| ≤ 1). Truncating this series we obtain a series of polynomial approximants to |x|.
When Fejér was 20 years old, he published Fejér [1900] that formed the basis for

his doctoral thesis. Fejér proved more than the Weierstrass approximation theorem (for

trigonometric polynomials). He proved that for any f in C̃[0, 2π] it is possible to uniformly

approximate f based solely on the knowledge of its Fourier coefficients. He did not obtain

this approximation by taking the partial sums of the Fourier series. It is well-known that

these do not necessarily converge. Rather he obtained it by taking the Cesàro sums of the

partial sums of the Fourier series. In other words, assume that we are given the Fourier

series of f

f(x) ∼
∞∑

k=−∞
cke

ikx,



RESULTS IN APPROXIMATION THEORY 177

where

ck =
1

2π

∫ 2π

0

f(x)e−ikxdx

for every k ∈ Z. Define the nth partial sums of the Fourier series by

sn(x) :=

n∑

k=−n
cke

ikx.

and set

σn(f ;x) =
s0(x) + · · ·+ sn(x)

n+ 1
.

The σn is termed the nth Fejér operator. Note that σn(f ; ·) belongs to Tn for each n.

What Fejér proved was that, for each f in C̃[0, 2π], σn(f ; ·) tends uniformly to f as

n → ∞. This proof was also the first to construct a sequence of linear operators that

could be used in the approximation process.

Simpler linear operators that approximate were introduced by Bernstein [1912/13].

These are the Bernstein polynomials. For f in C[0, 1] they are defined by

Bn(f ; x) =
n∑

m=0

f

(
m

n

)(
m

n

)
xm(1− x)n−m.

Bernstein proved, by probabilistic methods, that the Bn(f ; ·) converge uniformly to f as

n→∞. A proof of this convergence is to be found in Example 4.2.

3. The functional analytic approach. The Riesz representation theorem character-

izing the space of continuous linear functionals on C[a, b] is contained in the 1909 paper

of F. Riesz [1909]. The following year, in a rarely referenced paper, Riesz [1910] also

announced the following (stated in more modern terminology).

Theorem 3.1. Let uk ∈ C[a, b], k ∈ K, where K is an index set. A necessary and suffi-

cient condition for the existence of a continuous linear functional F on C[a, b] satisfying

F (uk) = ck, k ∈ K,
with ‖F‖ ≤ L is that ∣∣∣

∑

k∈K′
akck

∣∣∣ ≤ L
∥∥∥
∑

k∈K′
akuk

∥∥∥
∞

holds for every finite subset K ′ of K, and all real ak.

In this same paper Riesz also states the parallel result for Lp[a, b], 1 < p < ∞.

Questions concerned with existence and uniqueness in moment problems were of major

importance in the development of functional analysis. The full details of the 1910 an-

nouncement appear in Riesz [1911]. In these papers is also to be found the following

result (again we switch to more modern terminology).

Theorem 3.2. Let M be a linear subspace of C[a, b]. Then f ∈ C[a, b] is in the closure

of M , i.e., f can be uniformly approximated by elements of M , if and only if every

continuous linear functional on C[a, b] that vanishes on M also vanishes on f .
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Riesz quotes E. Schmidt as the author of the very interesting problem whose solution

is the above Theorem 3.2. As he writes, the question asked is: Being given a countable

system of functions φn ∈ C[a, b], n = 1, 2, ..., how can one know if one can approximate

arbitrarily and uniformly every f ∈ C[a, b] by the φn and their linear combinations?

(Riesz [1911, p. 51]). Schmidt, in his thesis in Schmidt [1905], had given both a necessary

and a sufficient condition for the above to hold. Both were orthogonality type conditions.

However neither was the correct condition. The concept of a linear functional vanishing

on a set of functions is very orthogonal-like. Lerch’s theorem (Lerch [1892], see also the

more accessible Lerch [1903]), states that if h ∈ C[0, 1] and
∫ 1

0

xnh(x) dx = 0, n = 0, 1, . . . ,

then h = 0. This theorem was well-known and frequently quoted. So it was not unrea-

sonable to look for conditions of the form given in Theorem 3.2. (Lerch’s theorem is, in

fact, a simple consequence of Weierstrass’ theorem.)

As Riesz states, one consequence of the above Theorem 3.2 is that M is dense in

C[a, b] if and only if no nontrivial continuous linear functional vanishes on M . The proof

of Theorem 3.2, contained in Riesz [1911], is just an application of Theorem 3.1.

Proof. We start with the simple direction. Assume f is in the closure of M . If F is a

continuous linear functional that vanishes on M , then F (f) = F (f − g) for every g ∈M .

Given ε > 0, there exists a g∗ ∈M for which ‖f − g∗‖∞ < ε. Thus

|F (f)| = |F (f − g∗)| ≤ ‖F‖‖f − g∗‖∞ < ε‖F‖.
As this is valid for every ε > 0 we have F (f) = 0.

Now assume that f is not in the closure of M . Thus ‖f − g‖∞ ≥ d > 0 for every

g ∈M . From this inequality and Theorem 3.1 there necessarily exists a continuous linear

functional F on C[a, b] satisfying F (g) = 0, for all g ∈ M , F (f) = 1, and ‖F‖ ≤ L for

any L ≥ 1/d. This holds since we have

|a| ≤ Ld|a| ≤ L‖af − g‖∞,
for all g ∈M and all a.

Shortly thereafter Helly [1912] applied these results to a question concerning the range

of an integral equation. He proved the following two theorems.

Theorem 3.3. Let K ∈ C([a, b]× [a, b]) and f ∈ C[a, b]. Then a necessary and sufficient

condition for the existence of a measure of bounded total variation ν satisfying

f(x) =

∫ b

a

K(x, y)d ν(y),

is the existence of a constant L for which

∣∣∣
n∑

k=1

akf(xk)
∣∣∣ ≤ L

∣∣∣
n∑

k=1

akK(xk, y)
∣∣∣

for all points x1, . . . , xn in [a, b], all real values a1, . . . , an, all y ∈ [a, b], and all n.
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Theorem 3.4. Let K ∈ C([a, b] × [a, b]). Then a necessary and sufficient condition for

an f ∈ C[a, b] to be uniformly approximated by functions of the form
∫ b

a

K(x, y)φ(y)d y,

where the φ are piecewise continuous functions, is that for every measure µ of bounded

total variation satisfying ∫ b

a

K(x, y)d µ(x) = 0

we also have ∫ b

a

f(x)d µ(y) = 0.

In 1911 the concept of a normed linear space did not exist, and the Hahn-Banach

theorem had yet to be discovered (although the Helly [1912] paper contains results

that compare). Banach’s proof of the Hahn-Banach theorem appears in Banach [1929]

(Hahn’s appears in Hahn [1927]). Both the Hahn and Banach papers contain a gen-

eral form of Theorem 3.1, namely the Hahn-Banach theorem. Both also essentially con-

tain the statement that a linear subspace is dense in a normed linear space if and

only if no nontrivial continuous linear functional vanishes on the subspace. Banach,

in his book Banach [1932, p. 57], prefaces these next two theorems with the state-

ment: We are now going to establish some theorems that play in the theory of normed

spaces the analogous role to that which the Weierstrass theorem on the approximation

of continuous functions by polynomials plays in the theory of functions of a real vari-

able.

Theorem 3.5. Let M be a linear subspace of a real normed linear space E. Assume

f ∈ E and

‖f − g‖ ≥ d > 0

for all g ∈M . Then there exists a continuous linear functional F on E such that F (g) = 0

for all g ∈M , F (f) = 1, and ‖F‖ ≤ 1/d.

The result of Theorem 3.5 replaces Theorem 3.1 in the proof of Theorem 3.2 to give

us the well-known

Theorem 3.6. Let M be a linear subspace of a real normed linear space E. Then f ∈ E
is in the closure of M if and only if every continuous linear functional on E that vanishes

on M also vanishes on f .

In none of these works of Hahn and Banach are the above-mentioned 1910 or 1911

papers of Riesz referenced. These Riesz papers seem to have been essentially forgotten.

In fact the general method of proof of density based on this approach is to be found

in the literature only after the appearance of the book of Banach and the blooming of

functional analysis. The name of Riesz is often mentioned in connection with this method,

but only because of the Riesz representation theorem and similar duality results bearing

his name.
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Today we also recognize the Hahn-Banach theorem as a separation theorem, and as

such we also have the following two results.

Theorem 3.7. Let E be a real normed linear space, φn elements of E, n ∈ I, and f ∈ E.

Then f may be approximated by finite convex linear combinations of the φn, n ∈ I, if

and only if

sup{F (φn) : n ∈ I} ≥ F (f)

for every continuous linear functional F on E.

Theorem 3.8. Let E be a real normed linear space, φn elements of E, n ∈ I, and f ∈ E.

Then f may be approximated by finite positive linear combinations of the φn, n ∈ I, if

and only if for every continuous linear functional F on E satisfying F (φn) ≥ 0 for every

n ∈ I we have F (f) ≥ 0.

Theorem 3.8 follows from Theorem 3.7 by considering the convex cone generated by

the φn.

There are numerous generalizations of these results. The book of Nachbin [1967] where

these results may be found is one of the few to concentrate on density theorems. Much of

the book is taken up with the Stone-Weierstrass theorem. However there are also other

results such as the above Theorems 3.7 and 3.8.

4. Other density methods. The Weierstrass theorems had a significant influence on

the development of density results, even though the theorems themselves simply prove

the density of algebraic and trigonometric polynomials in the appropriate spaces. Various

proofs of the Weierstrass theorems, for example, provided insights that led to the devel-

opment of two general methods for determining density. We briefly discuss these methods

in this section.

The first of these methods is given by the Stone-Weierstrass theorem. This theorem

was originally proven in Stone [1937]. Stone subsequently reworked his proof in Stone

[1948]. It represents, as stated by Buck [1962, p. 4], one of the first and most striking

examples of the success of the algebraic approach to analysis. There have since been

numerous modifications and extensions. See, for example, Nachbin [1967], Prolla [1993]

and references therein.

We recall that an algebra is a linear space on which multiplication between elements

has been suitably defined satisfying the usual commutative and associative type pos-

tulates. Algebraic and trigonometric polynomials in any finite number of variables are

algebras. A set in C(X) separates points if for distinct points x, y ∈ X there exists a g in

the set for which g(x) 6= g(y).

Stone-Weierstrass Theorem 4.1. Let X be a compact set and let C(X) denote the

space of continuous real-valued functions defined on X. Assume A is a subalgebra of

C(X). Then A is dense in C(X) in the uniform norm if and only if A separates points

and for each x ∈ X there exists an f ∈ A satisfying f(x) 6= 0.

Example 4.1. As we mentioned prior to the statement of the Stone-Weierstrass theo-

rem, algebraic polynomials in any finite number of variables form an algebra. They also

separate points and contain the constant function. Thus algebraic polynomials in m vari-
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ables are dense in C(X) where X is any compact set in Rm. This fact first appeared in

print (at least for squares) in Picard [1891] which also contains an alternative proof of

Weierstrass’ theorems. The paper Weierstrass [1885] as “reprinted” in Weierstrass’ Math-

ematische Werke in 1903 contains an additional 10 pages of material including a proof of

this multivariable analogue of his theorem.

Another method that can be used to prove density is based on what is called the

Korovkin theorem or the Bohman-Korovkin theorem. A primitive form of this theorem

was proved by Bohman in Bohman [1952]. His proof, and the main idea in his approach,

was a generalization of Bernstein’s proof of the Weierstrass theorem. Korovkin one year

later in Korovkin [1953] proved the same theorem for integral type operators. Korovkin’s

original proof is in fact based on positive singular integrals and there are very obvious

links to Lebesgue’s work on singular operators that, in turn, was motivated by various

of the proofs of the Weierstrass theorems. Korovkin was probably unaware of Bohman’s

result. Korovkin subsequently much extended his theory, major portions of which can

be found in his book Korovkin [1960]. The theorem as presented here is taken from

Korovkin’s book.

A linear operator L is positive (monotone) if f ≥ 0 implies L(f) ≥ 0.

Bohman–Korovkin Theorem 4.2. Let (Ln) be a sequence of positive linear operators

mapping C[a, b] into itself. Assume that

lim
n→∞

Ln(xi) = xi, i = 0, 1, 2,

and the convergence is uniform on [a, b]. Then

lim
n→∞

(Lnf)(x) = f(x)

uniformly on [a, b] for every f ∈ C[a, b].

A similar result holds in the periodic case C̃[0, 2π], where “test functions” are 1, sinx,

and cosx. Numerous generalizations may be found in the book of Altomare and Campiti

[1994].

How can the Bohman-Korovkin theorem be applied to obtain density results? It can,

in theory, be applied easily. If the Un = span{u1, . . . , un}, n = 1, 2, ..., are a nested

sequence of finite-dimensional subspaces of C[a, b], and Ln is a positive linear operator

mapping C[a, b] into Un that satisfies the conditions of the above theorem, then the

(uk)∞k=1 span a dense subset of C[a, b]. In practice it is all too rarely applied in this

manner. The importance of the Korovkin theory is primarily in that it presents conditions

implying convergence, and also in that it provides calculable error bounds on the rate of

approximation.

Example 4.2. One immediate application of the Bohman-Korovkin theorem is a proof

of the convergence of the Bernstein polynomials Bn(f) to f for each f in C[0, 1]. We

may consider the (Bn) as a sequence of positive linear operators mapping C[0, 1] into

Πn, the space of algebraic polynomials of degree at most n. It is readily verified that

Bn(1 ; x) = 1, Bn(x ; x) = x and Bn(x2 ; x) = x2 + x(1− x)/n for all n ≥ 2. Thus by the

Bohman-Korovkin theorem Bn(f) converges uniformly to f on [0, 1].
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5. Some density results

Example 5.1. Müntz’s Theorem. Possibly the first generalization of consequence of the

Weierstrass theorems, and certainly one of the best known, is the Müntz theorem or the

Müntz-Szász theorem.

It was Bernstein who in a paper in the proceedings of the 1912 International Congress

of Mathematicians held at Cambridge, Bernstein [1913], and in his 1912 prize-winning

essay, Bernstein [1912], asked for exact conditions on an increasing sequence of positive

exponents λn, so that the sequence (xλn) is fundamental in the space C[0, 1]. Bernstein

himself had obtained some partial results. In the paper in the ICM proceedings Bernstein

wrote the following: It will be interesting to know if the condition that the series
∑

1/λn
diverges is not necessary and sufficient for the sequence of powers (xλn) to be fundamental;

it is not certain, however, that a condition of this nature should necessarily exist.

It was just two years later that Müntz [1914] was able to provide a solution confirming

Bernstein’s qualified guess. What Müntz proved is the following.

Müntz’s Theorem 5.1. The sequence

xλ0 , xλ1 , xλ2 , . . .

where 0 ≤ λ0 < λ1 < λ2 < · · · → ∞ is fundamental in C[0, 1] if and only if λ0 = 0 and
∞∑

k=1

1

λk
=∞.

There are numerous proofs and generalizations of the Müntz theorem. It is to be found

in many of the classic texts on approximation theory, see e.g. Achieser [1956, p. 43–46],

Cheney [1966, p. 193–198], Borwein, Erdélyi [1995, p. 171–205]. (The last reference con-

tains many generalizations of Müntz’s theorem and also surveys the literature on this

topic.) An alternative method of proof of Müntz’s theorem and its numerous generaliza-

tions is via the functional analytic approach, and the possible sets of uniqueness for zeros

of analytic functions, see e.g. Schwartz [1943], Rudin [1966, p. 304–307], Luxemburg,

Korevaar [1971], Feinerman, Newman [1974, Chap. X], and Luxemburg [1976]. For some

different approaches see, for example, Rogers [1981], Burckel, Saeki [1983], and the very

elegant v. Golitschek [1983].

Example 5.2. Combining the functional analytic approach with analytic methods has

proven to be a very effective method of proving density results. As a general example,

assume g is in C(R) and has an extension as an analytic function on all of C. Let Λ be a

subset of R that contains a finite accumulation point, i.e., there are distinct λn in Λ and

a finite λ∗ such that limn→∞ λn = λ∗. Set

MΛ = span{g(λx) : λ ∈ Λ}.
We wish to determine when MΛ is dense in C[a, b]. The following result holds.

Theorem 5.2. Let g, Λ and MΛ be as above. Set

Ng = {n : g(n)(0) 6= 0}.
Then MΛ is dense in C[a, b] if and only if:
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i) for [a, b] ⊆ (0,∞) or [a, b] ⊆ (−∞, 0)
∑

n∈Ng\{0}

1

n
=∞,

ii) if a = 0 or b = 0, then 0 ∈ Ng and
∑

n∈Ng\{0}

1

n
=∞,

iii) if a < 0 < b, then 0 ∈ Ng and
∑

n∈Ng\{0}
n even

1

n
=
∑

n∈Ng
n odd

1

n
=∞.

Proof. The conditions in (i), (ii) and (iii) are exactly those conditions that determine

when

span{xn : n ∈ Ng}
is dense in C[a, b]. This is the content of the Müntz theorem in case (ii), and easily follows

from the Müntz theorem in case (iii). In case (i) it follows from the Müntz theorem that

the condition therein is sufficient for density. The necessity is also true, but needs an

additional argument, see e.g., Schwartz [1943].

From the Hahn-Banach and Riesz representation theoremsMΛ is not dense in C[a, b]

if and only if there exists a nontrivial measure µ of bounded total variation on [a, b]

satisfying ∫ b

a

g(λx) dµ(x) = 0

for all λ ∈ Λ. Assume such a measure exists. As g is entire, it follows that

h(z) =

∫ b

a

g(zx) dµ(x)

is entire. Furthermore h(λ) = 0 for all λ ∈ Λ. By assumption Λ contains a finite accu-

mulation point. Thus by the uniqueness theorem for zeros of analytic functions h = 0.

However h being identically zero does not necessarily imply that µ is the zero measure.

It only proves that

MΛ = span{g(λx) : λ ∈ R}.
For example, if g is a polynomial of degree m, thenMΛ is simply the space of polynomials

of degree m.

As g(λx) ∈MΛ for all λ ∈ R it follows, differentiating by λ, that

xng(n)(λx) ∈MΛ

for each nonnegative integer n and all λ ∈ R. Setting λ = 0 gives us

xng(n)(0) ∈MΛ, n = 0, 1, ...

Thus

xn ∈MΛ, n ∈ Ng.
But span{xn : n ∈ Ng} is dense in C[a, b], a contradiction.
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On the other hand, assume the conditions in (i), (ii) or (iii) do not hold. Then

span{xn : n ∈ Ng} is not dense in C[a, b], and there exists a nontrivial measure µ of

bounded total variation satisfying
∫ b

a

xndµ(x) = 0

for all n ∈ Ng. Since g is entire

g(x) =
∑

n∈Ng

g(n)(0)

n!
xn

and it follows that ∫ b

a

g(λx) dµ(x) = 0

for all λ ∈ R. Thus MΛ is not dense in C[a, b].

For example, if g(x) = ex then Ng = Z+ so that (i), (ii) and (iii) always hold. Thus

span{eλnx : λ ∈ Λ}
is always dense in C[a, b] assuming Λ is a subset of R with a finite accumulation point.

A change of variable argument implies that under this same condition on Λ the set

span{xλn : λ ∈ Λ}
is dense in C[α, β] for every 0 < α < β <∞.

Questions related to Müntz type problems concern the fundamentality of the functions

(eλnx), where (λn) is a sequence of complex numbers. This has been considered in spaces

of real and complex-valued functions in C[a, b], C(R+), Lp[a, b] and Lp(R+), 1 ≤ p <∞.

There has been considerable research done in this area, see, for example, Paley, Wiener

[1934, Chap. VI], Levinson [1940, Chap. I and II], Schwartz [1943], Levin [1964, Appendix

III], Levin [1996, Lecture 18], and the many references therein.

Example 5.3. The analysis literature is replete with results concerning the density of

translates (and dilates) of a function in various spaces. These might be arbitrary, integer,

or sequence translates (or dilates). Many of these results are generalizations, in a sense,

of the Müntz and/or Paley-Wiener theorems (see the previous example).

There is a characterization of those f ∈ C(R) for which

span{f(· − α) : α ∈ R}
is not dense in C(R) (in the topology of uniform convergence on compacta). Such func-

tions are called mean periodic, see Schwartz [1947].

Some functions in C(R) have a further interesting property.

Proposition 5.3. Assume f = ĝ (f is the Fourier transform of g) for some nontrivial

g ∈ L1(R) with the support of g contained in an interval of length at most 2π. Then

span{f(· − n) : n ∈ Z}
is dense in C(R) (in the topology of uniform convergence on compacta).
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Proof. Assume the above set is not dense in C(R). Then there exists a Borel measure µ

of bounded total variation and compact support E such that∫

E

f(x− n)d µ(x) = 0

for all n ∈ Z. Assume f = ĝ, as above, and supp{g} ⊆ [a, a+ 2π]. Thus for each n ∈ Z

0 =

∫

E

f(x− n)d µ(x) =

∫

E

ĝ(x− n)d µ(x) =
1

2π

∫

E

(∫ a+2π

a

g(t)e−i(x−n)tdt

)
d µ(x)

=

∫ a+2π

a

(
1

2π

∫

E

e−ixtd µ(x)

)
eintg(t) dt =

∫ a+2π

a

eintg(t)µ̂(t) dt

where µ̂ is the Fourier transform of the measure µ. It is well known that µ̂ is an entire

function.

As all the Fourier coefficients of g µ̂ on [a, a+2π] vanish we have that g µ̂ is identically

zero thereon. This implies that g must vanish where µ̂ 6= 0. As µ̂ is entire this implies

that g = 0, a contradiction.

The above is a simple example within a general theory. The interested reader should

consult Atzmon, Olevskii [1996], Nikolski [1999], and references therein. Note that there

is no function whose integer translates are dense in L2(R).

Example 5.4. The following result is a special case of a general theorem of Schwartz

[1944] (see also Pinkus [1996] and references therein). Here we consider C(R), with the

topology of uniform convergence on compacta. We are interested in determining the set

of functions in C(R) that are both translation and dilation invariant.

Proposition 5.4. If σ ∈ C(R), σ 6= 0, then

C(R) = span{σ(α ·+β) : α, β ∈ R}
if and only if σ is not a polynomial.

Proof. Let

Mσ = span{σ(α ·+β) : α, β ∈ R}.
If Mσ 6= C(R) then there exists a nontrivial Borel measure µ of bounded total variation

and compact support such that ∫

R
σ(αx+ β) dµ(x) = 0

for all α, β ∈ R. Since µ is nontrivial and polynomials are dense in C(R) in the topology

of uniform convergence on compact subsets, there must exist a k ≥ 0 such that∫

R
xk dµ(x) 6= 0.

It is relatively simple to show that for each φ ∈ C∞0 (R), (infinitely differentiable

and having compact support) the convolution (σ ∗ φ) is contained in Mσ. Since both

σ and φ are in C(R), and φ has compact support, this can be proven by taking limits

of Riemann sums of the convolution integral. We also consider taking derivatives as a

limiting operation in taking divided differences. Since (σ ∗ φ) ∈ C∞(R), and thus it and
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all its derivatives are uniformly continuous on every compact set, it follows that for each

α, β ∈ R
∂n

∂αn
(σ ∗ φ)(αx+ β) = xn(σ ∗ φ)(n)(αx+ β) ∈Mσ.

Thus ∫

R
xn(σ ∗ φ)(n)(αx+ β) dµ(x) = 0,

for all α, β ∈ R and n ∈ Z+. Setting α = 0, we see that

(σ ∗ φ)(n)(β)

∫

R
xn dµ(x) = 0

for each choice of β ∈ R, n ∈ Z+ and φ ∈ C∞0 (R). This implies, since
∫
R x

k dµ(x) 6= 0,

that

(σ ∗ φ)(k) = 0

for all φ ∈ C∞0 (R). That is, σ(k) = 0 in the weak sense. However, as is well-known, this

implies that σ(k) = 0 in the strong (usual) sense. That is, σ is a polynomial of degree at

most k − 1.

The converse direction is simple. If σ is a polynomial of degree m, thenMσ is exactly

the space of polynomials of degree m, and is therefore not dense in C(R).

Example 5.5. Let 〈·, ·〉 denote the usual inner (scalar) product on Rn. We prove the

following result.

Proposition 5.5. For each σ ∈ C(R)

span{σ(〈a, ·〉+ b) : a ∈ Rn, b ∈ R}
is dense in C(Rn) (uniform convergence on compacta) if and only if σ is not a polynomial.

Proof. If σ is a polynomial of degree m, then each σ(〈a, ·〉+ b) is contained in the space

of polynomials of total degree at most m on Rn, and is certainly not dense in C(Rn).

Assume σ is not a polynomial. Choose an f in C(Rn), X any compact subset of Rn,

and ε > 0. From an elementary application of the Stone-Weierstrass theorem we have

the existence of gk ∈ C(R) and ak ∈ Rn, k = 1, . . . ,m, such that

∣∣∣f(x)−
m∑

k=1

gk(〈ak,x〉)
∣∣∣ < ε

for all x ∈ X. Let [c, d] be a finite interval of R containing all values 〈ak,x〉 for x ∈ X
and k = 1, . . . ,m, i.e.,

m⋃

k=1

{〈ak,x〉 : x ∈ X} ⊆ [c, d].

From Proposition 5.4 we have the existence of cik, αik, βik ∈ R, i = 1, . . . , nk, k = 1, . . . ,m

for which
∣∣∣gk(t)−

nk∑

i=1

cikσ(αikt+ βik)
∣∣∣ < ε

m
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for all t ∈ [c, d] and k = 1, . . . ,m. Thus for all x ∈ X
∣∣∣f(x)−

m∑

k=1

nk∑

i=1

cikσ(αik〈ak,x〉+ βik)
∣∣∣ < 2ε,

which proves the density.

Proposition 5.5 is a basic result in one of the models of neural network theory, see

Leshno, Lin, Pinkus, Schocken [1993] and Pinkus [1999].

Example 5.6. Here are two examples where we consider the density of positive cones.

That is, we present some applications of Theorem 3.8.

Let Π denote the space of all algebraic polynomials and Π+ the convex cone of all

algebraic polynomials with nonnegative coefficients. We first prove the following result

due to Bonsall [1958].

Theorem 5.6. The uniform closure of Π+ on [−1, 0] is exactly the set of f in C[−1, 0]

for which f(0) ≥ 0.

Proof. Let gn(x) = (1 + x)n and φn(x) = xn for all n ∈ Z+. Note that gn and φn are in

Π+, and

gn =

n∑

k=0

(
n

k

)
φk.

Assume F is a continuous linear functional F on C[−1, 0] satisfying F (φn) ≥ 0 for every

n ∈ Z+. Then

F (gn) ≥
(
n

k

)
F (φk).

Now ‖gn‖ = 1 for all n. Thus

‖F‖ ≥
(
n

k

)
F (φk),

for each n ≥ k. Fix k ≥ 1 and let n→∞. This implies that F (φk) = 0 for all k = 1, 2, ....

Thus each ±φk, k ≥ 1, is in the uniform closure of Π+ on [−1, 0]. As every f ∈ C[−1, 0]

satisfying f(0) = 0 is in the uniform closure of the space generated by the ±φk, k ≥ 1,

the result now easily follows.

Bonsall actually proves that each linear functional F , as above, is necessarily of the

exact form F (f) = cf(0) where c = F (1) ≥ 0. This he proves as follows. For each

f ∈ C[−1, 0] and ε > 0, let p ∈ Π satisfy

‖f − p‖ < ε

Thus we have |f(0)− p(0)| < ε. Since F (φk) = 0, k ≥ 1, we obtain

|F (f)− F (1)p(0)| = |F (f − p(0))| = |F (f − p)| < ε‖F‖.
Furthermore

|F (f)− F (1)f(0)| = |F (f)− F (1)p(0) + F (1)p(0)− F (1)f(0)| < 2ε‖F‖.
As this is valid for each ε > 0 we obtain

F (f) = F (1)f(0).
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There is an alternative method of proving this result via the Stone-Weierstrass theo-

rem (actually a slight generalization thereof). Consider the set of f in C[−1, 0] satisfying

f(0) = 0. Now eαx− 1 is in the uniform closure of Π+ on [−1, 0] for α > 0. (Truncate the

power series expansion about 0.) Furthermore if f and g are in this closure then so is fg.

As eαx−1 approaches −1 uniformly on [−1, δ] for any δ < 0 as α→∞, and is bounded on

[δ, 0], it follows that for f in the uniform closure of Π+ on [−1, 0] and satisfying f(0) = 0

we also have −f in this same closure. In addition p(x) = x is nonzero for all x 6= 0 and

separates points. Thus from an elementary generalization of the Stone-Weierstrass theo-

rem the uniform closure of Π+ on [−1, 0] contains the set of all f in C[−1, 0] satisfying

f(0) = 0. The result now follows.

Thus for any a < b < 0 the uniform closure of Π+ on [a, b] is exactly all of C[a, b].

What happens if [a, b] ⊆ [0,∞)? It is well known that in this case the uniform closure of

Π+ is simply the set of analytic functions in [a, b] given by a power series about 0 with

nonnegative coefficients which converges on [a, b].

There are also somewhat surprising results due to Nussbaum, Walsh [1998], generaliz-

ing work of Toland [1996]. These results are used to investigate when the spectral radius

of a positive, bounded linear operator belong to its spectrum. A special case of what they

prove is the following:

Theorem 5.7. For any a < −1 the uniform closure of Π+ on [a, 1] contains the set of

all f in C[a, 1] that vanish identically on [−1, 1].

Proof. We present two proofs of this result. The first proof uses the Hahn-Banach theorem

and is contained in Nussbaum, Walsh [1998]. The second proof is constructive.

Assume we are given a continuous linear functional F on C[a, 1] satisfying F (xn) ≥ 0

for all n ∈ Z+. From the Riesz representation theorem, this implies the existence of a

Borel measure µ of bounded total variation satisfying
∫ 1

a

xndµ(x) ≥ 0

for all n ∈ Z+. We will prove that supp{µ} ⊆ [−1, 1]. As this is true then
∫ 1

a

f(x)dµ(x) = 0

for every f in C[a, 1] that vanishes identically on [−1, 1], proving our theorem.

To this end, consider

G(z) =

∫ 1

a

1

z − xdµ(x).

G is analytic in C\[a, 1], and vanishes at ∞. For |z| > λ = sup{|x| : x ∈ supp{µ}} we

have

G(z) =

∞∑

n=1

cn−1

zn

where

cn =

∫ 1

a

xndµ(x) ≥ 0.
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Note that H(z) = G(1/z) is analytic in C\{(−∞, 1/a]∪ [1,∞)} and has about the origin

a power series expansion with nonnegative coefficients. From a theorem of Pringsheim,

if the radius of convergence of the power series is ρ > 0 then the point z = ρ is a

singular point of the analytic function represented by the power series. As the power

series converges on [0, 1) the radius of convergence is at least 1, and therefore H is

analytic in C\{(−∞,−1] ∪ [1,∞)} and G analytic in C\[−1, 1]. That is, G is in fact

analytic in [a,−1). This implies, see Nussbaum, Walsh [1998, p. 2371], that the measure

µ has no support in [a,−1).

The second proof of this result is based on a variation of a proof to be found in Orlicz

[1992, p. 99]. For n ∈ N, odd, consider the function

gn(x) =

∫ x

0

et
n/n − 1 dt.

Note that the integrand is uniformly bounded on [a, 1] and

lim
n→∞

et
n/n − 1 =

{
0, −1 ≤ t ≤ 1

−1, a ≤ t < −1.

As

et
n/n − 1 =

∞∑

k=1

(
tn

n

)k
1

k!

this function is in the uniform closure of Π+. Thus, so is gn . Set

G(x) =

{
−(x+ 1), a ≤ x ≤ −1

0, −1 ≤ x ≤ 1.

Then

lim
n→∞

(G(x)− gn(x)) = 0

uniformly on [a, 1]. That is, for all x ∈ [−1, 1]
∣∣∣∣
∫ x

0

(et
n/n − 1) dt

∣∣∣∣ ≤ e1/n − 1,

while for x ∈ [a,−1]
∣∣∣∣− (x+ 1)−

∫ x

0

(et
n/n − 1) dt

∣∣∣∣ =

∣∣∣∣− (x+ 1)−
∫ x

−1

(et
n/n − 1) dt+

∫ 0

−1

(et
n/n − 1) dt

∣∣∣∣

≤
∫ −1

x

et
n/ndt+

∫ 0

−1

(1− etn/n)dt ≤
∫ −1

a

et
n/ndt+ (1− e−1/n).

Thus G is in the uniform closure of Π+ on [a, 1].

Moreover, as seen above, the function et
n/n− 1 is uniformly bounded and approaches

H(x) =

{
0, −1 ≤ x ≤ 1,

−1, a ≤ x < −1.

The convergence to H is uniform in [a, 1], away from any neighbourhood of −1. Thus

GH = −G is also in the uniform closure of Π+ on [a, 1], and therefore the uniform closure

of Π+ on [a, 1] contains the algebra generated by G. An elementary generalization of the

Stone-Weierstrass theorem implies that the uniform closure of Π+ on [a, 1] contains the

set of all f in C[a, 1] which vanish identically on [−1, 1].



190 A. PINKUS

The above result is an extension of Theorem II′ in Orlicz [1992, p. 96]. Orlicz proved

that for every f ∈ C[a,−1] for which f(−1) = 0 and each ε > 0, there exists a p ∈ Π of

the form

p(x) =
n∑

k=0

akx
k

simultaneously satisfying

‖f − p‖[a,−1] < ε

and
n∑

k=0

|ak| < ε.
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RESULTS IN APPROXIMATION THEORY 191

R. P. Feinerman and D. J. Newman [1974], Polynomial Approximation, Williams and Wilkins,

Baltimore.

M. v. Golitschek [1983], A short proof of Mun̈tz’s theorem, J. Approx. Theory 39, 394–395.
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Sup. 28, 33–62. Also appears in Oeuvres, Volume II, 798–827.
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