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Abstract. By a harmonizable sequence of random variables we mean the sequence of Fourier
coefficients of a random measure M:

Xn(M):/O ™ M(ds) (n=0,%1,...)

The paper deals with prediction problems for sequences {X,(M)} for isotropic and atomless
random measures M. The crucial result asserts that the space of all complex-valued M-integrable
functions on the unit interval is a Musielak-Orlicz space. Hence it follows that the problem for
{Xn(M)} (n=0,=£1,...) to be deterministic is in fact an extremal problem of Szegd’s type for
Musielak-Orlicz spaces in question. This leads to a characterization of deterministic sequences
{Xn(M)} (n=0,%£1,...) in terms of random measures M.

1. Random measures and harmonizable sequences. A function M defined on the
o-algebra of all Borel subsets of the unit interval I whose values are complex random
variables is called a random measure if

(i) for every sequence E1, Es, ... of disjoint Borel sets
n=1 n=1

where the series converges with probability 1,
(ii) for every sequence Fi, Fs,... of disjoint Borel sets the random variables M (E;),
M (Es), ... are independent.

The theory of random measures was developed by A. Prékopa in [15, 16] and [17]. For
further results see [8], [22], [3] and [4].
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A random measure M is said to be atomless if M({a}) = 0 with probability 1 for
every one-point set {a}. Moreover a random measure M is said to be isotropic if for
every orthogonal transformation U of the complex plane and every Borel subset E of
the unit interval I the random variables M(E) and UM (E) have the same probability
distribution. In particular, isotropic random measures are symmetric, i.e. for every Borel
set E the random variables M (FE) and —M (FE) are identically distributed. All random
measures under consideration in the sequel will tacitly be assumed to be atomless and
isotropic. In particular for every Borel set E the random variable M (F) has an infinitely
divisible distribution and its characteristic function can be written in the form

(e’ 1.2
(1.1) ot (1) = exp ( | tntale) -t

x2

wn (B, dx)),
where J; is the Bessel function

1 ™

Jo(z) = —/ cos(z sinn)dn,
T Jo

pa(E,-) is a finite non-negative Borel measure on the positive half line R, t € R? and

[t|* = (t,t). Moreover, for every Borel subset A of R, the set-function (-, A) is a

non-negative atomless Borel measure on 1.

In the sequel we shall identify random variables which are equal with probability 1.
Given a random measure M, we say that a Borel set F is an M-null set if M(A) =0
for all Borel subsets A of E. Relations valid except of an M-null set are said to be valid
M-almost everywhere.

By a harmonizable sequence of random variables we mean the sequence of Fourier
coefficients of a random measure M, i.e. the sequence

1
Xn(M) = / ™S M (ds) (n=0,=+1,...).
0

It is clear that the Fourier coefficients {X, (M)} determine the random measure M
uniquely.

A sequence {X,,(M)} (n =0,=£1,...) of random variables is called strictly stationary,
or, briefly, stationary, if for every system m,ni,ng,...,n; of integers the multivariate
distribution of the random variables

Xn1+m7 Xnngm; ceey Xnker

does not depend upon m. One can prove the following result ([20],Theorem 4.1): A se-
quence {X,,(M)} of Fourier coefficients is stationary if and only if the random measure M
is isotropic. In this case the probability distribution of {X,, (M)} is completely determined
by the set-function pp(-,-)-

The concept of the integral with respect to a random measure was introduced in [16]
(the unconditional integral) and in [22]. We shall quote the basic definition, which is an
adaptation of Dunford’s definition of the integral with respect to a measure whose values
belong to a Banach space ([7], Chapter IV).
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If f is a complex-valued Borel simple function on I, i.e.

f = ch]-Eja
j=1

where c; are complex numbers and 1, denote the indicators of Borel sets E;, then the
integral on every Borel set F of f with respect to the random measure M is defined by

the formula
/ f(s)M ch (E; NE).
E

Further, a complex-valued Borel function g on [ is said to be M-integrable if there exists
a sequence {g, } of simple Borel functions such that

(a) the sequence {g,} converges to g M-almost everywhere on I,
(b) for every Borel set E the sequence { [,, gn(s)M(s)} converges in probability.

Now, by definition, the integral | 5 9(s)M(ds) is the limit in probability of the sequence
{5 gn(s)M(ds)}.

Let L(M) be the set of all complex-valued M-integrable functions on I. We indentify
functions which are equal M-almost everywhere. The space L(M) is a complete linear
metric space under usual addition and scalar multiplication with a non-homogeneous
norm defined by the formula

’ / f(s) M(ds
I

where || X|| denotes the Fréchet norm of the random variable X i.e. the expectation
E(|z|/(14]z|)) (see [22] and [21]). It should be noted that the convergence of a sequence
of functions in L(M) is equivalent to the convergence in probability of the sequence of
their M-integrals. Moreover, the set of all Borel simple functions on I is dense in L(M).

1fllar =

2. Sequences admitting a prediction. Given a stationary sequence of random vari-
ables {X,,}, by [X,,] and [X,, : n < k] we shall denote the linear spaces closed with respect
to the convergence in probability spanned by all random variables X, and by random
variables X,, with n < k respectively. To each stationary sequence {X,} there corre-
sponds a shift transformation TX,, = X,,+1, (n = 0,+£1,...) which can be extended to
an invertible linear transformation T on [X,,]. Of course, the transformation T' preserves
the probability distribution.

A concept of prediction for stationary sequences which need not have a finite variance
was introduced in [19]. In this paper we restrict ourselves to symmetric sequences. In this
case 0 is the only constant belonging to [X,,].

We say that a stationary symmetric sequence {X,,} admits a prediction if there exists
a continuous linear operator A, from [X,,] onto [X,, : n < 0] such that

(i) ApX = X whenever X € [X,, : n < 0],

(ii) if for every Y € [X,, : n < 0] the random variables X € [X,,] and Y are independent,
then A()X = O,
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(iii) for every X € [X,] and Y € [X,, : n < 0] the random variables X — ApX and ¥
are independent.

The random variable Ay X can be regarded as a linear prediction of X based on the full
past of the sequence {X,,} up to time 0. An optimality criterion is given by (iii). In what
follows the operator A will be called a predictor based on the past of the sequence {X,,}
up to time 0.

It should be noted that Gaussian stationary sequences with zero mean always admit
a prediction. This follows from the fact that in this case the concepts of independence
and orthogonality are equivalent and, moreover, the square-mean convergence and the
convergence in probability are equivalent. Therefore the predictor Ag is simply the best
linear least squares predictor, i.e. the orthogonal projector from [X,] onto [X, : n < 0].

The predictor Ay and the shift 7" induced by {X,,} determine the predictor A; based
on the full past of {X,,} up to time k¥ by means of the formula A; = T*A,T~*.

A stationary sequence { X, } admitting a prediction is called deterministic if AgX = X
for every X € [X,]. Further, a stationary sequence { X, } admitting a prediction is called
completely non-deterministic if for every X € [X,,] we have

k——o0

It is very easy to prove that every stationary sequence admitting a prediction can be
decomposed into a deterministic and a completely non-deterministic components ([19],
Theorem 1). Moreover, each stationary harmonizable sequence admitting a prediction
is the sum of two independent stationary harmonizable sequences admitting a predic-
tion, one completely non-deterministic and the other deterministic ([20], Theorem 4.2).
Thus the study of stationary harmonizable sequences admitting a prediction is reduced
to the study of deterministic and completely non-deterministic stationary harmonizable
sequences.

We note that the condition [X,] = [X,, : n < 0] characterizes deterministic sequences
{X,}. Therefore, the structure of the space [X,,] plays a key role in our considerations.
In the next section we shall quote some auxiliary concepts and a characterization of the
space L(M). Hence a complete description of the space [X,,] will follow.

3. Musielak-Orlicz spaces. Given a finite measure v defined on Borel subsets of the
unit interval I with v(I) > 0, we take a function ® defined on I x R, and satisfying the
following conditions:

(3.1) ®(¢,0) =0 and ®(¢,x) > 0 for x > 0 and v-almost all ¢,
(3.2) ®(t,x) is a continuous non-decreasing function of z for every ¢ € I,
(3.3) o(t, :E) is Borel measurable as a function of ¢ for every ¢ € I,

(3.4) J,

(3.5) (the AQ condltlon) there exists a positive constant ¢ such that
®(t,22) < cP(t,z) for all  and v-almost all ¢.

Throughout this paper we identify functions equal v-almost everywhere. Let f be
a complex-valued Borel function on I. It is easily seen that ®(¢,|f(t)|) is also a Borel
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function on I. We define a modular p by means of the formula

o) = / (1,1 £(8)]) v(dt).

Let Ls(v) be the set of all complex-valued Borel functions f on I for which p(f) is
finite. The set Lg(v) is a linear space over the complex field under usual addition and
scalar multiplication. Moreover, it becomes a complete linear metric space under the
non-homogeneous norm

£l =inf{a:a >0, p(a~'f) < a}.
The space Lo (v) with this norm was introduced and investigated by J. Musielak and
W. Orlicz in [14] and will be called a Musielak-Orlicz space. From (3.4) it follows that
all bounded Borel functions on I belong to Lg (). Moreover, the set of all Borel simple
functions is dense in Lg(v).

In this paper two linear metric spaces (Y, || ||1) and (Y, || ||2) will be treated as identical
if the convergences in both norms || ||; and || ||2 are equivalent. In particular, if

a®(t,z) < U(t,xz) <bV(t )
for some positive numbers a and b, v-almost all ¢ and sufficiently large x, then L (v) =
Ly (v). Moreover, if 3(t) > 0 for t € I, [, B(s)v(ds) < oo, ®(t,x) = ¥(t,z)/3(t) and
ME) = [ B(s)v(ds), then Ly (v) = Lg(v). Therefore, without loss of generality, we may
always assume that

(3.6) O(t,1)=1 for tel.

Let K be the class of all pairs (®,v) satisfying conditions (3.1)—(3.5) such that the
measure v is atomless and for v-almost all ¢ the function ®(¢, /) is concave on R, .

Given a random measure M we denote by ua(+,-) the corresponding set-function
appearing in formula (1.1). Put

vm(E) = pm(E, Ry)
for every Borel subset E of I. It is obvious that all measures pps(-, A) are absolutely
continuous with respect to the measure v);. Consequently, by the Radon—Nikodym The-
orem,
pas (E,10,2)) = [ gas(s)vaa(as),
E
where 0 < gps(s,2) < 1 and the function gps(,x) is Borel measurable on I. Moreover,
we may assume, without loss of generality, that the function gps(s,-) is monotone non-
decreasing and continuous to the left on R, . Put
e t,u
Dp(t, ) = / %z;)du (tel,x € Ry).
1/z u
By a simple calculation we have

Dr(t,Vx) = %/Om gM (t %) du

and, consequently, (P, vy) € K.
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We shall lean heavily on the following representation of the space L(M) of M-
integrable functions, which provides a tool for investigating random harmonizable se-
quences ([20], Theorem 3.1).

THEOREM 3.1. For every random measure M we have the relations (Ppr,va) € K and
L(M) = L@M(VM)'

The converse implication is also true.

THEOREM 3.2. For every pair (,v) € K there ezxists a random measure M such that
L(M) = Lg(v).

Proof. Let (®,v) € K. Without loss of generality we may assume that condition (3.6)
holds. Put

o(t.vD) = [ altudu (<)

where ¢(t, .) is a non-negative monotone non-increasing function. Setting r (¢, u) = q(t, u)
for u > 1 and r(t,u) =1 for 0 < u < 1 we get a non-negative monotone non-increasing
function r(¢,.). Moreover, the function

2

(3.7) Ut z) = /Ox r(t, u)du
fulfils the condition ®(¢,2) = U(¢,z) for > 1 and (¥,v) € K. Consequently,
(3.8) Ly(v) = La(v).
Now we shall prove that there exists a random measure M fulfilling the condition
(3.9 pnm (E,[0,2)) = /Er(s,x_Q)u(ds).

In fact, for the set-function (3.9) there exists a separable stochastic process with inde-
pendent increments such that the characteristic function of the increment X (b) — X (a)
is given by the expression

exp (/OOO(JO(J:H _pl +2$2uM([a,b),da:)>,

X

(see [6], p. 61 and 418). Setting M(U;_,[a;,b;)) = 7, (X (b;) — X(a;)) for disjoint
intervals [aj,b;) (j = 1,2,...,n) we get a random set function which, by Prékopa’s
Theorems ([15], p.227, 243) can be extended to a random measure M defined on Borel
subset of I. Further, from (3.9) we get vy, = v and gy (¢, z) = 7(t,2~2) which, by (3.7)

yields the equality
1
Dy (t, ) = 5@(75,:5).

Consequently, Ls,,(var) = Ly(v) and, by (3.8) and Theorem 3.1, L(M) = Lg(v). The
theorem is thus proved. m

In attempting to visualize these representation theorems we shall give some examples.
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EXAMPLE 3.1. We say that M is a random Poisson measure if there exists a finite Borel
measure ((-,-) on I x R, such that

2
1422

Integrating by parts it is easy to verify that

du
/@M(t,x)uM(dt) :/ /gM t u VM dt)—g
I 1/2

B * min(z?u?, 1)
5 [ < 6L Ry

for every x € R, . Consequently, ®,/(t,-) are bounded for v-almost every ¢t € I.

s (B, da) = —— B(E, du),

ExaMPLE 3.2. Given p > 0 and an atomless measure v on I we put
par(E,dz) = 2X(E)p~PePz(1 4 ePz2) 2 logP ! (e? + 272) log(1 + ePz~2)dx.
Then vy); = X and
®yy(t,x) = e’p P27 (14 p)~ (log' P (e? + 2?) —p'*P).
ExXAMPLE 3.3. Let A be an atomles measure on I and
par(E,dz) = 2X(E)z(1 + ex?)~2(loglog(e + £72) + 1 — log (e + z72)).
Then
Dr(ryx) = g log(e + 2%) loglog(e + 2?).

EXAMPLE 3.4. Given 0 < p < 2 and an atomless measure v we put

dx ,B o d

E

M( ) ) V( )1 12

where ﬁ = Sln pﬂ- . Here we have Vpp =V and the measure 12374 Corresponds toa p—stable

random measure M with the characteristic function ¢y (g)(t) = exp(—v(E)[t[P). Tt is
easy to check that
ax? <Oy (t,z) <ba? (tel,xeRy)

for some positive constants a and b. Thus L(M) = LP(v).
Consider a stationary harmonizable sequence {X,,(M)} (n = 0,+£1,...) corresponding
to a random measure M. It is easy to verify that the mapping

(3.10) X (M) — 2™ (n=0,+1,...,5€ 1)

can be extended in a natural way to an isomorphism between [X,,(M)] and L(M). More-

{/f )i fe LM >}

and by Theorem 3.1, formula (3.10) defines a natural isomorphism from [X,,(M)] onto the
Musielak-Orlicz space Lg,, (var). It is evident that the sequence {X,, (M)} is deterministic
if and only if

over,

Xo(M) € [X(M):n < —1].
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Denoting by || || the norm in Lg,, (var), we infer that {X,, (M)} is deterministic if and

only if
n
(3.11) mﬂﬁ+§:mp””“ —0,
k=1
where the infimum is taken over all complex numbers aq,as,...,a, and n = 1,2,...
Since ||f|| = || f||, we observe that (3.11) is equivalent to the relation
n
inf Hl + Z age?™ | = 0.
k=1

A solution of this extremal problem of Szegd’s type can be regarded as a generalisation
of the famous Kolmogorov-Krein criterion for LP-spaces ([9, 10]). This question will be
discussed in the next section.

4. An extremal problem for Musielak-Orlicz spaces. Given a Borel measure v on
I by v, we shall denote the absolutely continuous component of v with respect to the
Lebesgue measure and by dv./dt a Borel measurable version of its Radon-Nikodym den-
sity function. For any pair (®,v) satisfying conditions (3.1)—(3.6) we introduce auxiliary
functions A¢ , and Qs ., (n =1,2,...) by means of the formulas

lo dv, -1

Qopn(t) =inf{z: As,(t,2) <n,z > 1},

where the infimum of an empty set is defined as occ. It is clear that all these functions are
Borel measurable and 1 < Qo 1., (t) <00 (n=1,2,...).

The following generalization of the Kolmogorov-Krein criterion was proved in [20]
(Theorem 1.1).

THEOREM 4.1. Let Ly (v) be a Musielak-Orlicz space with the norm || ||. The equation
(4.1) mw+z%wmza

k=1
where the infimum is taken over all complex numbers ai,as,...,ay, and n = 1,2,...,

holds if and only if no function
logQe,n (n=12,...)
is Lebesgue integrable over I.

Now we shall quote some particular cases of this theorem. Given a number b > 1, we
say that a function ® satisfies the A,-condition if there exists a constant e, > 1 and a
positive number xg such that

D(t,x)ey, < P(t, bx)

for all t € I and = > z¢ (see [13]).
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THEOREM 4.2. Let L (v) be a Musielak-Orlicz space satisfying the Ay-condition for some
constant b > 1. Then equation (4.1) holds if and only if log d;tc is not Lebesgue integrable
over I.

Proof. From the Aj-condition it follows that there are positive constants ¢; and p such
that

cra? < ®(t, x)
for sufficiently large x and all ¢ € I (see [13], 124). Further, from the Aj-condition (3.5)
it follows that there are positive constants co and ¢ such that

D(t,z) < cox?
for sufficiently large x and r-almost all ¢. Consequently, we can find a positive number
zo > 1 such that
O(t,x)
log
for all x > x¢ and v-almost all ¢t. Hence in particular it follows that

< cox?

(4.2) craf <

lim Ag,(t,z) =0

v-almost everywhere. Consequently, the functions Qg ., ,, (n = 1,2,...) are finite v-almost
everywhere.

Suppose first that the Lebesgue measure is not absolutely continuous with respect to
d c
it
all functions Q¢ ,, (n =1,2,...) and the function log

vanishes on a set of positive Lebesgue measure. Consequently,
dv,
dt
Lebesgue measure, which, by Theorem 4.1, implies our assertion.

the measure v. Then

are infinite on a set of positive

Now suppose that the Lebesgue measure is absolutely continuous with respect to the
measure v. Then the functions Qg .., (n =1,2,...) are finite almost everywhere in the
sense of the Lebesgue measure. Moreover, inequality (4.2) holds also for all > x( and
for almost all ¢ in the sense of Lebesgue measure. Put

F,={t:20<Qoun(t) <o} (n=12...).

It is very easy to verify that both functions log d{;tc and log Qg .., (t) are Lebesgue inte-

grable over I C Fj,. Moreover, for all ¢ € F,, we have the formula

-1
08 00,0 (0) (%) =0 000,200

dt
Hence and from (4.2) we get the inequality

v\ !
nent 0= (52) < nany, 0

for almost all ¢ from F;, in the sense of the Lebesgue measure. Consequently, the function
log d;tc and all the functions log (s , ,, simultaneously are not Lebesgue integrable over

I which, by Theorem 4.1, completes the proof. =

THEOREM 4.3. Let Ly (v) be a Musielak-Orlicz space satisfying the condition
D(t
(4.3) im 22

z—oo logx

on a set of positive Lebesgue measure. Then equation (4.1) is fulfilled.
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Proof. Tt is very easy to verify that Q4 , ,(t) = oo for all ¢ from I satisfying (4.3) and
dd”tc < 00. Since the density function d‘;tc is finite almost everywhere with
respect to the Lebesgue measure, we conclude that no function log Qs . , is Lebesgue

integrable over I which, by Theorem 4.1, gives formula (4.1). m

the inequality

In the same way one can prove the following theorems.

THEOREM 4.4. Let Ly(v) be a Musielak-Orlicz space satisfying for some positive numbers
a and b the condition
D(t, x)

a <
~ logx

<b

for x > xy and almost all t in the sense of the Lebesgue measure. Then equation (4.1)

. . s edv.
holds if and only if essinf <= = 0.

THEOREM 4.5. Let Ly (v) be a Musielak-Orlicz space. If there are positive numbers a, b, p
and xo such that
D(t, x)
< ——2<b
~log' P

for x > xy and almost all t in the sense of the Lebesgue measure, then equation (4.1)

holds if and only if
dv, —1/p
dt = 0.
/1 < t > >

THEOREM 4.6. Let Ly (v) be a Musielak-Orlicz space. If there are positive numbers a,b
and xo such that

o ()
~ logxloglogx —

for x > xy and almost all t in the sense of the Lebesgue measure, then equation (4.1)

holds if and only if
dv 1}
-1 c
exp4n dt = o0
/I { ( dt )

5. Deterministic harmonizable sequences. We proceed now to a description of
stationary harmonizable sequences {X, (M)} in terms of probabilistic characteristics of

for all positive integers n.

the random measure M. We recall that to every random measure M there corresponds a
Borel measure v, on I and a function @), on I x R, and the pair (®,/,v,) determines
the sequence of functions Q¢ ., (n=1,2,...) on I. We already know that the sequence
{X, (M)} is deterministic if and only if equation (4.1) holds in Lg,, (var). Consequently,
Theorem 4.1 yields the following characterization of deterministic sequences.

THEOREM 5.1. A stationary harmonizable sequence { X,,(M)} is deterministic if and only
if no function logQa,, vy (n=1,2,...) is Lebesgue integrable over I.

We illustrate this theorem by some examples.
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EXAMPLE 5.1. Comparing Example 3.1 and Theorem 4.3 we conclude that stationary
harmonizable sequences {X, (M)} induced by random Poisson measures M are always
deterministic.

EXAMPLE 5.2. Taking into account Example 3.4 and Theorem 4.2 we infer that a sta-
tionary harmonizable sequence {X, (M)} corresponding to a p-stable random measure
M with 0 < p < 2 and vj; = v is deterministic if and only if log dd”tc is not Lebesgue
integrable over 1.

EXAMPLE 5.3. Consider a stationary harmonizable sequence {X,,(M)} corresponding to
the measure M appearing in Example 3.2 with p = 0 and vj; = v. By Theorem 4.4 this

sequence is deterministic if and only if essinf ch:C =0.

EXAMPLE 5.4. Taking a stationary harmonizable sequence {X,, (M)} corresponding to
the measure M appearing in Example 3.2 with p > 0 and v); = v we infer, by Theorem
4.5, that {X,,(M)} is deterministic if and only if

-1/p
/ (ddl/tc) dt = oo.
I

ExaMPLE 5.5. Let M be the random measure described by Example 3.3 with vy, = v.
Applying Theorem 4.6 we conclude that the sequence {X,, (M)} is deterministic if and

only if
/ expin Tt dve - dt = o0
&P dt -

6. Completely non-deterministic harmonizable sequences. First we shall quote a
continuous analogue of the Bernstein-Darmois Theorem ([1], [5]), which is a main tool in
the study of completely non-deterministic sequences. For homogeneous random measures
this problem was discussed in [11], [18] and [21]. The following theorem was proved in
[20] (Theorem 2.1).

for all positive integers n.

THEOREM 6.1. Let f and g be M -integrable functions with respect to a random measure.
If the random variables [, f(s)M(ds) and [, g(s)M(ds) are independent, then for every
Borel subset E of the set {s: f(s)g(s) # 0} the random variable M (FE) is Gaussian.

Here the degenerate case M (E) = 0 is also treated as the Gaussian one. Further, a
random measure M is said to be Gaussian if for every Borel subset E of I the random
variable M (E) is Gaussian. If in addition M (I) does not vanish with probability 1 we
have L(M) = L?(vys). The classical characterization of completely non-deterministic
wide sense stationary sequences ([6], Chapter XII, 4) implies the following statement.

THEOREM 6.2. Let M be a Gaussian random measure. The sequence {X,, (M)} is com-
pletely non-deterministic if and only if either M = 0 with probability 1 or the measure
vy @8 absolutely continuous with respect to the Lebesgue measure and log d;ﬁ’ is Lebesgue

integrable over I.

A complete description of stationary harmonizable completely non-deterministic se-
quences is given by the following theorem.
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THEOREM 6.3. A stationary harmonizable sequence {X,, (M)} is completely non-deter-
ministic if and only if either M = 0 with probability 1 or the measure M is Gaussian,

v s absolutely continuous with respect to the Lebesgue measure and log dc”iff” is Lebesgue

integrable over I.
Proof. By Theorem 6.2 it suffices to prove that the measure M is Gaussian provided

{X,,(M)} is completely non-deterministic.
Let Ay be the predictor based on the full past of X,,(M) up to time k. Since

X, (M)] = { / F(s)M(ds) : f € L(M)} ,
we have the formula

AkXO(M):/Ifk(s)M(ds)

where fi, € L(M). Setting
By ={s: fu(s) #1},
we get the formula
ApXo(M) = [ fr(s)M(ds) + M(I\ Ex).
Ey
Of course, the random variables M (I \ Ej) and | , Jr(s)M(ds) are independent and
symmetrically distributed. Consequently, the relation

lim AipXo(M)=0
k——o0
implies the relation
(6.1) klim M(I\ E) =0.

By the definition of predictors the random variables Xo(M) — A Xo(M) and Xy (M) are
independent. In other words, the integrals

/(1 — fr(s))M(ds) and /e%kisM(ds)
1

I
are independent. Since both integrands are different from 0 on Fj, we infer, by Theorem
6.1, that the random M (FE})) is Gaussian. Hence and from (6.1) it follows that M(I),
being the limit in probability of Gaussian random variables M (FE}), is Gaussian too. By
Cramér’s Theorem ([12], p. 271), M is a Gaussian random measure, which completes the
proof. =
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