ORLICZ CENTENARY VOLUME
BANACH CENTER PUBLICATIONS, VOLUME 64
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2004

MUSIELAK-ORLICZ SPACES AND PREDICTION PROBLEMS

K. URBANIK

Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, P.O. Box 21, 00-956 Warszawa 10, Poland E-mail: urbanik@math.uni.wroc.pl

Dedicated to the memory of Professor Władysław Orlicz

Abstract. By a harmonizable sequence of random variables we mean the sequence of Fourier coefficients of a random measure M:

$$X_n(M) = \int_0^1 e^{2\pi n i s} M(ds) \quad (n = 0, \pm 1, \ldots)$$

The paper deals with prediction problems for sequences $\{X_n(M)\}$ for isotropic and atomless random measures M. The crucial result asserts that the space of all complex-valued M-integrable functions on the unit interval is a Musielak-Orlicz space. Hence it follows that the problem for $\{X_n(M)\}$ $(n=0,\pm 1,\ldots)$ to be deterministic is in fact an extremal problem of Szegö's type for Musielak-Orlicz spaces in question. This leads to a characterization of deterministic sequences $\{X_n(M)\}$ $(n=0,\pm 1,\ldots)$ in terms of random measures M.

- 1. Random measures and harmonizable sequences. A function M defined on the σ -algebra of all Borel subsets of the unit interval I whose values are complex random variables is called a random measure if
 - (i) for every sequence E_1, E_2, \ldots of disjoint Borel sets

$$M\Big(\bigcup_{n=1}^{\infty} E_n\Big) = \sum_{n=1}^{\infty} M(E_n),$$

where the series converges with probability 1,

(ii) for every sequence E_1, E_2, \ldots of disjoint Borel sets the random variables $M(E_1)$, $M(E_2), \ldots$ are independent.

The theory of random measures was developed by A. Prékopa in [15, 16] and [17]. For further results see [8], [22], [3] and [4].

²⁰⁰⁰ Mathematics Subject Classification: 60G25, 60G57, 46E30.

The paper is in final form and no version of it will be published elsewhere.

A random measure M is said to be atomless if $M(\{a\}) = 0$ with probability 1 for every one-point set $\{a\}$. Moreover a random measure M is said to be isotropic if for every orthogonal transformation U of the complex plane and every Borel subset E of the unit interval I the random variables M(E) and UM(E) have the same probability distribution. In particular, isotropic random measures are symmetric, i.e. for every Borel set E the random variables M(E) and -M(E) are identically distributed. All random measures under consideration in the sequel will tacitly be assumed to be atomless and isotropic. In particular for every Borel set E the random variable M(E) has an infinitely divisible distribution and its characteristic function can be written in the form

(1.1)
$$\varphi_{M(E)}(t) = \exp\left(\int_0^\infty (J_0(x|t|) - 1) \frac{1 + x^2}{x^2} \mu_M(E, dx)\right),$$

where J_0 is the Bessel function

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin n) dn,$$

 $\mu_M(E,\cdot)$ is a finite non-negative Borel measure on the positive half line R_+ , $t\in R^2$ and $|t|^2=(t,t)$. Moreover, for every Borel subset A of R_+ the set-function $\mu_M(\cdot,A)$ is a non-negative atomless Borel measure on I.

In the sequel we shall identify random variables which are equal with probability 1. Given a random measure M, we say that a Borel set E is an M-null set if M(A) = 0 for all Borel subsets A of E. Relations valid except of an M-null set are said to be valid M-almost everywhere.

By a harmonizable sequence of random variables we mean the sequence of Fourier coefficients of a random measure M, i.e. the sequence

$$X_n(M) = \int_0^1 e^{2\pi i ns} M(ds) \quad (n = 0, \pm 1, \ldots).$$

It is clear that the Fourier coefficients $\{X_n(M)\}$ determine the random measure M uniquely.

A sequence $\{X_n(M)\}\ (n=0,\pm 1,\ldots)$ of random variables is called *strictly stationary*, or, briefly, *stationary*, if for every system m, n_1, n_2, \ldots, n_k of integers the multivariate distribution of the random variables

$$X_{n_1+m}, X_{n_2+m}, \dots, X_{n_k+m}$$

does not depend upon m. One can prove the following result ([20],Theorem 4.1): A sequence $\{X_n(M)\}$ of Fourier coefficients is stationary if and only if the random measure M is isotropic. In this case the probability distribution of $\{X_n(M)\}$ is completely determined by the set-function $\mu_M(\cdot,\cdot)$.

The concept of the integral with respect to a random measure was introduced in [16] (the unconditional integral) and in [22]. We shall quote the basic definition, which is an adaptation of Dunford's definition of the integral with respect to a measure whose values belong to a Banach space ([7], Chapter IV).

If f is a complex-valued Borel simple function on I, i.e.

$$f = \sum_{j=1}^{n} c_j 1_{E_j},$$

where c_j are complex numbers and 1_{E_j} denote the indicators of Borel sets E_j , then the integral on every Borel set E of f with respect to the random measure M is defined by the formula

$$\int_{E} f(s)M(ds) = \sum_{j=1}^{n} c_{j}M(E_{j} \cap E).$$

Further, a complex-valued Borel function g on I is said to be M-integrable if there exists a sequence $\{g_n\}$ of simple Borel functions such that

- (a) the sequence $\{g_n\}$ converges to g M-almost everywhere on I,
- (b) for every Borel set E the sequence $\{\int_E g_n(s)M(s)\}$ converges in probability.

Now, by definition, the integral $\int_E g(s)M(ds)$ is the limit in probability of the sequence $\{\int_E g_n(s)M(ds)\}$.

Let L(M) be the set of all complex-valued M-integrable functions on I. We indentify functions which are equal M-almost everywhere. The space L(M) is a complete linear metric space under usual addition and scalar multiplication with a non-homogeneous norm defined by the formula

$$||f||_M = \left| \left| \int_I f(s) M(ds) \right| \right|,$$

where ||X|| denotes the Fréchet norm of the random variable X i.e. the expectation E(|x|/(1+|x|)) (see [22] and [21]). It should be noted that the convergence of a sequence of functions in L(M) is equivalent to the convergence in probability of the sequence of their M-integrals. Moreover, the set of all Borel simple functions on I is dense in L(M).

2. Sequences admitting a prediction. Given a stationary sequence of random variables $\{X_n\}$, by $[X_n]$ and $[X_n:n\leq k]$ we shall denote the linear spaces closed with respect to the convergence in probability spanned by all random variables X_n and by random variables X_n with $n\leq k$ respectively. To each stationary sequence $\{X_n\}$ there corresponds a shift transformation $TX_n=X_{n+1},\ (n=0,\pm 1,\ldots)$ which can be extended to an invertible linear transformation T on $[X_n]$. Of course, the transformation T preserves the probability distribution.

A concept of prediction for stationary sequences which need not have a finite variance was introduced in [19]. In this paper we restrict ourselves to symmetric sequences. In this case 0 is the only constant belonging to $[X_n]$.

We say that a stationary symmetric sequence $\{X_n\}$ admits a prediction if there exists a continuous linear operator A_0 from $[X_n]$ onto $[X_n: n \leq 0]$ such that

- (i) $A_0X = X$ whenever $X \in [X_n : n \le 0]$,
- (ii) if for every $Y \in [X_n : n \le 0]$ the random variables $X \in [X_n]$ and Y are independent, then $A_0X = 0$,

(iii) for every $X \in [X_n]$ and $Y \in [X_n : n \le 0]$ the random variables $X - A_0X$ and Y are independent.

The random variable A_0X can be regarded as a linear prediction of X based on the full past of the sequence $\{X_n\}$ up to time 0. An optimality criterion is given by (iii). In what follows the operator A_0 will be called a *predictor* based on the past of the sequence $\{X_n\}$ up to time 0.

It should be noted that Gaussian stationary sequences with zero mean always admit a prediction. This follows from the fact that in this case the concepts of independence and orthogonality are equivalent and, moreover, the square-mean convergence and the convergence in probability are equivalent. Therefore the predictor A_0 is simply the best linear least squares predictor, i.e. the orthogonal projector from $[X_n]$ onto $[X_n : n \le 0]$.

The predictor A_0 and the shift T induced by $\{X_n\}$ determine the predictor A_k based on the full past of $\{X_n\}$ up to time k by means of the formula $A_k = T^k A_0 T^{-k}$.

A stationary sequence $\{X_n\}$ admitting a prediction is called *deterministic* if $A_0X = X$ for every $X \in [X_n]$. Further, a stationary sequence $\{X_n\}$ admitting a prediction is called *completely non-deterministic* if for every $X \in [X_n]$ we have

$$\lim_{k \to -\infty} A_k X = 0.$$

It is very easy to prove that every stationary sequence admitting a prediction can be decomposed into a deterministic and a completely non-deterministic components ([19], Theorem 1). Moreover, each stationary harmonizable sequence admitting a prediction is the sum of two independent stationary harmonizable sequences admitting a prediction, one completely non-deterministic and the other deterministic ([20], Theorem 4.2). Thus the study of stationary harmonizable sequences admitting a prediction is reduced to the study of deterministic and completely non-deterministic stationary harmonizable sequences.

We note that the condition $[X_n] = [X_n : n \le 0]$ characterizes deterministic sequences $\{X_n\}$. Therefore, the structure of the space $[X_n]$ plays a key role in our considerations. In the next section we shall quote some auxiliary concepts and a characterization of the space L(M). Hence a complete description of the space $[X_n]$ will follow.

- 3. Musielak-Orlicz spaces. Given a finite measure ν defined on Borel subsets of the unit interval I with $\nu(I) > 0$, we take a function Φ defined on $I \times R_+$ and satisfying the following conditions:
- (3.1) $\Phi(t,0) = 0$ and $\Phi(t,x) > 0$ for x > 0 and ν -almost all t,
- (3.2) $\Phi(t,x)$ is a continuous non-decreasing function of x for every $t \in I$,
- (3.3) $\Phi(t,x)$ is Borel measurable as a function of t for every $t \in I$,
- (3.4) $\int_{I} \Phi(t,1)\nu(dt) < \infty$,
- (3.5) (the Δ_2 -condition) there exists a positive constant c such that $\Phi(t, 2x) \leq c \Phi(t, x)$ for all x and ν -almost all t.

Throughout this paper we identify functions equal ν -almost everywhere. Let f be a complex-valued Borel function on I. It is easily seen that $\Phi(t, |f(t)|)$ is also a Borel

function on I. We define a modular ρ by means of the formula

$$\rho(f) = \int_{I} \Phi(t, |f(t)|) \, \nu(dt).$$

Let $L_{\Phi}(\nu)$ be the set of all complex-valued Borel functions f on I for which $\rho(f)$ is finite. The set $L_{\Phi}(\nu)$ is a linear space over the complex field under usual addition and scalar multiplication. Moreover, it becomes a complete linear metric space under the non-homogeneous norm

$$||f|| = \inf\{a : a > 0, \ \rho(a^{-1}f) \le a\}.$$

The space $L_{\Phi}(\nu)$ with this norm was introduced and investigated by J. Musielak and W. Orlicz in [14] and will be called a *Musielak-Orlicz space*. From (3.4) it follows that all bounded Borel functions on I belong to $L_{\Phi}(\nu)$. Moreover, the set of all Borel simple functions is dense in $L_{\Phi}(\nu)$.

In this paper two linear metric spaces $(Y, || ||_1)$ and $(Y, || ||_2)$ will be treated as identical if the convergences in both norms $|| ||_1$ and $|| ||_2$ are equivalent. In particular, if

$$a \Phi(t, x) \le \Psi(t, x) \le b \Psi(t, x)$$

for some positive numbers a and b, ν -almost all t and sufficiently large x, then $L_{\Phi}(\nu) = L_{\Psi}(\nu)$. Moreover, if $\beta(t) > 0$ for $t \in I$, $\int_{I} \beta(s)\nu(ds) < \infty$, $\Phi(t,x) = \Psi(t,x)/\beta(t)$ and $\lambda(E) = \int_{E} \beta(s)\nu(ds)$, then $L_{\Psi}(\nu) = L_{\Phi}(\nu)$. Therefore, without loss of generality, we may always assume that

$$\Phi(t,1) = 1 \quad \text{for } t \in I.$$

Let K be the class of all pairs (Φ, ν) satisfying conditions (3.1)–(3.5) such that the measure ν is atomless and for ν -almost all t the function $\Phi(t, \sqrt{x})$ is concave on R_+ .

Given a random measure M we denote by $\mu_M(\cdot,\cdot)$ the corresponding set-function appearing in formula (1.1). Put

$$\nu_M(E) = \mu_M(E, R_+)$$

for every Borel subset E of I. It is obvious that all measures $\mu_M(\cdot, A)$ are absolutely continuous with respect to the measure ν_M . Consequently, by the Radon–Nikodym Theorem,

$$\mu_M(E, [0, x)) = \int_E g_M(s, x) \, \nu_M(ds),$$

where $0 \leq g_M(s,x) \leq 1$ and the function $g_M(\cdot,x)$ is Borel measurable on I. Moreover, we may assume, without loss of generality, that the function $g_M(s,\cdot)$ is monotone non-decreasing and continuous to the left on R_+ . Put

$$\Phi_M(t,x) = \int_{1/x}^{\infty} \frac{g_M(t,u)}{u^3} du \quad (t \in I, x \in R_+).$$

By a simple calculation we have

$$\Phi_M(t, \sqrt{x}) = \frac{1}{2} \int_0^x g_M\left(t, \frac{1}{\sqrt{u}}\right) du$$

and, consequently, $(\Phi_M, \nu_M) \in K$.

We shall lean heavily on the following representation of the space L(M) of M-integrable functions, which provides a tool for investigating random harmonizable sequences ([20], Theorem 3.1).

Theorem 3.1. For every random measure M we have the relations $(\Phi_M, \nu_M) \in K$ and $L(M) = L_{\Phi_M(\nu_M)}$.

The converse implication is also true.

THEOREM 3.2. For every pair $(\Phi, \nu) \in K$ there exists a random measure M such that $L(M) = L_{\Phi}(\nu)$.

Proof. Let $(\Phi, \nu) \in K$. Without loss of generality we may assume that condition (3.6) holds. Put

$$\Phi(t, \sqrt{x}) = \int_0^x q(t, u) du \quad (t \in I),$$

where q(t, .) is a non-negative monotone non-increasing function. Setting r(t, u) = q(t, u) for u > 1 and r(t, u) = 1 for $0 \le u \le 1$ we get a non-negative monotone non-increasing function r(t, .). Moreover, the function

$$(3.7) \qquad \qquad \Psi(t,x) = \int_0^{x^2} r(t,u)du$$

fulfils the condition $\Phi(t,x) = \Psi(t,x)$ for $x \ge 1$ and $(\Psi,\nu) \in K$. Consequently,

$$(3.8) L_{\Psi}(\nu) = L_{\Phi}(\nu).$$

Now we shall prove that there exists a random measure M fulfilling the condition

(3.9)
$$\mu_M(E,[0,x)) = \int_E r(s,x^{-2})\nu(ds).$$

In fact, for the set-function (3.9) there exists a separable stochastic process with independent increments such that the characteristic function of the increment X(b) - X(a) is given by the expression

$$\exp\left(\int_0^\infty (J_0(x|t|-1)\frac{1+x^2}{x^2}\mu_M([a,b),dx)\right),$$

(see [6], p. 61 and 418). Setting $M(\bigcup_{j=1}^n [a_j,b_j)) = \sum_{j=1}^n (X(b_j)-X(a_j))$ for disjoint intervals $[a_j,b_j)$ $(j=1,2,\ldots,n)$ we get a random set function which, by Prékopa's Theorems ([15], p.227, 243) can be extended to a random measure M defined on Borel subset of I. Further, from (3.9) we get $\nu_M = \nu$ and $g_M(t,x) = r(t,x^{-2})$ which, by (3.7) yields the equality

$$\Phi_M(t,x) = \frac{1}{2}\Psi(t,x).$$

Consequently, $L_{\Phi_M}(\nu_M) = L_{\Psi}(\nu)$ and, by (3.8) and Theorem 3.1, $L(M) = L_{\Phi}(\nu)$. The theorem is thus proved. \blacksquare

In attempting to visualize these representation theorems we shall give some examples.

Example 3.1. We say that M is a random Poisson measure if there exists a finite Borel measure $\beta(\cdot, \cdot)$ on $I \times R_+$ such that

$$\mu_M(E, dx) = \frac{x^2}{1 + x^2} \beta(E, dx).$$

Integrating by parts it is easy to verify that

$$\int_{I} \Phi_{M}(t, x) \nu_{M}(dt) = \int_{1/2}^{\infty} \int_{I} g_{M}(t, u) \nu_{M}(dt) \frac{du}{u^{3}}$$
$$= \frac{1}{2} \int_{0}^{\infty} \frac{\min(x^{2}u^{2}, 1)}{1 + u^{2}} \beta(I, du) \leq \beta(I, R_{+})$$

for every $x \in R_+$. Consequently, $\Phi_M(t,\cdot)$ are bounded for ν -almost every $t \in I$.

Example 3.2. Given $p \geq 0$ and an atomless measure ν on I we put

$$\mu_M(E, dx) = 2\lambda(E)p^{-p}e^px(1 + e^px^{-2})^{-2}\log^{p-1}(e^p + x^{-2})\log(1 + e^px^{-2})dx.$$

Then $\nu_M = \lambda$ and

$$\Phi_M(t,x) = e^p p^{-p} 2^{-1} (1+p)^{-1} (\log^{1+p} (e^p + x^2) - p^{1+p}).$$

Example 3.3. Let λ be an atomles measure on I and

$$\mu_M(E, dx) = 2\lambda(E)x(1 + ex^2)^{-2}(\log\log(e + x^{-2}) + 1 - \log^{-1}(e + x^{-2})).$$

Then

$$\Phi_M(r, x) = \frac{e}{2} \log(e + x^2) \log \log(e + x^2).$$

Example 3.4. Given $0 and an atomless measure <math>\nu$ we put

$$\mu_M(E, dx) = \beta \nu(E) \frac{x^{1-p}}{1+x^2} dx,$$

where $\beta = \frac{2}{\pi} \sin \frac{p\pi}{2}$. Here we have $\nu_M = \nu$ and the measure μ_M corresponds to a p-stable random measure M with the characteristic function $\varphi_{M(E)}(t) = \exp(-\nu(E)|t|^p)$. It is easy to check that

$$a x^p \le \Phi_M(t, x) \le b x^p \quad (t \in I, x \in R_+)$$

for some positive constants a and b. Thus $L(M) = L^p(\nu)$.

Consider a stationary harmonizable sequence $\{X_n(M)\}\ (n=0,\pm 1,\ldots)$ corresponding to a random measure M. It is easy to verify that the mapping

(3.10)
$$X_n(M) \to e^{2\pi nis} \quad (n = 0, \pm 1, \dots, s \in I)$$

can be extended in a natural way to an isomorphism between $[X_n(M)]$ and L(M). Moreover,

$$[X_n(M)] = \left\{ \int_I f(s)M(ds) : f \in L(M) \right\}$$

and by Theorem 3.1, formula (3.10) defines a natural isomorphism from $[X_n(M)]$ onto the Musielak-Orlicz space $L_{\Phi_M}(\nu_M)$. It is evident that the sequence $\{X_n(M)\}$ is deterministic if and only if

$$X_0(M) \in [X_n(M) : n \le -1].$$

Denoting by $\| \|$ the norm in $L_{\Phi_M}(\nu_M)$, we infer that $\{X_n(M)\}$ is deterministic if and only if

(3.11)
$$\inf \left\| 1 + \sum_{k=1}^{n} a_k e^{-2\pi k i s} \right\| = 0,$$

where the infimum is taken over all complex numbers a_1, a_2, \ldots, a_n and $n = 1, 2, \ldots$ Since $||f|| = ||\overline{f}||$, we observe that (3.11) is equivalent to the relation

$$\inf \left\| 1 + \sum_{k=1}^{n} a_k e^{2\pi k i s} \right\| = 0.$$

A solution of this extremal problem of Szegö's type can be regarded as a generalisation of the famous Kolmogorov-Krein criterion for L^p -spaces ([9, 10]). This question will be discussed in the next section.

4. An extremal problem for Musielak-Orlicz spaces. Given a Borel measure ν on I by ν_c we shall denote the absolutely continuous component of ν with respect to the Lebesgue measure and by $d\nu_c/dt$ a Borel measurable version of its Radon-Nikodym density function. For any pair (Φ, ν) satisfying conditions (3.1)–(3.6) we introduce auxiliary functions $\lambda_{\Phi,\nu}$ and $\Omega_{\Phi,\nu,n}$ $(n=1,2,\ldots)$ by means of the formulas

$$\Lambda_{\Phi,\nu}(t,x) = \sup \left\{ \frac{\log y}{\Phi(t,y)} \left(\frac{d\nu_c}{dt} \right)^{-1} : y \ge x \right\},$$

$$\Omega_{\Phi,\nu,n}(t) = \inf \left\{ x : \Lambda_{\Phi,\nu}(t,x) \le n, x \ge 1 \right\},$$

where the infimum of an empty set is defined as ∞ . It is clear that all these functions are Borel measurable and $1 \leq Q_{\Phi,\nu,n}(t) \leq \infty$ $(n=1,2,\ldots)$.

The following generalization of the Kolmogorov-Krein criterion was proved in [20] (Theorem 1.1).

Theorem 4.1. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space with the norm $\| \cdot \|$. The equation

(4.1)
$$\inf \left\| 1 + \sum_{k=1}^{n} a_k e^{2\pi kit} \right\| = 0,$$

where the infimum is taken over all complex numbers a_1, a_2, \ldots, a_n and $n = 1, 2, \ldots$, holds if and only if no function

$$\log \Omega_{\Phi,\nu,n} \quad (n=1,2,\ldots)$$

 $is\ Lebesgue\ integrable\ over\ I.$

Now we shall quote some particular cases of this theorem. Given a number b > 1, we say that a function Φ satisfies the Λ_b -condition if there exists a constant $e_b > 1$ and a positive number x_0 such that

$$\Phi(t,x)e_b \le \Phi(t,bx)$$

for all $t \in I$ and $x \ge x_0$ (see [13]).

THEOREM 4.2. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space satisfying the Λ_b -condition for some constant b>1. Then equation (4.1) holds if and only if $\log \frac{d\nu_c}{dt}$ is not Lebesgue integrable over I.

Proof. From the Λ_b -condition it follows that there are positive constants c_1 and p such that

$$c_1 x^p \leq \Phi(t, x)$$

for sufficiently large x and all $t \in I$ (see [13], 124). Further, from the Δ_2 -condition (3.5) it follows that there are positive constants c_2 and q such that

$$\Phi(t,x) < c_2 x^q$$

for sufficiently large x and ν -almost all t. Consequently, we can find a positive number $x_0 > 1$ such that

$$(4.2) c_1 x^p \le \frac{\Phi(t, x)}{\log x} \le c_2 x^q$$

for all $x \geq x_0$ and ν -almost all t. Hence in particular it follows that

$$\lim_{x \to \infty} \Lambda_{\Phi,\nu}(t,x) = 0$$

 ν -almost everywhere. Consequently, the functions $\Omega_{\Phi,\nu,n}$ $(n=1,2,\ldots)$ are finite ν -almost everywhere.

Suppose first that the Lebesgue measure is not absolutely continuous with respect to the measure ν . Then $\frac{d\nu_c}{dt}$ vanishes on a set of positive Lebesgue measure. Consequently, all functions $\Omega_{\Phi,\nu,n}$ $(n=1,2,\ldots)$ and the function $\log\frac{d\nu_c}{dt}$ are infinite on a set of positive Lebesgue measure, which, by Theorem 4.1, implies our assertion.

Now suppose that the Lebesgue measure is absolutely continuous with respect to the measure ν . Then the functions $\Omega_{\Phi,\nu,n}$ $(n=1,2,\ldots)$ are finite almost everywhere in the sense of the Lebesgue measure. Moreover, inequality (4.2) holds also for all $x \geq x_0$ and for almost all t in the sense of Lebesgue measure. Put

$$F_n = \{t : x_0 < \Omega_{\Phi,\nu,n}(t) < \infty\} \quad (n = 1, 2, \ldots).$$

It is very easy to verify that both functions $\log \frac{d\nu_c}{dt}$ and $\log \Omega_{\Phi,\nu,n}(t)$ are Lebesgue integrable over $I \subset F_n$. Moreover, for all $t \in F_n$ we have the formula

$$\log \Omega_{\Phi,\nu,n}(t) \, \left(\frac{d\nu_c}{dt}\right)^{-1} = n \, \Phi(t,\Omega_{\Phi,\nu,n}(t)).$$

Hence and from (4.2) we get the inequality

$$nc_1\Omega_{\Phi,\nu,n}^p(t) \leq \left(\frac{d\nu_c}{dt}\right)^{-1} \leq nc_2\Omega_{\Phi,\nu,n}^q(t)$$

for almost all t from F_n in the sense of the Lebesgue measure. Consequently, the function $\log \frac{d\nu_c}{dt}$ and all the functions $\log \Omega_{\Phi,\nu,n}$ simultaneously are not Lebesgue integrable over I which, by Theorem 4.1, completes the proof.

THEOREM 4.3. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space satisfying the condition

$$\lim_{x \to \infty} \frac{\Phi(t, x)}{\log x} = 0$$

on a set of positive Lebesgue measure. Then equation (4.1) is fulfilled.

Proof. It is very easy to verify that $\Omega_{\Phi,\nu,n}(t) = \infty$ for all t from I satisfying (4.3) and the inequality $\frac{d\nu_c}{dt} < \infty$. Since the density function $\frac{d\nu_c}{dt}$ is finite almost everywhere with respect to the Lebesgue measure, we conclude that no function $\log \Omega_{\Phi,\nu,n}$ is Lebesgue integrable over I which, by Theorem 4.1, gives formula (4.1).

In the same way one can prove the following theorems.

THEOREM 4.4. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space satisfying for some positive numbers a and b the condition

$$a \le \frac{\Phi(t, x)}{\log x} \le b$$

for $x \ge x_0$ and almost all t in the sense of the Lebesgue measure. Then equation (4.1) holds if and only if $ess \inf \frac{d\nu_c}{dt} = 0$.

THEOREM 4.5. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space. If there are positive numbers a, b, p and x_0 such that

$$a \le \frac{\Phi(t, x)}{\log^{1+p} x} \le b$$

for $x \ge x_0$ and almost all t in the sense of the Lebesgue measure, then equation (4.1) holds if and only if

$$\int_{I} \left(\frac{d\nu_c}{dt}\right)^{-1/p} dt = \infty.$$

THEOREM 4.6. Let $L_{\Phi}(\nu)$ be a Musielak-Orlicz space. If there are positive numbers a,b and x_0 such that

$$a \le \frac{\Phi(t, x)}{\log x \log \log x} \le b,$$

for $x \ge x_0$ and almost all t in the sense of the Lebesgue measure, then equation (4.1) holds if and only if

$$\int_{I} \exp\left\{n^{-1} \left(\frac{d\nu_c}{dt}\right)^{-1}\right\} dt = \infty$$

for all positive integers n.

5. Deterministic harmonizable sequences. We proceed now to a description of stationary harmonizable sequences $\{X_n(M)\}$ in terms of probabilistic characteristics of the random measure M. We recall that to every random measure M there corresponds a Borel measure ν_M on I and a function Φ_M on $I \times R_+$ and the pair (Φ_M, ν_M) determines the sequence of functions $\Omega_{\Phi,\nu,n}$ $(n=1,2,\ldots)$ on I. We already know that the sequence $\{X_n(M)\}$ is deterministic if and only if equation (4.1) holds in $L_{\Phi_M}(\nu_M)$. Consequently, Theorem 4.1 yields the following characterization of deterministic sequences.

THEOREM 5.1. A stationary harmonizable sequence $\{X_n(M)\}$ is deterministic if and only if no function $\log \Omega_{\Phi_M,\nu_M,n}$ $(n=1,2,\ldots)$ is Lebesgue integrable over I.

We illustrate this theorem by some examples.

Example 5.1. Comparing Example 3.1 and Theorem 4.3 we conclude that stationary harmonizable sequences $\{X_n(M)\}$ induced by random Poisson measures M are always deterministic.

Example 5.2. Taking into account Example 3.4 and Theorem 4.2 we infer that a stationary harmonizable sequence $\{X_n(M)\}$ corresponding to a p-stable random measure M with $0 and <math>\nu_M = \nu$ is deterministic if and only if $\log \frac{d\nu_c}{dt}$ is not Lebesgue integrable over I.

Example 5.3. Consider a stationary harmonizable sequence $\{X_n(M)\}$ corresponding to the measure M appearing in Example 3.2 with p=0 and $\nu_M=\nu$. By Theorem 4.4 this sequence is deterministic if and only if $\operatorname{ess inf} \frac{d\nu_c}{dt}=0$.

EXAMPLE 5.4. Taking a stationary harmonizable sequence $\{X_n(M)\}$ corresponding to the measure M appearing in Example 3.2 with p > 0 and $\nu_M = \nu$ we infer, by Theorem 4.5, that $\{X_n(M)\}$ is deterministic if and only if

$$\int_{I} \left(\frac{d\nu_c}{dt} \right)^{-1/p} dt = \infty.$$

Example 5.5. Let M be the random measure described by Example 3.3 with $\nu_M = \nu$. Applying Theorem 4.6 we conclude that the sequence $\{X_n(M)\}$ is deterministic if and only if

$$\int_{I} \exp\left\{n^{-1} \left(\frac{d\nu_c}{dt}\right)^{-1}\right\} dt = \infty$$

for all positive integers n.

6. Completely non-deterministic harmonizable sequences. First we shall quote a continuous analogue of the Bernstein-Darmois Theorem ([1], [5]), which is a main tool in the study of completely non-deterministic sequences. For homogeneous random measures this problem was discussed in [11], [18] and [21]. The following theorem was proved in [20] (Theorem 2.1).

Theorem 6.1. Let f and g be M-integrable functions with respect to a random measure. If the random variables $\int_I f(s)M(ds)$ and $\int_I g(s)M(ds)$ are independent, then for every Borel subset E of the set $\{s: f(s)g(s) \neq 0\}$ the random variable M(E) is Gaussian.

Here the degenerate case M(E)=0 is also treated as the Gaussian one. Further, a random measure M is said to be Gaussian if for every Borel subset E of I the random variable M(E) is Gaussian. If in addition M(I) does not vanish with probability 1 we have $L(M)=L^2(\nu_M)$. The classical characterization of completely non-deterministic wide sense stationary sequences ([6], Chapter XII, 4) implies the following statement.

Theorem 6.2. Let M be a Gaussian random measure. The sequence $\{X_n(M)\}$ is completely non-deterministic if and only if either $M\equiv 0$ with probability 1 or the measure ν_M is absolutely continuous with respect to the Lebesgue measure and $\log\frac{d\nu_M}{dt}$ is Lebesgue integrable over I.

A complete description of stationary harmonizable completely non-deterministic sequences is given by the following theorem.

Theorem 6.3. A stationary harmonizable sequence $\{X_n(M)\}$ is completely non-deterministic if and only if either $M\equiv 0$ with probability 1 or the measure M is Gaussian, ν_M is absolutely continuous with respect to the Lebesgue measure and $\log\frac{d\nu_M}{dt}$ is Lebesgue integrable over I.

Proof. By Theorem 6.2 it suffices to prove that the measure M is Gaussian provided $\{X_n(M)\}$ is completely non-deterministic.

Let A_k be the predictor based on the full past of $X_n(M)$ up to time k. Since

$$[X_n(M)] = \left\{ \int_I f(s)M(ds) : f \in L(M) \right\},\,$$

we have the formula

$$A_k X_0(M) = \int_I f_k(s) M(ds)$$

where $f_k \in L(M)$. Setting

$$E_k = \{s : f_k(s) \neq 1\},\$$

we get the formula

$$A_k X_0(M) = \int_{E_k} f_k(s) M(ds) + M(I \setminus E_k).$$

Of course, the random variables $M(I \setminus E_k)$ and $\int_{E_k} f_k(s) M(ds)$ are independent and symmetrically distributed. Consequently, the relation

$$\lim_{k \to -\infty} A_k X_0(M) = 0$$

implies the relation

$$\lim_{k \to -\infty} M(I \setminus E_k) = 0.$$

By the definition of predictors the random variables $X_0(M) - A_k X_0(M)$ and $X_k(M)$ are independent. In other words, the integrals

$$\int_{I} (1 - f_k(s)) M(ds)$$
 and $\int_{I} e^{2\pi k i s} M(ds)$

are independent. Since both integrands are different from 0 on E_k , we infer, by Theorem 6.1, that the random $M(E_k)$ is Gaussian. Hence and from (6.1) it follows that M(I), being the limit in probability of Gaussian random variables $M(E_k)$, is Gaussian too. By Cramér's Theorem ([12], p. 271), M is a Gaussian random measure, which completes the proof. \blacksquare

References

- [1] S. Bernstein, Sur la propriété caractéristique de la loi de Gauss, Trans. Leningrad Polytech. Inst. 3 (1941), 21–22.
- J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine, Lois stables et espaces L^p, Annales de l'Institut Henri Poincaré 2 (1966), 231–259.
- [3] J. Bretagnolle and D. Dacunha-Castelle, Mesures aléatoires et espaces d'Orlicz, Comptes Rendus 264 (1967), 877–880.

- [4] J. Bretagnolle and D. Dacunha-Castelle, Formes linéaires aléatoires et plongements d'espaces de Banach dans des espaces L¹, Comptes Rendus 265 (1967), 474-477.
- [5] G. Darmois, Sur une propriété caractéristique de la loi de probabilité de Laplace, Comptes Rendus 232 (1951), 1999-2000.
- [6] J. L. Doob, Stochastic Processes, New York, 1953.
- [7] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, 1958.
- [8] J. F. C. Kingman, Completely random measures, Pacific Journal of Math. 21 (1967), 59-78.
- [9] A. N. Kolmogorov, Stationary sequences in Hilbert spaces, Bull. MGU 6 (1941), 1-40.
- [10] M. G. Krein, On a generalization of some investigations of G.Szegö, V. I. Smirnov and A. N. Kolmogorov, Doklady Acad. Sci. U.R.S.S. 46 (1945), 91-94.
- [11] R. G. Laha and E. Lukacs, On characterization of the Wiener process, in: Transactions of the Second Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, 1960, 307–312.
- [12] M. Loeve, Probability Theory, New York, 1950.
- [13] W. Matuszewska, Przestrzenie funkcji φ-całkowalnych I, własności ogólne φ-funkcji i klas funkcji φ-całkowalnych, Prace Matematyczne 6 (1961), 121–139.
- [14] J. Musielak and W. Orlicz, On modular spaces, Studia Mathematica 18 (1959), 49-65.
- [15] A. Prekopa, On stochastic set functions I, Acta Math. Acad. Scient. Hung. 7 (1956), 215–263.
- [16] A. Prekopa, On stochastic set functions II, Acta Math. Acad. Scient. Hung. 8 (1957), 337-374.
- [17] A. Prekopa, On stochastic set functions III, Acta Math. Acad. Scient. Hung. 8 (1957), 375-400.
- [18] V. P. Skitovich, On characterising Brownian motion, Teor. Verojatnost. i Primenen. 1 (1956), 361–364.
- [19] K. Urbanik, Prediction of strictly stationary sequences, Coll. Math. 12 (1964), 115-129.
- [20] K. Urbanik, Random measures and harmonizable sequences, Studia Mathematica 31 (1968), 61-88.
- [21] K. Urbanik, Some prediction problems for strictly stationary processes, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, Vol. II, Part I, 235-258.
- [22] K. Urbanik and W. A. Woyczyński, A random integral and Orlicz spaces, Bull. Acad. Pol. Sci. Série Sci. Math. Astr. Phys. 15 (1967), 161–169.