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Abstract. We consider the compactness of derivations from commutative Banach algebras
into their dual modules. We show that if there are no compact derivations from a commutative
Banach algebra, A, into its dual module, then there are no compact derivations from A into
any symmetric A-bimodule; we also prove analogous results for weakly compact derivations and
for bounded derivations of finite rank. We then characterise the compact derivations from the
convolution algebra `1(Z+) to its dual. Finally, we give an example (due to J. F. Feinstein) of a
non-compact, bounded derivation from a uniform algebra A into a symmetric A-bimodule.

1. Introduction. The question of the compactness of endomorphisms of Banach al-
gebras has been studied in, for example [10], [7], and [8]. In this paper we consider
compactness for another class of maps of interest in Banach algebra theory, derivations
from a Banach algebra to its dual. In [3] Yemon Choi and the present author showed that
all derivations from the disc algebra to its dual are compact. In [4] the same two authors
characterised when derivations from `1(Z+) to its dual are weakly compact.

1.1. Definitions and notation. Throughout we shall take all Banach spaces to be over
the field of complex numbers.

Let A be a Banach algebra. Recall that a Banach A-bimodule is a Banach space
together with two bilinear maps A × E → E denoted (a, x) 7→ a · x and (a, x) 7→ x · a
such that:

a · (b · x) = (ab) · x, (x · a) · b = x · (ab), a · (x · b) = (a · x) · b (a, b ∈ A, x ∈ E).

Clearly, if we define both actions to be the product, A becomes an A-bimodule. If E and F
are Banach A-bimodules we call a linear map R : E → F an A-bimodule homomorphism
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if
R(a · e) = a ·R(e), R(e · a) = R(e) · a (a ∈ A, e ∈ E).

We say E is a symmetric A-bimodule if, for all a ∈ A and all x ∈ E, we have a·x = x·a.
Let A be an algebra and E an A-bimodule. We call a linear map D : A → E a

derivation if the following identity holds for all a, b ∈ A:

D(ab) = a ·D(b) +D(a) · b.

The derivation D is called inner if there is e ∈ E such that D(a) = a · e − e · a for all
a ∈ A. We call this inner derivation δe. If E is symmetric, it is clear that the only inner
derivation from A into E is the zero derivation.

For a Banach space E we denote the topological dual of E by E∗. If A is a Banach
algebra and E a Banach A-bimodule we make E∗ into a Banach A-bimodule by defining
the actions

(a · ψ)(x) = ψ(x · a), (ψ · a)(x) = ψ(a · x), (a ∈ A,ψ ∈ E∗, x ∈ E).

We denote the open unit ball of a Banach space E by B(E).

2. Results

2.1. General results. Recall the well-known result, due to Bade et al. ([1], also found
as [5, 2.8.63(iii)]), that, if a commutative Banach algebra A has no non-zero, bounded
derivations into A∗ (i.e. if A is weakly amenable), then it has no non-zero, bounded
derivations into any symmetric A-bimodule. In this subsection we prove analogues of this
result with “bounded” replaced by “compact”, by “weakly compact” and by “bounded and
of rank less than n” for some n ∈ N.

We shall need the following lemma, which is a stronger version of [5, 2.8.63(i)].

Lemma 2.1. Let A be a Banach algebra with no non-zero, non-inner, bounded derivations
of rank 1, into A∗. Then A2 = A.

Proof. We prove this result in the contrapositive. Let A be a Banach algebra such that
A2 6= A; we shall construct the required derivation. Take a0 ∈ A\A2. By the Hahn-Banach
theorem we may choose λ0 ∈ A∗ with λ0|A2 = 0 and λ0(a0) = 1. We define a function as
follows:

D : A→ A∗, a 7→ λ0(a)λ0.

It is clear that D is a bounded linear map. Also, D(A) = λ0C and so D is of rank 1.
Since λ0(A2) = 0, we have, for a, b, c ∈ A,

D(ab)(c) = λ0(ab)λ0(c) = 0

and

(a ·D(b) +D(a) · b)(c) = D(b)(ca) +D(a)(bc) = λ0(b)λ0(ca) + λ0(a)λ0(bc) = 0.

Hence, D(ab) = a ·D(b) +D(a) · b = 0 and so D is a derivation. Furthermore,

‖D(a0)(a0)‖ = |λ0(a0)||λ0(a0)| = 1
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while, for each λ ∈ A∗,

δλ(a0)(a0) = (a0 · λ)(a0)− (λ · a0)(a0) = λ(a2
0)− λ(a2

0) = 0.

Thus D is not inner, and so the result follows.

We shall also need the following elementary lemma (see [5, 2.6.6(i)]).

Lemma 2.2. Let A be a commutative Banach algebra, let E be a symmetric A-bimodule
and let λ ∈ E∗. Then there is a bounded A-bimodule homomorphism Rλ : E → A∗ such
that

Rλ(x)(a) = λ(a · x) (a ∈ A, x ∈ E).

We can now prove the main result of this subsection. Each part of the proof follows
the pattern of [5, 2.8.63(iii)].

Theorem 2.3. Let A be a commutative Banach algebra. Then the following are true:

1. if A has no non-zero, bounded, derivations of rank less than n ∈ N into A∗ then
it has no non-zero derivations of rank less than n into any symmetric Banach
A-bimodule E;

2. if A has no non-zero, compact derivations into A∗ then it has no non-zero compact
derivations into any symmetric Banach A-bimodule E;

3. if A has no non-zero, weakly compact derivations into A∗ then it has no non-zero
weakly compact derivations into any symmetric Banach A-bimodule E.

Proof. In each case we shall assume, towards a contradiction, that such a derivation
exists. First, let E be a symmetric A-bimodule and let D : A → E be any non-zero,
bounded derivation. By Lemma 2.1, A2 = A, and so there is a0 ∈ A with D

(
a2
0

)
6= 0.

Thus, a0 · D(a0) = 1/2D
(
a2
0

)
6= 0, and so, by the Hahn-Banach theorem, there exists

λD ∈ E∗ such that λD(a0 ·D(a0)) = 1. By Lemma 2.2 there is a continuous A-bimodule
homomorphism RλD

: E → A∗ such that RλD
(x)(a) = λD(a · x) for each x ∈ E. Now

let D′ = RλD
◦ D : A → A∗. Clearly D is a bounded linear map, and since RλD

is an
A-bimodule homomorphism we have, for a, b ∈ A,

D′(ab) = RλD
(D(ab)) = RλD

(a ·D(b) + b ·D(a))

= a ·RλD
(D(b)) + b ·RλD

(D(a)) = a ·D′(b) + b ·D′(a).

Thus, D′ is a derivation. Also, D′(a0)(a0) = λD(a0 ·D(a0)) = 1 and so D′ 6= 0.
To show part (1) we now let n ∈ N and D be a bounded derivation of rank less than n.

Then D′(A) = RλD
(D(A)) is a linear image of a space of dimension less than n. Hence,

D′(A) has dimension less than n and so D′ has rank less than n.
To show part (2) we let D be a compact derivation. Then

RλD

(
D(B(A))

)
⊇ D′(B(A)) = RλD

(D(B(A))) ⊇ RλD

(
D(B(A))

)
. (1)

Now, since D is compact, D(B(A)) is compact and so RλD

(
D(B(A))

)
is compact. In

particular, RλD

(
D(B(A))

)
is closed. Thus, (1) gives

RλD

(
D(B(A))

)
= D′(B(A)) = RλD

(
D(B(A))

)
, (2)

and so D′(B(A)) is compact. Hence, D′ is a compact linear map.
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To show part (3) let D be a weakly compact derivation. Since D is weakly compact,
D(B(A)) is weakly compact and so RλD

(
D(B(A))

)
is weakly compact since bounded

linear maps are weak-weak continuous. Thus equation (1) holds with the closures taken
in the weak topology, and so the weak closure of D′(B(A)) is weakly compact. Hence, D′

is a weakly compact linear map.
In each case we have a contradiction and so the result follows.

2.2. Compact derivations from `1(Z+). In this section we look at compactness of
derivations from the semigroup algebra `1(Z+)—that is, the Banach space `1(Z+) to-
gether with the product

ab :=
( n∑
r=0

arbn−r : n ∈ Z+
)
n∈Z+

, (a = (an)n∈Z+ , b = (bn)n∈Z+ ∈ `1)

—into its dual. It is standard (see for example [5, 2.1.13(v)]) that this is a Banach algebra,
which we shall call A, and that c00 is dense in A. We identify c00 with the algebra C[t] of
complex valued polynomials in one variable, so that the sequence (0, 1, 0, . . . ) = t. It is
standard that φ 7→ (φ(tk))k∈Z+ is an isometric linear isomorphism from A∗ to `∞. The
following proposition follows trivially from [2, Lemma 3.3.1]. We provide a direct proof
for the convenience of the reader.

Proposition 2.4. Let φ ∈ A∗. The following are equivalent:

1. (nφ(tn−1))n∈N ∈ `∞,
2. φ = D(t) for some continuous derivation D : A→ A∗.

Furthermore ‖(nφ(tn−1))n∈Z+‖∞ = ‖D‖.

Proof. We first show that (1) implies (2) and that ‖(nφ(tn−1))n∈Z+‖∞ ≥ ‖D‖. Simple
algebra yields that, for every φ ∈ A∗, there is a unique derivation, D, from C[t] into
A∗ with φ = D(t). By the derivation identity we have D(tk)(tn) = k(tk−1) · φ(tn) =
kφ(tk+n−1) and so, if we let f be the polynomial f =

∑N
k=0 akt

k, we have, by linearity,

D(f)(tn) =
N∑
k=1

kakφ(tk+n−1).

Hence, since ψ 7→ (ψ(tk))n∈N is an isometric isomorphism,

‖D(f)‖ = sup
n∈N

∣∣∣ N∑
k=1

kakφ(tk+n−1)
∣∣∣.

For each n ≥ 0,

|kφ(tk+n−1)| ≤ |(k + n)φ(tk+n−1)| ≤ ‖(nφ(tn−1))n∈Z+‖∞,

and so

‖D(f)‖ ≤ sup
k,n∈N

|kφ(tk+n−1)|
N∑
k=0

|ak| ≤ ‖(nφ(tn−1))n∈Z+‖∞‖f‖1.

Hence D is bounded with norm at most ‖(nφ(tn−1))‖∞ and so extends continuously to
a derivation D : A→ A∗ with ‖D‖ ≤ ‖(nφ(tn−1))‖∞.
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To prove that (2) implies (1) and that ‖D‖ ≥ ‖(nφ(tn−1))‖∞, note that

D(tk)(1) = ktk−1 · φ(1) = kφ(tk−1),

and so
|kφ(tk−1)| = |D(tk)(1)| ≤ ‖D‖.

Hence ‖D‖ ≥ ‖(nφ(tn−1)‖∞. The result follows.

We denote the space of bounded derivations from A to A∗, given the operator norm,
by D(A).

Corollary 2.5. The map

T : D(A)→ A∗, D 7→ D(·)(1)

is an isometric isomorphism.

Proof. By the derivation identity, D(tk)(1) = kD(t)(tk−1), and so

‖D(·)(1)‖ = ‖(D(tk)(1))k∈Z+‖∞ = ‖(kD(t)(tk−1))k∈Z+‖∞,

which is equal to ‖D‖ by Proposition 2.4.

Theorem 2.6. A bounded derivation D : A → A∗ is compact if and only if it has
(D(tn)(1))n∈N ∈ c0.

Proof. If (D(tn)(1))n∈N ∈ c0, then, by Corollary 2.5, we have that it is in the closure
of the set {D : (D(tn)(1))n∈N ∈ c00}, which consists of finite rank derivations. Hence D
is compact. Now let D : A → A∗ be a derivation such that (D(tn)(1))n∈N ∈ `∞ \ c0.
We shall show that the sequence (D(tk))k∈N has a subsequence with no convergent sub-
subsequence. Without any loss of generality, we assume that D has ‖D‖ = 1. There
exists ε > 0 and a sequence, (nk)k∈N ⊆ N, such that, for all k ∈ N, nk > nk−1 and
|D(tnk)(1)| > ε. Let k, l ∈ N. Then

|D(tk)(tl)| = |ktk+l−1 ·D(t)(1)| = k

k + l
|D(tk+l)(1)| ≤ k

k + l
. (3)

Now suppose that k + l ∈ {nk : k ∈ N}. Then

|D(tk)(tl)| = |ktk+l−1 ·D(t)(1))| = k

k + l
|D(tk+l)(1)| ≥ εk

k + l
. (4)

Suppose that we have already chosen j1, . . . , jk−1 ∈ N such that for all i, i′ ∈ N with
i < i′ < k, we have ji < ji′ and ‖D(tji) −D(tji′ )‖ > ε

4 . Choose N ∈ {nk : k ∈ N} with
N > 1000ε−1jk−1, and let lk = bN/2c and jk = N − lk. Then, by (4),

|D(tjk)(tlk)| ≥ εjk
N

>
ε

3
.

Also, if m ≤ jk−1, then, by (3),

|D(tm)(tlk)| ≤ m

m+ lk
≤ jk−1

250ε−1jk−1
=

ε

250
.

Thus
|D(tm)(tlk)−D(tjk)(tlk)| > ε

4
.
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In particular, if i < k, then ‖D(tji) − D(tjk)‖ > ε
4 . Hence, by induction, we obtain a

sequence, (ji)i∈N, such that, if i, k ∈ N and i 6= k then ‖D(tji) − D(tjk)‖ > ε
4 . Thus

(D(tji))i∈N has no convergent subsequence, and so, D is not compact.

We conclude that the space of compact derivations on A is linearly isomorphic to c0.
We finish with a relevant example due to J. F. Feinstein that appears in the present

author’s PhD thesis [9].

2.3. A non-compact, bounded derivation from a uniform algebra. For a com-
pact Hausdorff space X let C(X) be the algebra of continuous functions from X to C
equipped with the uniform norm, which we denote by | · |X . For a compact subset, X, of
the complex plane we let R0(X) be the algebra of rational functions with no poles con-
tained in X. We let R(X) be the closure of R0(X) in C(X). Let ∆ be the closed unit disc.
We shall construct a plane set X by removing a sequence, (Dn)n∈N, of open discs from
∆ such that there is a non-compact, bounded derivation from R(X) into a symmetric
Banach R(X)-bimodule. We shall need the following result, which is [6, Lemma 3].

Proposition 2.7. Let ∆ be the closed unit disc and (Dn)n∈N a sequence of open discs
each contained in ∆. Set

X := ∆ \
∞⋃
i=1

Dn.

We set rn = r(Dn) and for each z ∈ X we set sn(z) = dist(z,Dn). We also set r0 = 1
and s0(z) = 1− |z|. If sn(z) > 0 for all n ∈ N then for f ∈ R0(X) we have

|f ′(z)| ≤
∞∑
j=0

rj
sj(z)2

|f |X .

Example 2.8. Let I =
[
0, 1

2

]
. For any compact plane set X with I ⊆ X, we make C(I)

a symmetric Banach R(X)-bimodule by defining the action

(f · g)(x) = (g · f)(x) = f(x)g(x), f ∈ R(X), g ∈ C(I).

It is clear that the map D : R0(X) → C(I) given by D(f) = f ′|I is a derivation. We
shall construct a collection {Dn : n ∈ N} of disjoint open discs contained in ∆ such that,
setting X = ∆\

⋃∞
n=1Dn, we have I ⊆ X and such that the derivation D is bounded and

so extends by continuity to a bounded derivation R(X) → C(I) which is not compact.
For n ∈ N, let In =

[
1
2 − 2−n, 1

2 − 2−(n+2)
[
and xn = 1

2 − 3 · 2−(n+1); that is, xn is the
midpoint of In. Choose yn ∈ ]0, 1[ small enough that

xn + iyn ∈ ∆, (5)
1

(1− yn)2
< 2, (6)

y2
n(

((2−2(n+2))− y2
n)

1
2 + y2

n

)2 < 2−(n+1). (7)

Set an = xn + iyn, rn = y2
n, Dn = B(an, rn) and X = ∆ \

⋃∞
n=1Dn. We also set r0 = 1.

Let z ∈ X. We let s0(z) = 1− |z| and for n ∈ N, let sn(z) = dist(z,Dn). Now let x ∈ I.
Then s0(x) ≥ 1

2 so r0
s0(x)2

= s0(x)−2 ≤ 4. Also, either x = 1
2 , in which case, for each
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j ∈ N, sj(x) ≥ dist(Dj ,R \ Ij) =
(
2−2(j+2) + y2

j

) 1
2 − y2

j ; or there exists a unique n ∈ N
such that x ∈ In. In this second case, for j ∈ N,

sj(x) ≥
{

dist(Dn,R) = yn − rn = yn − y2
n if j = n,

dist(Dj ,R \ Ij) ≥ (2−2(n+1) + y2
j )

1
2 − y2

j if j 6= n.
(8)

Thus, by (6), (7) and (8),
∞∑
j=0

rj
sj(x)2

≤ 4 +
y2
n

(yn − y2
n)2

+
∞∑
j=1

y2
j

((2−2(j+2) + y2
j )

1
2 − y2

j )2

< 4 + 2 +
∞∑
j=1

2−(j+1) =
13
2
.

By Proposition 2.7, this implies that |f ′|I < 13
2 |f |X for f ∈ R0(X). Hence D is a bounded

derivation from R0(X) to C(I). We extend D by continuity to a derivation from R(X) to
C(I), which we shall also call D. It remains to show that D is not compact. Let n ∈ N,
and let

fn(z) =
rn

z − an
(z ∈ X).

Then |fn|X = 1. Also

f ′n(z) =
−rn

(z − an)2
(z ∈ X).

Clearly, for each x ∈ [0, 1/2[, f ′n(x) → 0 as n → ∞. Thus, if (f ′n|I)n∈N were to have a
convergent subsequence the limit would have to be the zero function. However, |f ′n(xn)| =
1 for each n ∈ N. Hence (D(fn))n∈N = (f ′n|I)n∈N has no convergent subsequence, and
thus D is not a compact linear map.
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