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Abstract. We discuss some results about derivations and crossed homomorphisms arising in
the context of locally compact groups and their group algebras, in particular, L1(G), the von
Neumann algebra VN (G) and actions of G on related algebras. We answer a question of Dales,
Ghahramani, Grønbæk, showing that L1(G) is always permanently weakly amenable. Then we
show that for some classes of groups (e.g. IN-groups) the homology of L1(G) with coefficients
in VN (G) is trivial. But this is no longer true, in general, if VN (G) is replaced by other von
Neumann algebras, like B(L2(G)). Finally, as an example of a non-discrete, non-amenable group,
we investigate the case of G = SL(2, R) where the situation is rather different.

0. Introduction. Let A be a Banach algebra, X a Banach A-bimodule. A linear map-
ping D : A → X is called a derivation, if D(ab) = aD(b) + D(a)b for all a, b ∈ A
([D] Def. 1.8.1). For f ∈ X, we define the inner derivation adf : A → X by adf (a) =
fa− af (as in [GRW]; adf = −δf in the notation of [D] (1.8.2)). Z1(A, X) denotes the
space of bounded derivations from A to X, B1(A, X) the subspace of inner derivations.
H1(A, X) = Z1/B1 is called the (first continuous) cohomology group of A with coefficients
in X ([D] Def. 2.8.2).

We will concentrate on group algebras. For G a locally compact group with a fixed
left Haar measure, we consider L1(G) (integrable functions), M(G) (complex Radon
measures on G) with convolution and VN (G), the von Neumann algebra on L2(G) gen-
erated by the left regular representation. If X is a left Banach G-module (the action
of G is denoted by ◦), a mapping Φ : G → X is called a crossed homomorphism if
Φ(xy) = Φ(x) + x ◦ Φ(y) for all x, y ∈ G (in the terminology of [D] Def. 5.6.35, this is a
G-derivation, if we consider the trivial right action of G on X). Φ is called bounded if
‖Φ‖ = supx∈G‖Φ(x)‖ <∞. For f ∈ X, the special example Φf (x) = f − x ◦ f is called a
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principal crossed homomorphism (this follows [GRW], the sign is taken opposite to [D]).
If X = Y ′ is the dual of an essential Banach L1(G)-bimodule Y , the actions of L1(G)
on X can be extended to actions of M(G). We consider the action of G on X defined
by x ◦ f = δxfδx−1 for x ∈ G, f ∈ X (δx denotes the point measure at x). Then there
is a bijective correspondence between bounded derivations L1(G) → X and bounded
crossed homomorphisms G → X, it associates to the inner derivation adf the princi-
pal crossed homomorphism Φf ([D] Th. 5.6.39). In particular, every bounded derivation
L1(G) → X is inner if and only if every bounded crossed homomorphism G → X is
principal.

In [Lo] we have considered the case where X = M(Ω) for a locally compact space Ω
and the left action of G on X is induced by an action of G by homeomorphisms on Ω. It
was shown ([Lo] Th. 1.1) that in this case every bounded crossed homomorphism G→ X

is principal. A special case is Ω = G with the action x ◦ y = xyx−1 of G on G. Under
the correspondence mentioned above this leads to bounded derivations L1(G) → M(G)
(L1(G) acting on M(G) by convolution) and it followed from our theorem that every
bounded derivation L1(G)→M(G) is inner (Johnson’s derivation problem). In Section 1
below we will consider a related question going back to Dales, Ghahramani and Grønbæk
([DGG]) about n-weak amenability of L1(G). This (Theorem 1.2) will provide another
application of [Lo] Th. 1.1, considering actions of G on different compact spaces.

In the remaining sections, we will be dealing with derivations L1(G)→ VN (G). Some
partial results have been obtained in [GRW] (see Remark 3.9). In the case where G is
amenable, bounded derivations L1(G)→ VN (G) are always inner by a general result of
Johnson. Then Lau ([La]) used a technique based on weak almost periodicity to show
that this remains true when G is a SIN-group, in particular for all discrete groups. This
is presented in Theorem 2.2. Then in Section 3 we extend this approach and show that it
can also be used to handle the case of IN-groups (Theorem 3.1) and more generally when
G is unimodular and has an open amenable normal subgroup (Corollary 3.8). One can
consider also actions of G on other von Neumann algebras. For G = F2 (free group with
two generators), we give an example (Example 2.6) of a non-principal bounded crossed
homomorphism G→ B(l2(G)) (all bounded linear operators on l2(G)). We do not know
if such examples exist for all discrete non-amenable groups. In Section 4, as an example
of a non-amenable connected group, we use results from the representation theory of
SL(2,R). It turns out (Example 4.6) that the cohomology spaces H1(L1(G),VN (G))
and H1(L1(G),B(L2(G)) are rather big. For irreducible representations, the cohomology
spaces H1(L1(G),B(H)) are one-dimensional in many cases (Example 4.5).

Further Notations. e will always denote the unit element of a groupG. IfG is a locally
compact group, L1(G), L∞(G) are defined with respect to a fixed left Haar measure
on G. Convolution is denoted by ∗. Duality between Banach spaces is denoted by 〈 〉,
thus for f ∈ L∞(G), u ∈ L1(G), we have 〈f, u〉 =

∫
G
f(x)u(x) dx. For f ∈ L1(G),

ρ(f)u = f ∗ u denotes the corresponding convolution operator on L2(G). The same for
ρ(µ), when µ ∈ M(G) is a measure. C∗r (G) (the reduced C∗-algebra of G) is defined as
the norm-closure of ρ(L1(G)) in B(L2(G)) (all bounded linear operators on L2(G)).
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1. Generalization of weak amenability

Definition 1.1 ([DGG] Def. 1.1). A Banach algebra A is called n-weakly amenable if
H1(A,A(n)) is trivial (n ∈ N). A is called permanently weakly amenable if it is n-weakly
amenable for each n ∈ N.

A(n) denotes the n-th dual space of A. It is an A-bimodule by dualizing the action of
A on itself ([D] p. 240).

Theorem 1.2. Let G be a locally compact group, then A = L1(G) (with convolution) is
permanently weakly amenable.

Thus each bounded derivation D : A → A(n) is inner. This question was left open in
[DGG] p. 42. I thank V. Runde for pointing out this problem to me.

Proof. If n is odd, it was shown in [DGG] Th. 4.1 that L1(G) is n-weakly amenable,
extending a classical result of Johnson (the case n = 1; this is just weak amenability of
L1(G)).

Assume that n is even. We will make some standard reductions to be able to apply
Th. 1.1 of [Lo]. Put n = 2(k+1) with k ≥ 0, Y = A(2k+1) = L∞(G)(2k). Then A(n) = Y ′.
Let Ye = AYA be the essential part of the A-bimodule Y (again using the dual actions).
Ye is a closed subspace of Y (since L1(G) has a bounded approximate identity), π :
Y ′ → Y ′e shall denote the canonical projection (dual of the inclusion mapping). Let
D : A → Y ′ be a bounded derivation. By a result of Johnson (see [D] Cor. 2.9.27), D is
inner iff π ◦ D is inner. Considering pointwise multiplication in L∞(G), it follows from
classical results ([D] Cor. 2.9.27) that Y (equipped with the corresponding Arens product)
is a commutative unital C∗-algebra. L∞(G) being an M(G)-bimodule, the same is true
for Y . Identifying G with the set of point measures, we get a left and a right action of
G on Y , denoted by xf and fx (x ∈ G, f ∈ Y ). Using the continuity properties of the
action of M(G) on Y and the continuity properties of the Arens product, it is easy to see
that f 7→ xf and f 7→ fx are C∗-algebra automorphisms for each x ∈ G. Furthermore
(using the factorization theorem [D] Cor. 2.9.25), we have Ye = AY ∩ YA = {f ∈ Y :
x 7→ xf and x 7→ fx are norm-continuous on G} (compare [D] Prop. 3.3.11). It follows
that Ye is a C∗-subalgebra of Y containing the identity. Hence Ye ∼= C(Ω) and the
actions of G on Y are induced by actions of G on the (compact) Gelfand space Ω. By
[D] Th. 5.6.39, π ◦D is induced by a bounded crossed homomorphism Φ : G→ Y ′e (with
respect to the dual action of f ◦ x = x−1fx). By [Lo] Th. 1.1, Φ is principal, hence π ◦D
is inner.

Remark 1.3. It may be instructive to consider the case n = 2 (i.e. k = 0). Then
Y = L∞(G) and Ye = UCB(G) consists of the bounded uniformly continuous functions,
where “uniformly” means both left and right uniform continuity. This corresponds to
the lower uniformity of [RD] 2.5, i.e., the infimum of the left and the right uniformity
of G. Then Ω is the Samuel compactification of G with respect to this uniformity. If G
is discrete, we have Ye = l∞(G) and Ω coincides with the Stone-Čech compactification
of G.
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2. Derivations from L1(G) to VN (G)

Proposition 2.1. Let D : L1(G) → VN (G) be a derivation. Then the following condi-
tions are equivalent:

(i) D is inner (i.e., there exists T ∈ VN (G) such that Df = T ∗ f − f ∗ T for all
f ∈ L1(G)).

(ii) D extends to a derivation VN (G)→ VN (G).
(iii) D extends to a derivation C∗r (G)→ VN (G).

The extensions in (ii), (iii) are unique (if they exist) and always bounded. The extension
in (iii) is always w∗-continuous.

Proof. This is just a combination of some classical results: If A is a C∗-algebra, E a
Banach-A-bimodule, then every derivation D : A → E is bounded ([D] Cor. 5.3.7).
Every derivation D : B → B of a von Neumann algebra B is inner (Sakai’s theorem
[Sa] Th. 2.5.3) – in particular, D is w∗-continuous. If B0 is a w∗-dense C∗-subalgebra of
a von Neumann algebra B, then every derivation D : B0 → B extends to a derivation of
B ([SS] Th. 2.2.2; in fact in [SS] it is assumed that D : B0 → B0, but the proof works for
D : B0 → B; alternatively one can use the biduals similar to the proof of [Sa] Cor. 2.5.4).

Theorem 2.2 (Lau [La]). Assume that the right action of G on Y is weakly almost
periodic. Then every bounded crossed homomorphism Φ : G→ Y ′ is principal.

We can find µ in the w∗-closed convex hull of Φ(G) such that Φ(x) = µ − x ◦ µ for
all x ∈ G.

Recall that a right action of a group (or semigroup) G on a Banach space Y is called
weakly almost periodic if the orbits {y ◦ g : g ∈ G} are weakly relatively compact for all
y ∈ Y .

Proof. This is a counterpart of a classical result of Johnson, saying that if G is an
amenable locally compact group, Y an essential right L1(G)-Banach module, then every
bounded w∗-continuous crossed homomorphism Φ : G → Y ′ is principal ([D] Th. 5.6.42;
equivalently: “L1(G) is an amenable Banach algebra”). For y ∈ Y put uy(g) = 〈Φ(g), y〉.
Then T (y) = uy defines a bounded linear mapping T : Y → l∞(G). Φ being a crossed
homomorphism, an easy computation shows that uy(gh) = uy(g) + uy◦g(h) for g, h ∈ G.
Since T is weakly continuous, it follows from weak almost periodicity of the action on Y
that the set of left translates of uy is weakly relatively compact in l∞(G). Thus uy is a
weakly almost periodic function for all y ∈ Y . Let m be the invariant mean for weakly al-
most periodic functions ([Gr] § 3.1) and define µ ∈ Y ′ by 〈µ, y〉 = m(uy). Then left invari-
ance ofm and the formula above for the left translates of uy give 〈µ, y〉 = uy(g)+〈µ, y◦g〉,
leading to Φ(g) = µ− g ◦ µ for all g ∈ G.
Corollary 2.3 (Lau [La]). Let G be a SIN-group. Then every bounded crossed homo-
morphism Φ : G→ VN (G) is principal. Thus H1(L1(G),VN (G)) = (0).

Proof. Recall that a locally compact group G has small invariant neighbourhoods (“G is
a SIN-group”) iff there exists a basis of e-neighbourhoods U with the property that
xUx−1 = U for all x ∈ G. It follows that VN (G) is of finite type ([Di] Prop. 13.10.5; in fact
the converse holds as well, see the arguments in Sec. 3 of [Tay]). Then the conjugate action



DERIVATIONS AND CROSSED HOMOMORPHISMS 203

of G on the predual of VN (G) is weakly almost periodic (see the proof of [Ta] Th. V.2.4;
compare Remark 2.4).

Remark 2.4. The Corollary applies in particular when G is discrete or compact. Note
that no continuity is required (thus it gives slightly more in the compact case than
Johnson’s theorem).

A more general version can be obtained as follows: Let G be a group acting on a von
Neumann algebra B by ∗-automorphisms. B is called G-finite if the set of G-invariant
normal states is faithful on B (i.e., if x ∈ B, x ≥ 0, x 6= 0, there exists a G-invariant
normal state φ such that φ(x) 6= 0). By [St1], B is G-finite iff the action of G on the
predual is weakly almost periodic. Hence, the same argument as above gives for every
G-finite von Neumann algebra B that every bounded crossed homomorphism Φ : G→ B is
principal. An example for this extended condition would be B = L∞(Ω,m), when G acts
on the locally compact space Ω by homeomorphisms and m is a G-invariant (Radon)
probability measure on Ω. Applications of this generalization will come up in the next
section (Proposition 3.6 and Remark 3.9).

In the case of a compact group G, one obtains a G-finite von Neumann algebra from
an arbitrary action of G by ∗-automorphisms on B, provided the corresponding action
on the predual is strongly continuous (which is known to be equivalent to continuity
for the weak operator topology of mappings on the predual – this is the same topology
that was used in [St1]). In particular, one can take all actions implemented by unitary
representations on Hilbert spaces as described in 4.1. Thus (by the more general version
above) the cohomology is trivial in these cases.

On the other hand, in Example 2.6 we will show that this method cannot work for
general actions of discrete groups on von Neumann algebras. The construction is given
for G = F2 the free group of two generators and does not generalize immediately to
other non-amenable groups. Hence we do not know if there are similar counter-examples
(showing that H1(l1(G), B(l2(G))) is non-trivial) for all discrete non-amenable groups G.
For connected and almost connected groups the situation is different, see Section 4.

For the example we use the following auxiliary result.

Lemma 2.5. There exists a bounded sequence (un) ⊆ l2(Z) whose members are pair-
wise orthogonal and such that lim inf ‖un − wn‖2 > 0 for every bounded sequence (wn)
in VN (Z).

Proof. Recall that for a discrete group G we can identify VN (G) with those sequences
in l2(G) which define bounded convolution operators on l2(G). Thus the unit ball of
VN (G) is closed under pointwise convergence, in particular it is norm-closed in l2(G).
Take u ∈ l2(Z) that does not belong to VN (Z) (i.e., the Fourier coefficients of an
unbounded L2-function). Then lim inf ‖u− w′n‖2 > 0 for every bounded sequence (w′n)
in VN (Z). If lim ‖u− u′n‖2 = 0, we conclude that lim inf ‖u′n − w′n‖2 > 0. Choose u′n
with finite support and then take un = δxn ∗ u′n, where (xn) ⊆ Z are selected so that the
supports of the shifted elements un get pairwise disjoint. If (wn) is a bounded sequence
in VN (Z) then w′n = δx−1

n
∗ wn is again bounded. We have ‖un − wn‖2 = ‖u′n − w′n‖2

and our claim follows.
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Example 2.6. Let G = F2 be the free group with 2 generators a, b. Consider B =
B(l2(G)), the von Neumann algebra of all bounded linear operators on l2(G). For x ∈
G, δx ∈ l2(G) denotes the corresponding unit vector and ρ(x)u = δx ∗ u the left trans-
lation operator on l2(G). In this way, G and l1(G) embed into B and B becomes an
l1(G)-bimodule. We claim that H1(l1(G),B(l2(G))) is non-trivial. On the level of crossed
homomorphisms, we consider the action x ◦B = ρ(x)Bρ(x−1) of G by ∗-automorphisms
on B (be aware that here ◦ always refers to this action) and we have to show that there
exists a bounded crossed homomorphism Φ : G→ B which is not principal.

Let Ga, Gb be the cyclic subgroups generated by a, b. On a free group, the values
Φ(a),Φ(b) can be prescribed arbitrarily and this will always generate a (not necessarily
bounded) crossed homomorphism. If Φ is to be bounded, its restriction to the abelian
(hence amenable) subgroups Ga, Gb must be principal. Thus it is no restriction to consider
Φ defined by Φ(a) = 0, Φ(b) = B − b ◦B for a certain B ∈ B.

B is chosen as follows. Identifying Ga = {an : n ∈ Z} with Z, take (un)n∈N ⊆ l2(Ga)
as in Lemma 2.5. Put Bv =

∑∞
n=1 v(bn)un for v ∈ l2(G). Orthogonality and boundedness

of (un) implies that this gives a bounded linear operator. We will show that the resulting
crossed homomorphism Φ is bounded and that there cannot exist B0 ∈ B such that
Φ(x) = B0 − x ◦B0 for all x ∈ B. To show boundedness of Φ, note that Φ(a) = 0 implies
that Φ(xa) = Φ(x), Φ(ax) = a ◦Φ(x) for all x ∈ G. For x = bn1am1 . . . bnjamj , this gives
the explicit formula (assuming j ≥ 2)

Φ(x) = Φ(bn1am1 . . . bnj )

= B − bn1 ◦B + (bn1am1) ◦ (B − bm2 ◦B) + · · ·+ (bn1 . . . amj−1) ◦ (B − bnj ◦B)

= B1− bn1 ◦B2

with

B1 = B + (bn1am1) ◦B + · · ·+ (bn1 . . . amj−1) ◦B,
B2 = B + (am1bn2) ◦B + · · ·+ (am1 . . . bnj ) ◦B.

Observe that imB ⊆ l2(Ga), imB∗ ⊆ l2(Gb) and imx ◦ B = δx ∗ (imB). For a reduced
word beginning with b±1 (i.e., ni 6= 0 for all i, mi 6= 0 for i < j), it follows that the
operators in the sum defining B1 have pairwise orthogonal images and the same for B∗1 .
This gives ‖B1‖ ≤ ‖B‖ and similarly ‖B2‖ ≤ ‖B‖. Consequently ‖Φ(x)‖ ≤ 2‖B‖ for all
x ∈ G.

Assume that B0 ∈ B and Φ(x) = B0 − x ◦B0 holds for all x ∈ G. Put v0 = B0(δe)(∈
l2(G)). From Φ(bn) = B − bn ◦ B and B(δe) = 0, we get Φ(bn)(δbn) = B(δbn) = un,
hence Φ(ambn)(δambn) = (am ◦ Φ(bn))(δambn) = δam ∗ un for n ≥ 1. On the other
hand, Φ(ambn)(δambn) = B0(δambn) − δambn ∗ (B0(δe)). It follows that B0(δambn) =
δam ∗ un + δambn ∗ v0 for all n ≥ 1, m ∈ Z. Let Pa ∈ B be the orthogonal projec-
tion to l2(Ga) (restriction operator) and put vn = −Pa(δbn ∗ v0), wn = un − vn. Then
PaB0(δambn) = δam ∗ wn. Thus (considering the convolution operator on l2(Ga) defined
by wn) ‖wn‖VN (Ga) ≤ ‖PaB0‖ is bounded. Since δb−n ∗ vn = −(b−n ◦ Pa)(v0) and the
projections bn ◦ Pa (projecting onto δbn ∗ l2(Ga)) are pairwise orthogonal, it follows that∑
n≥1‖vn‖22≤ ‖v0‖22 is finite. But vn = un − wn, contradicting Lemma 2.5.
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3. IN-groups and unimodular groups. Recall that a locally compact group G is
called an IN-group if there exists a relatively compact e-neighbourhood U such that
xUx−1 = U for all x ∈ G (see [Pa] for more details). SL(2,Z) o T 2 (semidirect product,
where T = R/Z) is a standard example of an IN-group that is not a SIN-group.

Theorem 3.1. Let G be an IN-group. Then every bounded crossed homomorphism Φ :
G→ VN (G) is principal. Thus H1(L1(G),VN (G)) = (0).

Before giving the proof, we start with some auxiliary results. If H is a closed normal
subgroup of G, put VN (G)H = {T ∈ VN (G) : ρ(h)T = Tρ(h) for all h ∈ H} (relative
commutant of H). As usual Ĥ denotes the set of (equivalence classes of) irreducible
unitary representations of H (following tradition, we choose a fixed representative for
each class and think of Ĥ as the set of these representatives). For π ∈ Ĥ put x ◦ π(h) =
π(x−1hx) (x ∈ G, h ∈ H) and Gπ = {x ∈ G : x ◦ π is equivalent to π}. If H = K is
compact and π ∈ K̂, let Pπ ∈ VN (K) be the corresponding central projection.

Lemma 3.2. If K is a compact normal subgroup of G, π ∈ K̂, T ∈ VN (G)K , then
PπT = TPπ, suppTPπ ⊆ Gπ and TPπ ∈ VN (Gπ/ kerπ).

Proof. Let χπ(k) = trπ(k) be the character of π, dπ = dimπ. We have Pπg = dπχ̄π ∗
g for g ∈ L2(K). The same formula with g ∈ L2(G) defines an element of VN (G) which
will also be denoted by Pπ (this is the standard embedding of L1(K) into M(G) which
extends to an embedding of VN (K) into VN (G)). Since χπ is central in L1(K), we even
have Pπ ∈ VN (G)K . If T ∈ VN (G)K , then it commutes with all operators ρ(x) (x ∈ K)
and by standard arguments it commutes with the operators from L1(K) (even with those
of VN (K)).

The action x 7→ x ◦ π is continuous (using e.g. [Di] Prop. 18.1.5). Since K̂ is discrete
([Di] Cor. 18.4.3), it follows that Gπ is open in G. Let Rπ ⊆ G be a set of representatives
for the right Gπ-cosets. Then every T ∈ VN (G) can be written uniquely as a sum
T =

∑
x∈Rπ Tx ρ(x) (strongly converging on L2(K) and its translates) with some Tx ∈

VN (Gπ) (compare [E] Prop. 3.21). If T ∈ VN (G)K , then for k ∈ K, ρ(k)T = Tρ(k)
implies ρ(k)Tx = Txρ(xkx−1), in other words, Tx intertwines the restrictions of the
representations ρ and x−1 ◦ ρ to K. We will now show that supp(TPπ) ⊆ Gπ for T ∈
VN (G)K (using the notion of support from [E] Def. 4.5).

Since Pπ ∈ VN (G)K , we can assume that T = TPπ. Decompose T as above, then
TxPπ = Tx for all x ∈ Rπ. The restriction of ρ (as a representation of K) to Pπ(L2(G))
is a multiple of π ([Di] Th. 15.3.12; the isotypic component of π). Now fix some x ∈ Rπ
such that Tx 6= 0. ρ(k) is a multiple of π(k) on Pπ(L2(G)), hence ρ(xkx−1) is a multiple
of x−1 ◦ π(k). Existence of a non-zero intertwining operator Tx implies that x−1 ◦ π is
equivalent to π ([Di] Prop. 5.2.1), hence x ∈ Gπ.

For the last statement, we use the standard identifications (see [E]): Since Gπ is
open in G, VN (Gπ) can be identified with {T ∈ VN (G) : suppT ⊆ Gπ} and if λkerπ

denotes the normalized Haar measure of kerπ, VN (Gπ/ kerπ) is identified with {T ∈
VN (Gπ) : Tρ(λkerπ) = T} (x◦π = π implies that x(kerπ)x−1 = kerπ, i.e. kerπ is normal
in Gπ). Then for T ∈ VN (Gπ), we get TPπ ∈ VN (Gπ) and since χπ(kk′) = χπ(k) for
k ∈ K, k′ ∈ kerπ, it follows that Pπρ(λkerπ) = Pπ, hence TPπ ∈ VN (Gπ/ kerπ).
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Next we consider a special case that can be reduced to SIN-groups.

Lemma 3.3. Assume that G has an open compact normal subgroup K. Then for π ∈ K̂
we have that Gπ/ kerπ is a SIN-group.

Proof. Since χπ(xkx−1) = χπ(k) for x ∈ Gπ, k ∈ K and K is open, every set {k ∈ K :
|χπ(k) − χπ(e)| < ε}, where ε > 0, is a Gπ-invariant, kerπ-periodic e-neighbourhood
in Gπ. Recall that kerπ = {k ∈ K : χπ(k) = χπ(e)}, thus the intersection of these
neighbourhoods is kerπ and it follows that Gπ/ kerπ is a SIN-group.

Unfortunately, this reduction to SIN-groups does not work for general IN-groups. To
apply the technique based on weak almost periodicity, we will use an extension procedure,
formulated for general W ∗-algebras.

Lemma 3.4. LetM be a W ∗-algebra, Z a W ∗-subalgebra contained in the centre ofM.
Let σ be an action of a (discrete) group Γ by ∗-automorphisms on M such that Z is
Γ-invariant.

Γ1 = [Γ] shall denote the “full group” for this action on Z (see below). Then we can
extend the action of Γ onM to an action of Γ1.

If Φ : Γ → M is a bounded crossed homomorphism, there exists a bounded crossed
homomorphism Φ1 : Γ1 →M extending Φ and satisfying ‖Φ1‖ = ‖Φ‖.

Proof. We consider the discrete crossed product Z ⊗
σ

Γ (see [Ta] Sec. V.7, [Str] § 22, who

use the notation R(Z, σ)). Γ and Z will be considered as subsets and a general element
of Z⊗

σ
Γ is written as a countable sum

∑∞
i=1 Tiγi with Ti ∈ Z, γi ∈ Γ (the representation

being unique if γi are pairwise different, Ti 6= 0). If γi ∈ Γ and Pi ∈ Z are projections such
that

∑∞
i=1 Pi = 1,

∑∞
i=1 σ(γ−1

i )(Pi) = 1 it is easy to see that u =
∑∞
i=1 Piγi (the sum

being strongly convergent in this case) defines a unitary element of Z ⊗
σ

Γ. We define the

full group Γ1 to be the set of all these unitaries (which is easily seen to form a subgroup).
Clearly Γ ⊆ Γ1. The corresponding inner automorphism (restricted toM) is given by

σ(u)(T ) = uTu∗ =
∞∑
i=1

σ(γi)(T )Pi

(this uses the embedding of Z ⊗
σ

Γ intoM⊗
σ

Γ, recall that Z is central inM). Let σZ(u)

be the restriction of σ(u) to Z (which is obviously invariant), then σZ(Γ1) gives the full
group as defined in [N] (who considers only point transformations on σ-finite measure
spaces, generalizing the earlier notion of Dye [Dy] for finite measure spaces; see also
[Str] 17.3 for general W ∗-algebras). If the action of Γ on Z by σ is properly outer and
σ is injective (on Γ), then Γ1 coincides with the set of unitary elements u ∈ Z ⊗

σ
Γ such

that uZu∗ ⊆ Z ([Str] p. 356).
Let Φ : Γ → M be a bounded crossed homomorphism. For u ∈ Γ1 (represented as

above) we define Φ1(u) =
∑∞
i=1 Φ(γi)Pi. Since Pi are pairwise orthogonal and central

this defines an element of M, ‖Φ1(u)‖ ≤ supγ∈Γ ‖Φ(γ)‖ and it is a routine matter to
verify that Φ1 : Γ1 →M is a crossed homomorphism.
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Lemma 3.5. Let σ be an action of a group Γ by ∗-automorphisms on a W ∗-algebra M.
Let Φ : Γ →M be a bounded crossed homomorphism. If γ ∈ Γ and P ∈ M is a central
(orthogonal) projection such that σ(γ) is the identity onMP , then Φ(γ)P = 0.

Proof. The assumption means that σ(γ)(TP ) = TP = σ(γ)(T )P for all T ∈ M. Induc-
tion gives Φ(γn)P = nΦ(γ)P for all n ∈ N. Thus, boundedness of Φ implies Φ(γ)P = 0.

Proposition 3.6. LetM, Z, Γ, σ be as in Lemma 3.4. Assume that there exists a semifi-
nite, Γ-invariant faithful normal trace on Z and a Γ-invariant faithful normal conditional
expectation E :M→ Z.

Then every bounded crossed homomorphism Φ : Γ → M is principal. There exists
T ∈M with ‖T‖ ≤ ‖Φ‖ such that Φ(γ) = T − σ(γ)(T ) for all γ ∈ Γ.

Proof. The assumption on Z means that Z ∼= L∞(Ω,m) where m is a Radon measure
on the locally compact space Ω and, if m is σ-finite, each automorphism σ(γ) is defined
by a bimeasurable transformation preserving m (see [Ta] p. 329 and L. IV. 8.22). If the
measure m is finite, it defines a Γ-invariant faithful normal state of Z. Composition
with E gives a Γ-invariant faithful normal state ofM. ThusM is Γ-finite and the result
follows from Theorem 2.2 and Remark 2.4.

In the general case take a “finite” projection P ∈ Z (corresponding to a measurable
set A ⊆ Ω with 0 < m(A) <∞). Using Lemma 3.4, we consider the extension Φ1 to the
full group Γ1 = [Γ]. Let [Γ]P be the subgroup of all u such that u(1 − P ) = 1 − P (i.e.,
u =

∑∞
i=1 Piγi + 1−P with projections Pi ∈ Z satisfying

∑∞
i=1 Pi =

∑∞
i=1 σ(γ−1

i )(Pi) =
P ). Then σZ([Γ]P ) consists of all transformations in σZ(Γ1) that act as the identity on
Z(1 − P ) ([N] p. 406). Then MP is [Γ]P -finite, hence there exists TP ∈ MP such that
Φ1(u) = TP − σ(u)(TP ) for all u ∈ [Γ]P . Since ‖TP ‖ ≤ ‖Φ‖ is uniformly bounded, there
exists a w∗-cluster point T of the net (TP ) arising from the “finite” projections in Z.

In [N] Γ-equivalence ∼
Γ
of projections in Z is considered (defined by partial isometries

in Z ⊗
σ

Γ of a similar type as in the proof of Lemma 3.4). In [St2] this is called Hopf

equivalence (using the notation ∼
H
) and it is shown (when Z is σ-finite, [St2] L. 1 and

Th. 5) that this coincides with standard Murray – von Neumann equivalence (denoted
by ∼) of projections in the W ∗-algebra Z ⊗

σ
Γ.

Now fix γ ∈ Γ. Let P ∈ Z be a “finite” projection and put P ′ = σ(γ−1)(P ). Clearly
P ∼

Γ
P ′. If Q is a “finite” projection such that P, P ′ ≤ Q, then by [N] L. 3, P ∼

[Γ]Q
P ′,

thus (by [St2] ) P∼P ′ in ZQ ⊗
σ

[Γ]Q and by [Ta] Prop. V.1.38, Q − P ∼ Q − P ′ in

ZQ ⊗
σ

[Γ]Q. Going back, this implies Q − P ∼
[Γ]Q

Q − P ′. In combination, it follows that

there exists u ∈ [Γ]Q such that σ(u)(P ′) = P . Put u′ = u−1γ, then σ(u′)(P ′) = P ′. If
u′ =

∑∞
i=1 Piγi + 1−Q (with projections Pi ∈ Z satisfying

∑
Pi =

∑
σ(γ−1

i )(Pi) = Q),
we get P ′ = σ(u′)(P ′) =

∑
σ(γi)(P ′)Pi, hence P ′Pi = σ(γi)(P ′)Pi for all i. Put

u′′ =
∑∞
i=1 PiP

′γi+(1−P ′). Then u′′ ∈ [Γ]P ′ ⊆ [Γ]Q and σ(u′′) = σ(u′) onMP ′ (we have
σ(u′′)(T ) =

∑
σ(γi)(T )PiP ′+T (1−P ′) for T ∈M). Thus γ = uu′ implies σ(uu′′) = σ(γ)

onMP ′. By Lemma 3.5, Φ1(γ−1uu′′)P ′ = 0 and (recall that Φ(γ−1) = −σ(γ−1)(Φ(γ)))
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we get σ(γ−1)(Φ(γ)P ) = σ(γ−1)(Φ1(uu′′))P ′. Hence Φ(γ)P = Φ1(uu′′)P =
(TQ − σ(uu′′)(TQ))P = TQP − σ(uu′′)(TQP ′) = (TQ − σ(γ)(TQ))P . In the limit, this
gives Φ(γ)P = (T − σ(γ)(T ))P for all “finite” projections, finishing the proof.

Proposition 3.7. Assume that G has an open normal subgroup H such that H is uni-
modular. If Φ : G→ VN (G) is a bounded crossed homomorphism whose restriction to H
is principal, then Φ is principal.

In particular, when the cohomology group H1(L1(H),VN (G)) is trivial, it follows that
H1(L1(G),VN (G)) is trivial.

Proof. Let Φ : G → VN (G) be a bounded crossed homomorphism. By assumption,
its restriction to H is principal, hence (subtracting a principal homomorphism) we can
assume that Φ(h) = 0 for h ∈ H. Then for x ∈ G, it follows that Φ(x) ∈ VN (G)H and
Φ(x) depends only on the coset xH. Put Γ = G/H. Thus it suffices to consider a bounded
crossed homomorphism Φ : Γ → VN (G)H . Since H is open and normal, the restriction
of T ∈ VN (G) to H defines a conditional expectation E : VN (G) → VN (H) which is
easily seen to be w∗-continuous ([E] Prop. 3.21; see also his definition of T |H; writing
T =

∑
x∈R Tx ρ(x) as in the proof of our Lemma 3.2, where R is a set of representatives

for the H-cosets with e ∈ R, one has E(T ) = T |H = Te). Furthermore, it is faithful and
G-invariant (in particular, VN (G)H is kept invariant). Put Z = Z(VN (H)) = VN (G)H∩
VN (H), the centre of VN (H).

For f a continuous positive definite function on H with compact support (or more
generally, f ∈ L1(H) ∩ A(H)), we have the functional f 7→ f(e). By a theorem of
Godement ([Di] 17.2.5, requiring unimodularity), this extends to a faithful semifinite
normal trace on VN (H). If G is unimodular, this is also G-invariant. The restriction of
this trace to Z is again semifinite (e.g. by [Ta] Th. 4.6 and Exerc. 1 p. 332). Hence we can
apply Proposition 3.6.

In the general case, let G∆ be the kernel of the modular function. Openness of H
implies H ⊆ G∆ and G∆ is open. Then it follows that G∆ is unimodular and the argu-
ment above shows that Φ is principal on G∆. As above, we arrive at a bounded crossed
homomorphism defined on G/G∆. Since G/G∆ is abelian, this is principal by Johnson’s
theorem.

Corollary 3.8. Assume that the locally compact group G has an open normal sub-
group H which is amenable and unimodular. Then H1(L1(G),VN (G)) = (0).

Proof. By Johnson’s theorem, H1(L1(H),VN (G)) = (0), thus Proposition 3.7 applies.

Proof of Theorem 3.1. By the structure theorem ([GM] Th. 2.13), G has an open normal
subgroup H such that H is an extension of a compact group K by a vector group. If
Φ : G → VN (G) is a bounded crossed homomorphism, we can apply Remark 2.4 to its
restriction to K. There remains a bounded crossed homomorphism G/K → VN (G)K (K
is characteristic inH hence normal in G).H/K being abelian, this part can be handled by
Johnson’s theorem. The remaining part G/H → VN (G)H is covered by Proposition 3.7.

If Φ is known to be continuous, one can apply directly Corollary 3.8, since IN-groups
are unimodular ([Pa] p. 718) and H is amenable.
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Remark 3.9. For groups having an open compact normal subgroup K, Theorem 3.1
can be proved in a more elementary manner using Lemma 3.3 and Corollary 2.3 for SIN-
groups. As above, it is enough to consider a bounded crossed homomorphism Φ′ : G/K →
VN (G)K . Put Φπ(x kerπ) = Φ′(xK)Pπ. Then (using Lemma 3.2) Φπ : Gπ/ kerπ →
VN (Gπ/ kerπ) is a bounded crossed homomorphism and, by Lemma 3.3 and Corol-
lary 2.3 it is principal. Since Φπ(Gπ/ kerπ) ⊆ VN (G)KPπ we get (by Theorem 2.2)
Aπ ∈ VN (G)KPπ such that Φ′(xK)Pπ = Aπ − x ◦ Aπ for x ∈ Gπ and ‖Aπ‖ ≤ ‖Φ′‖.
L2(G) is the l2-sum of the subspaces Pπ(L2(G)) where π ∈ K̂. Then we extend this,
defining an operator Ãπ on all Pu◦π(L2(G)) (u ∈ G) by Ãπ = u ◦ (Aπ − Φ′(u−1K)). By
some computations one can verify that this depends only on the coset uGπ. Doing the
same for all G-orbits in K̂, this combines to an operator A ∈ VN (G)K which satisfies
(again after some computations) Φ′(xK) = A− x ◦A for all x ∈ G.

We illustrate in the case of an open compact normal subgroup the more abstract tech-
nique applied in Lemma 3.4. TakeM = VN (G)K , Z = VN (G)K∩VN (K) = Z(VN (K))
(centre), Γ = G/K. Then Z ∼= l∞(K̂) with the action of Γ as defined at the beginning of
this section. The image of the full group σZ(Γ1) (given by permutations of K̂) contains
all permutations of K̂ that respect the Γ-orbits and act trivially outside some countable
set. Observe that σ need not be injective on Γ (just consider the case of a direct product
K × Γ) and the action of Γ need not be free (which is a frequent assumption in ergodic
theory).

An easy example of an IN-group having no open compact normal subgroup is a semidi-
rect product G = RnoΓ where Γ is some group of orthogonal n×n-matrices (with discrete
topology). This is not amenable in general. For H = Rn, the trace on VN (H) considered
in the proof of Proposition 3.7 is given by Haar measure m on the dual group Ĥ (recall
that VN (H) ∼= L∞(Ĥ)). When Γ is countable, the full group consists of all bimeasurable
transformations on Ĥ that are bijective outside a set of m-measure 0, keep m invariant
and such that the orbits Γx (dual action) are invariant for almost all x ∈ Ĥ ([N] p. 399).
Proposition 3.7 and Corollary 3.8 apply more generally when Γ is some group of matrices
of determinant 1. In this case, G is not an IN-group unless the closure of Γ in SL(n,R)
is compact.

Some results about derivations L1(G)→ VN (G) were proved in [GRW] sec. 3 and 4.
They concentrated on the case where the image is contained in L1(G) and found a
condition for the extendability to VN (G) ([GRW] Th. 3.6) which was shown to be sat-
isfied in the case of IN-groups and groups having open normal amenable subgroups
([GRW] Th. 4.2). A similar condition could be formulated for general bounded derivations
L1(G) → VN (G) but the proof in [GRW] Prop. 3.5 used some interpolation technique
which does not seem to be available in the general case.

4. Connected groups

4.1. In this section, we consider group actions on von Neumann algebras that are imple-
mented by some unitary representation.G shall be a locally compact group, π : G→ B(H)
a strongly continuous unitary representation of G on a Hilbert space H. Let B be a
vonNeumann algebra on H that is invariant under the automorphisms induced by π,
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i.e. π(x)B π(x−1) ⊆ B for all x ∈ G. Then x ◦ T = π(x)T π(x−1) defines an action of
G on B. Examples are B = VN (G) or B = B(L2(G)) with H = L2(G) and the left
regular representation of G. We concentrate on the case where G is locally isomorphic to
SL(2,R). Proposition 4.3 will provide a method to compute the cohomology groups rather
explicitly. This is used in Example 4.5 for irreducible representations and in Example 4.6
for the regular representation. It turns out that most of these cohomology groups are
non-trivial.

Now assume that G is a connected Lie group with Lie algebra g. From the general
representation theory of Lie groups, recall that given π (as above), there exists a dense
subspace H∞ of H (the C∞-vectors) and a representation dπ of g by operators on H∞
(Gårding’s theorem, [Wa] Sec. 4.4.1, who uses the notation U∞). dπ(u)h is given as the
derivative of π(exp(tu))h at t = 0 (u ∈ g, h ∈ H∞). H∞ is a locally convex Fréchet space
and the linear operators π(x) (x ∈ G) and dπ(u) (u ∈ g) are continuous on H∞. Since
H∞ is dense in H, we can embed H into the dual space H∞′ (strictly speaking, using the
Riesz representation theorem, one has to use the complex-conjugate space of the dual)
and (using that π is unitary) there are extensions of π and dπ to H∞′. For B = B(H) let
B∞ be the space of continuous linear mappings H∞ → H∞′ (alternatively, continuous
sequilinear forms on H∞×H∞). Then B ⊆ B∞ and we have an action of the Lie algebra
g on B∞ by u ◦ T = [dπ(u), T ] = dπ(u)T − T dπ(u) for u ∈ g, T ∈ B∞ (induced by the
action of G on B in 4.1).

Lemma 4.2. Let Φ : G→ B(H) be a bounded crossed homomorphism. For u ∈ g, h1, h2 ∈
H∞ let (dΦ(u)h1| h2) be the derivative of (Φ(exp(tu))h1 |h2) at t = 0.

Then dΦ : g → B∞ is linear and satisfies dΦ([u, v]) = u ◦ dΦ(v) − v ◦ dΦ(u) for
u, v ∈ g. If C ∈ B(H) and Φ(x) = C − x ◦ C for all x ∈ G, then dΦ(u) = −u ◦ C for all
u ∈ g.

( | ) denotes the inner product of H.

Proof. First, we consider the one-parameter subgroup {exp(tu) : t ∈ R}. Applying
Johnson’s theorem (for a discrete abelian group), there exists Cu ∈ B(H) such that
Φ(exp(tu)) = Cu − exp(tu) ◦ Cu for all t ∈ R. Then existence of the derivative (defining
an element of B∞) and dΦ(u) = −u ◦ Cu follow easily.

Furthermore, from Φ(xx1x
−1) = Φ(x) + x ◦ Φ(x1) − (xx1x

−1) ◦ Φ(x), we get (for
x1 = exp(tv), v ∈ g; using [Var] (2.13.7) and the product rule) dΦ(adx(v)) = x◦dΦ(v)−
(adx (v)) ◦ Φ(x). Then for x = exp(t u), using that Φ(e) = 0 and [Var] Th. 2.13.2, it
follows that dΦ( [u, v]) = u ◦ dΦ(v)− v ◦ dΦ(u).

If G is a (connected) semisimple Lie group, we will use the Iwasawa decomposition
G = KAN (see [He] Sec.VI.5), where Z(G) ⊆ K, K/Z(G) is compact and S = AN is
solvable. We will concentrate on groups G that are locally isomorphic to SL(2,R), the
group of real 2 × 2-matrices of determinant 1. We use the notation of [HT] p. 51. We
have g = sl(2,R) (the real 2 × 2-matrices with trace 0) and write h =

(
1 0
0 −1

)
, e+ =(

0 1
0 0

)
, e− = ( 0 0

1 0 ) , k =
(

0 −1
1 0

)
, n+ = 1

2

(
1 i
i −1

)
, n− = 1

2

(
1 −i
−i −1

)
. h, e+ span the Lie

algebra s of AN, k that of K.
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Proposition 4.3. Let G be a connected semisimple Lie group locally isomorphic to
SL(2,R), let π,H be given as in 4.1. Take T ∈ B(H) and put Φ(x) = T − x ◦ T for
x ∈ K. Then the following statements are equivalent:

(i) Φ extends to a crossed homomorphism on G, satisfying Φ(x) = 0 for x ∈ AN .
(ii) T1 = k ◦ T (∈ B∞) satisfies e+ ◦ T1 = 0, h ◦ T1 = −2T1.

Proof. Assume that (i) holds (the extension is again denoted by Φ). We use the properties
of dΦ in Lemma 4.2 and [k, e+] = −h ∈ s, e+ ∈ s. Then e+ ◦ T1 = e+ ◦ (k ◦ T ) =
−e+ ◦ dΦ(k) = dΦ([k, e+])− k ◦ dΦ(e+) = 0.

Furthermore, [k, h] = 4e+ + 2k, giving h ◦T1 = −h ◦ dΦ(k) = dΦ([k, h])− k ◦ dΦ(h) =
2dΦ(k) = −2T1.

For the converse, we first extend dΦ to a linear mapping g→ B∞ by taking dΦ(u) = 0
for u ∈ s (recall that by Lemma 4.2 dΦ(k) = −k◦T ). Considering the defining relations of
the Lie algebra g, one can do similar computations as above and the assumptions on T in
(ii) turn out to be equivalent to the functional equation dΦ([u, v]) = u◦dΦ(v)−v ◦dΦ(u)
(u, v ∈ g) of Lemma 4.2. For u ∈ g, h1, h2 ∈ H∞, the function x → (x ◦ dΦ(u)h1| h2) is
C∞ on G (see [Wa] 4.4.1). Let G̃ be the universal covering group of G. It follows from
classical results of calculus on manifolds (see [Si] Prop. 4.1 for details) that there exists a
unique function Φ̃ : G̃→ B∞ with the properties: (†) Φ̃(e) = 0 and (‡) (x̃◦dΦ(u)h1|h2) is
the derivative of (Φ̃(x̃ exp(tu))h1| h2) at t = 0 for h1, h2 ∈ H∞, u ∈ g, x̃ ∈ G̃ (the action
of G̃ is the canonical lifting of the action of G). (†), (‡) and the functional equation for
dΦ imply that Φ̃ is a crossed homomorphism (“exponentiation of dΦ”, see again [Si]). The
Iwasawa decomposition of G̃ is given by (or isomorphic to) K̃AN where K̃ is the universal
covering group of K (in our case, K is one-dimensional, hence K̃ ∼= R; for G = SL(2,R),
K is the subgroup of rotations). Let q : G̃ → G be the canonical projection. It follows
from uniqueness of the solution (restricted to K̃) that Φ̃ = Φ◦q holds on K̃. This implies
that Φ̃(x̃) = 0 for x̃ ∈ ker q, hence Φ̃ induces a crossed homomorphism Φ on G̃/ ker q ∼= G,
extending the mapping Φ given on K. Furthermore, the differential equation for Φ̃ implies
that Φ(x) = 0 for x ∈ S (since dΦ = 0 on s).

g is a real Lie algebra, but the actions on H∞ and B∞ extend immediately to the
complexification gC. Then, using n± = 1

2 (h± ik)± ie+, we get an equivalent condition
to (ii) which will be easier to use in examples.

n+ ◦ T1 = −T1 +
1
2
k ◦ T1, n− ◦ T1 = −T1 −

1
2
k ◦ T1. (*)

Now we can use this to describe the cohomology groups. For B as in 4.1, let ZS(B, π)
be the space of operators T ∈ B satisfying the properties (i),(ii) above. BK denotes the
relative commutant, i.e. those T ∈ B for which k ◦ T = 0, similarly with BS . Clearly,
BK ,BS ⊆ ZS . Since K and S are amenable, every bounded crossed homomorphism
G→ B is cohomologous to one as in Prop. 4.3, defined by some T ∈ ZS(B, π). This gives
a surjective linear mapping p : ZS(B, π) → H1(L1(G),B). The crossed homomorphism
defined by T is zero iff T ∈ BK and principal iff T ∈ BK + BS . Thus H1(L1(G),B) is
isomorphic to ZS/(BK + BS).
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Below we will compute explicitly a number of cohomology groups. Before, we prove a
technical result.

Lemma 4.4. If ν = a + ib /∈ R is fixed, a ≥ 0, then Γ(j + ν)/Γ(j + ν) = j2ib + O(1/j)
uniformly for j > 0.

Proof. By [Ol] (5.05), p. 119 (see also the extensions made at the bottom of that page)
Γ(z + α)/Γ(z + β) = zα−β +

∫∞
0
e−zt φ1(t) dt when Re(z),Re(z + α) > 0,Re(β − α)

> −1. Here φ1(t) is the remainder arising in the expansion q(t) = e−αt(1− e−t)β−α−1 =
q0(α, β) tβ−α−1 + φ1(t). Thus

φ1(t) = tβ−α−1

(
e−αt

(
1− e−t

t

)β−α−1

− 1
)
.

It does not depend on z. For fixed α, β, it is continuous on ]0,∞[ and satisfies φ1(t) =
O(tRe(β−α)) for t → 0 and φ1(t) = O(e−t Re(α) + tRe(β−α−1)) for t → ∞. In particular,
when Re(α) = Re(β) ≥ 0, we get that φ1 is bounded and our claim follows easily.

Example 4.5. Take G = SL(2,R)∼, the universal covering group of SL(2,R) and π irre-
ducible, B = B(H). For the trivial representation, obviously ZS = BS = BK , consequently
H1 is trivial. For the (irreducible) principal series representations (see below) we will show
that ZS/BK is two-dimensional, (BK + BS)/BK is one-dimensional, hence H1(L1(G),B)
has dimension one. For the complementary series one can show that ZS = BK + BS
and ZS/BK has dimension one. In particular, H1(L1(G),B) is trivial. For the “discrete
series”, one gets in the same way ZS = BK , thus H1(L1(G),B) is again trivial. This
remains even true for the representations π⊕π, when π is a discrete series representation
(of SL(2,R) or some finite covering). As an exceptional case, for the mock discrete series
π±md (of SL(2,R)), one still gets ZS = BK , but for π+

md ⊕ π
−
md (the reducible principal

series representation), ZS/BK is two-dimensional and BS ⊆ BK , so H1(L1(G),B) has
dimension two.

The irreducible unitary representations of G have been described in [Pu]. By the argu-
ment of [Pu] p. 99, dπ(k) (= 2H0 in the notation of [Pu] ) has a complete system of eigen-
vectors (mutually orthogonal). By [Wa] Th. 4.4.5.15 there are (non-zero) analytic eigen-
vectors of dπ(k) and by [Wa] Th. 4.4.5.5, for any analytic vector v the closure of the small-
est g-invariant subspace containing v is π-invariant, hence (π being irreducible), the clo-
sure coincides with H (for v 6= 0). These g-invariant subspaces generated by an eigenvec-
tor of dπ(k) have been computed in [Pu] Sec. 2. It turns out (see also [HT] II. Prop. 1.1.4)
that the eigenspaces of dπ(k) are all one-dimensional (in particular, π isK-finite). The ac-
tion by dπ is given by one of the Harish-Chandra modules, listed in [HT] II.Table 1.2.10,
irreducible (infinite-dimensional) ones are only among U(ν+, ν−), Vλ, V λ (see also the
summary in [Pu] p. 102; it is well known that a finite-dimensional unitary representation
of G must be trivial, see also the argument in [Pu] p. 101).

We discuss now the case that π is given by U(ν+, ν−). By [HT] p. 94, we have a
complete orthogonal system (vj)j∈Z (⊆ H∞) for H such that

dπ(k) vj = −i (ν+ − ν− + 2j) vj , dπ(n+) vj = (ν+ + j) vj+1,

dπ(n−) vj = (ν− − j) vj−1 for all j ∈ Z.
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Let (τij) be the matrix representation for T1 with respect to (vj) (i.e. T1vj =
∑
i τijvi).

Then (by elementary computations) (∗) is equivalent to

(ν+ + i− 1) τi−1 j − (ν+ + j) τi j+1 = (i− 1− j) τij ,

(ν− − i− 1) τi+1 j − (ν− − j) τi j−1 = (j − i− 1) τij for all i, j ∈ Z.

Recall that T1 = k ◦ T which gives (T1vj | vi) = ((dπ(k)T − Tdπ(k)) vj | vi) =
(−2i)(i− j)(Tvj | vi). Hence if (τ ′ij) is the matrix for T , we have τij = (−2i)(i− j)τ ′ij , in
particular τii = 0 for all i. Then for i = j, the first recursion implies τi i+1 = c+/(ν+ + i)
(with c+ = ν+τ01), and the second one τi i−1 = c−/(ν− + i) (with c− = ν−τ0−1) for all
i ∈ Z. This allows to compute τi i+k for all k > 0 from the second recursion and τi i−k
from the first recursion (thus they are determined uniquely by c+, c− ∈ C).

For unitary representations, we have ([HT] III.Th. 1.1.3) either case A (principal se-
ries): ν+ + ν− = 1, ν+ /∈ Z or case B (complementary series): 0 < ν+, ν− < 1 (in
particular, ν+, ν− /∈ Z which holds for arbitrary irreducible representations).

Assume now that ν+ + ν− 6= 1. Then we obtain (using Pochhammer’s notation
(ξ)l = ξ(ξ + 1) . . . (ξ + l − 1))

τi i+l =
c+

ν+ + ν− − 1

(
1− (i+ 1− ν−)l

(i+ ν+)l

)
,

τi i−l =
c−

ν+ + ν− − 1

(
1− (i− 1 + ν+)l

(i− ν−)l

)
for l > 0.

By direct verification, one can show that for any c+, c− ∈ C this gives (algebraically)
solutions T1 = (τij) of (*).

For case A (ν+ = a + ib with 0 ≤ a < 1, b 6= 0) we will now show that the corre-
sponding mapping T = (τ ′ij) is bounded on H.

We assume that c+ 6= 0, c− = 0 (similar estimates apply when c+ = 0, c− 6= 0).
Since b 6= 0, we have ν+ − ν− 6= 1. and we can take c+ = 2i (ν+ + ν− − 1). We write
ν+ = ν for short, then 1− ν− = ν = a− ib.

First we consider the segment i, j > 0 of the matrix. We have for l > 0, (i + ν)l =
Γ(ν + i+ l)/Γ(ν + i), hence by Lemma 4.4

τi i+l = 2i
(

1−
(

i

i+ l

)2ib

+O

(
1
i

))
uniformly in i, l. Recall that (−2i)τ ′ij =

τij
i− j

, hence for 0 < i < j, we get

τ ′ij =
1

j − i

(
1−

(
i

j

)2ib

+O

(
1
i

))
,

and τ ′ij = 0 for i > j (since c− = 0).
We can assume that ‖vj‖ = 1 for all j ([HT] p. 95). Thus we have to check bounded-

ness of a matrix operator on l2. The remainder O
(
1/i
)
in τ ′ij is square-summable, hence

it defines a Hilbert-Schmidt operator, in particular it is bounded. The diagonal elements
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τ ′ii can be chosen arbitrarily (taking some bounded sequence) and they contribute an-
other bounded operator. So we have just to deal with the principal term 1

j−i
(
1−

(
i
j

)2ib)
where 0 < i < j. We split this into two parts. For 0 < i < j ≤ 2i, we have the uniform
estimate ∣∣∣∣ 1

j − i

(
1−

(
i

j

)2ib)∣∣∣∣ = O

(
1
j

)
.

Hence for this part, we have (up to a constant) a majorization by R = (ρij), with
ρij = 1/j for 0 < i < j ≤ 2i and 0 otherwise. This is related to the transpose of the
Cesàro operator of [BHS] and its boundedness can be shown by the Schur test as in
[BHS]Th. 1 (with pj = j−

1
2 ). For the other part, we have a majorization by R1 = (ρ′ij),

with ρ′ij = 1/(j − i) for 0 < 2i < j and 0 otherwise. Then RtR is dominated by
R2 = (ρ′′ij), with ρ′′ij = 1/max(i, j) for i, j > 0. As above, boundedness follows from
the Schur test.

The same arguments apply when i, j < 0. For j ≤ 0 < i, we get a majorization by
1/(i− j) and after a reflection on the initial space (vj 7→ v1−j), this gives just the classi-
cal Hilbert matrix which is known to define a bounded operator (e.g., again by the Schur
test).

Now we can use this to describe the cohomology in case A (with ν+ + ν− 6= 1).
BK corresponds to the space of diagonal matrices with bounded diagonal (all eigenvalues
of dπ(k) have multiplicity one). Thus we have shown that ZS/BK has dimension two.
Now take T1 = (τij) satisfying the recursion formulas above. For i 6= j, τ ′ij = τij/(i− j).
Specifying some bounded sequence τ ′ii gives T = (τ ′ij) ∈ ZS such that T1 = k ◦ T (the
coefficients τ ′ii are eliminated under the action of k). Checking now for the conditions
h ◦ T = 0 and e+ ◦ T = 0 (or equivalently that T commutes with π(AN)), it turns
out that these equations can be satisfied by choosing an appropriate sequence τ ′ii if and
only if c+ = c−. Thus (BK + BS)/BK is one-dimensional. (Alternatively, one can use
the realization of π on L2(R) which arises from the action of G by fractional linear
transformations on R, combined with some cocycle. Using Fourier transform, one can
see immediately that the restriction of π to S splits into two irreducible representations.
Hence BS is two-dimensional and modulo the centre it has dimension one). It follows that
H1(L1(G),B) has dimension one.

In the case ν+ + ν− = 1 (this is the intersection of case A and B). We put again
ν = ν+, by [HT] III.Th. 1.1.3, we can assume that 0 < ν < 1. Here the solutions of (*)
are given by

τi i+l = c+
l−1∑
m=0

1
ν + i+m

, τi i−l = −c−
l∑

m=1

1
ν + i−m

for l > 0.

These coefficients can be estimated in a similar way, using an asymptotic expansion of
the ψ-function. The results are the same.

In case B (with ν+ + ν− 6= 1) the situation is different. Observe that by [HT] p. 95
we now have ‖vi‖2/‖vi+l‖2 = (i+ ν+)l/(i+ 1− ν−)l for l > 0. Using an estimate as in
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Lemma 4.4 one can show that

1
N

∥∥∥∥ N∑
j=1

T
vj
‖vj‖

∥∥∥∥2

→∞ as N →∞

when c+ 6= c−. Thus there are non-trivial crossed homomorphisms on the infinitesimal
level for which the corresponding mapping T = (τ ′ij) is not bounded on H. As above,
the restriction of π to S splits into two irreducible representations, hence for c+ = c−

the operator must be bounded. As a result, we get in this case that ZS = BK + BS and
ZS/BK has dimension one. In particular, H1(L1(G),B) is trivial.

This covers all irreducible representations arising from U(ν+, ν−). Then there are
the modules Vλ (lowest weight modules) and V−λ (highest weight modules). By [HT]
III.Th. 1.1.5, we have λ > 0 (for λ > 1, rational, this gives discrete series representations
of certain quotients of G). As above, (*) leads to a sequence of recursion formulas for τij .
But (due to the fact that now i, j ≥ 0) it turns out that there are no non-zero solutions.

More generally, we consider the case U(0, 1) ∼= V1 ⊕ V−1 ([HT] p. 63; V1, V−1 define
the mock discrete series). Here we get the solutions

τij = c+ for i ≤ 0 < j, τij = c− for j ≤ 0 < i

and τij = 0 otherwise. The corresponding operator T is again bounded (essentially two
copies of the Hilbert matrix). Thus ZS/BK is two-dimensional. However, among these,
there is no T ∈ B(H) that satisfies also h ◦ T = 0. This would give the equations
(j − 2) τ ′j−2 j − j τ ′j−1 j+1 + (1− j) (τ ′jj − τ ′j−1 j−1) = 0 for all j. For j = 1, this is incon-
sistent with the formulas for τij above when c+ 6= 0. Similarly for c− 6= 0. It follows that
BS ⊆ BK , so H1(L1(G),B) has dimension two.

Example 4.6. For G = SL(2,R), we consider H = L2(G) with the regular represen-
tation and B = VN (G) or B(H). Using a disintegration ([Di] Th. 8.4.2, Prop. 18.7.4),
the regular representation contains as a subrepresentation a direct integral of principal
series representations defined by the modules U(ν+, ν−) with ν+ = ν− = 1

2 + ib and
ν+ = ν−−1 = ib, b ≥ 0. It follows from the formulas given in Example 4.5 that the basic
solutions depend continuously on ν+, hence we can generate decomposable elements of
ZS by multiplying the basic solutions with appropriate measurable weights. This gives a
subspace isomorphic to L∞([0,∞[×{0, 1

2}) in H1(L1(G),VN (G)).
Finally, when B = B(L2(G)), one can consider arbitrary decomposable operators (not

only those in VN (G)). This corresponds to countable sums of modules U(ν+, ν−) (see the
Plancherel theorem, [Di] Th. 18.8.1). One gets the same recurrences as in Example 4.5, for
c± one can now choose arbitrary operators from B(l2). This gives a subspace isomorphic
to L∞([0,∞[×{0, 1

2})⊗B(l2) in H1
(
L1(G), B(L2(G))

)
.

Acknowledgements. I wish to thank the referee for carefully reading the paper.
This paper is based on a lecture delivered at the 19th International Conference on

Banach Algebras held at Będlewo, July 17–27, 2009. The support for the meeting by
the Polish Academy of Sciences, the European Science Foundation, and the Faculty of



216 V. LOSERT

Mathematics and Computer Science of the Adam Mickiewicz University at Poznań is
gratefully acknowledged.
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