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Abstract. In a JBW ∗-triple, i.e., a symmetric complex Banach space possessing a predual,
the set of tripotents is naturally endowed with a partial order relation. This work is mainly
concerned with this partial order relation when restricted to the subset R(A) of tripotents in
a JBW ∗-triple B formed by the range tripotents of the elements of a JB∗-subtriple A of B.
The aim is to present recent developments obtained for the poset R(A) of the range tripotents
relative to A, whilst also providing the necessary account of the general theory of the lattice of
tripotents. Although the leitmotiv might be described as seeking to find conditions under which
the supremum of a subset of range tripotents relative to A is itself a range tripotent relative to A,
other properties are also investigated. Amongst these is the relation between range tripotents
and partial isometries and support projections in W ∗-algebras.

1. Introduction. Tripotents have played an important rôle in the research concerning
JBW ∗-triples. Although they allow for investigation under many perspectives, vastly
documented in the literature, an interesting characteristic of the set of tripotents in
a JBW ∗-triple is that it possesses a natural ordering. In fact, the set of tripotents,
together with this partial order relation and with a greatest element adjoined, forms a
complete lattice, whose properties have been comprehensively investigated (cf. [4], [9]). As
a concrete situation, one has, for example, the set of partial isometries in a W ∗-algebra,
which coincides exactly with the set of tripotents in the JBW ∗-triple formed by the
algebra, and thus is automatically endowed with a partial order relation.

Recently, tripotents and their ordering have appeared again, for example, in the rela-
tively new field of operator spaces (cf. [5]). In particular, the suprema of increasing nets
of range tripotents lying in the bidual of a ternary ring of operators have been given a
special emphasis in the study of positivity in operator spaces (cf. [5]). The definition of
the range tripotent of an element in a JBW ∗-triple, due to Edwards and Rüttimann,
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appears in [9], although under a different name, and is akin to the concept of range
projections in JBW -algebras.

The present work is mainly concerned with the subset R(A) of tripotents in a JBW ∗-
triple B formed by the range tripotents of the elements of a JB∗-subtriple A of B, when
endowed with the partial ordering inherited from the set of all tripotents. The aim is to
give an overview of recent developments obtained for the posetR(A) whilst also providing
the necessary account of the general theory of the lattice of tripotents as to render this
work as self-contained as possible.

The content of the remaining two sections is as follows. Section 2 mostly includes
classical facts on JB∗-triples and JBW ∗-triples appearing in the bibliography, being the
notions of order and orthogonality amongst tripotents and properties concerning these
notions outlined. Some well-known facts on JB∗-algebras and JBW ∗-algebras are also
included here to facilitate future reference.

The definition of the range tripotent of an element a in a JBW ∗-triple B and the
definition of range tripotent relative to a JB∗-subtriple A of B are made in Section
3. A crucial result appearing in this section is Lemma 3.3, which identifies the range
tripotent of a with its range projection in a particular JBW -algebra contained in B.
This lemma leads to establishing some circumstances in which the supremum of a subset
of range tripotents relative to A is itself a range tripotent relative to A. As a consequence,
it is shown that the weak* limits of a particular kind of increasing sequences in the closed
unit ball of A are necessarily range tripotents relative to A.

It is also investigated in Section 3 how the range tripotents are mapped under iso-
morphisms and how they relate to the partial isometries and the support projections in
W ∗-algebras. The last results of this section, namely, Theorem 3.6, Corollary 3.7 and
Proposition 3.8, are essentially contained in [19].

2. Preliminaries. This section mainly contains general facts concerning JB∗-triples
and JBW ∗-triples needed in the sequel. Given the interplay between these spaces and
JB∗-algebras and JBW ∗-algebras, the section begins with selected remarks about these
algebras.

Recall that a Jordan *-algebra A, with a multiplication ◦, is said to be a JB∗-algebra
if it is a complex Banach space whose norm satisfies

(i) ‖a ◦ b‖ ≤ ‖a‖‖b‖,
(ii) ‖a∗‖ = ‖a‖,
(iii) ‖{a a a}‖ = ‖a‖3;

for all elements a and b in A. Here {. . . } denotes the Jordan triple product on A defined,
for all a, b and c, by

{a b c} = a ◦ (b∗ ◦ c)− b∗ ◦ (c ◦ a) + c ◦ (a ◦ b∗).

A JB∗-algebra which is the dual of a Banach space is said to be a JBW ∗-algebra.
The self-adjoint parts of JB∗-algebras and JBW ∗-algebras, i.e., the subset of the self-
adjoint elements, are called JB-algebras and JBW -algebras, respectively. JB-algebras
and JBW -algebras can be defined independently but it has been shown that there ex-
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ists a one-to-one correspondence between these algebras and the self-adjoint parts of the
JB∗-algebras and JBW ∗-algebras, respectively (cf. [8, 13, 23]).

Denote by Asa the self-adjoint part of A and by A+ the cone formed by the positive
elements, i.e., the squares of the elements lying in Asa. The positive cone allows for a
partial order ≤ to be defined in Asa in the usual manner. In the case of a JBW -algebra,
the positive cone is weak* closed, the algebra is monotone complete and a bounded
increasing net converges to its supremum in the weak* topology (cf. [8, 13]).

The projections in a JBW ∗-algebra are the self-adjoint elements which are also idem-
potent. The set of projections is a complete lattice for the partial order mentioned above.
Furthermore, two projections p and q are said to be orthogonal if

p ◦ q = 0.

The lattice of projections together with this orthogonality relation becomes a complete
orthocomplemented lattice.

The range projection pa of an element a in the JBW ∗-algebra A is defined to be the
least projection p for which

p ◦ a = a.

The range projection of a is the unit of the JBW ∗-subalgebra generated by a. (For
the general theory of JB∗-algebras and JBW ∗-algebras, and of their self-adjoint parts,
JB-algebras and JBW -algebras, respectively, the reader is referred to [1, 8, 13, 22, 23].)

A complex vector space A endowed with a triple product, i.e. a mapping (a, b, c) 7→
{a b c}, from A×A×A to A, which is symmetric and linear in the outer variables and
conjugate linear in the middle variable, is said to be a Jordan ∗-triple if the triple product
satisfies the identity

[D(a, b), D(c, d)] = D({a b c}, d)−D(c, {b a d}), (1)

where [ , ] denotes the commutator and D is the mapping, from A × A to the space of
linear operators on A, defined by

D(a, b)c = {a b c}.

A Jordan ∗-triple A is said to be a JB∗-triple if A is a Banach space, the triple product
is continuous and, for each element a in A, the operator D(a, a) is hermitian with non-
negative spectrum and

‖D(a, a)‖ = ‖a‖2.

A JB∗-triple is said to be a JBW ∗-triple if A is the dual of a Banach space A∗, called the
predual of A. The predual is unique up to isometry and the triple product is separately
weak* continuous (cf. [3, 11]) and jointly strong* continuous on bounded sets ([20]). The
bidual of a JB∗-triple is a JBW ∗-triple.

A JB∗-subtriple B of the JB∗-triple A is a norm closed subspace of A such that
{B B B} is contained in B. Examples of JB∗-triples and JBW ∗-triples are C∗-algebras
and W ∗-algebras, respectively, for the triple product defined by

{a b c} =
1
2

(ab∗c+ cb∗a), (2)
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for all elements a, b and c. An element u of a JB∗-triple A is said to be a tripotent if

{u u u} = u.

The space A splits into the direct sum

A = A0(u)⊕A1(u)⊕A2(u) ,

called the Peirce decomposition of A relative to u, where the Peirce spaces Aj(u) are
defined, for j = 0, 1, 2, by

Aj(u) =
{
a ∈ A : D(u, u)a =

1
2
ja

}
.

These spaces satisfy the Peirce arithmetic, namely,

{Aj(u) Ak(u) Al(u)} ⊆ Aj−k+l(u),

if j − k + l = 0, 1 or 2, and

{Aj(u) Ak(u) Al(u)} = {0},

otherwise. Furthermore, the Peirce spaces are JB∗-subtriples, which are weak* closed if
A is a JBW ∗-triple, and such that

{A2(u) A0(u) A} = {A0(u) A2(u) A} = {0}. (3)

The space A2(u) when endowed with the product

a ◦u b = {a u b}

and the involution
a∗ = {u a u}

is a JB∗-algebra and, if A is a JBW ∗-triple, A2(u) becomes a JBW ∗-algebra.

Proposition 2.1. Let A be a JB∗-triple and let u and v be tripotents in A. The following
assertions are equivalent:

(i) u lies in A0(v),
(ii) v lies in A0(u),
(iii) D(v, u) = 0,
(iv) D(u, v) = 0.

Proof. If u lies in A0(v), then the equalities (3) and the fact that v lies in A2(v), yield

D(u, u)v = 0

and, thus, v lies in A0(u). Consequently, the assertion (i) implies the assertion (ii).
To see that (ii) implies (iii), observe that, since u lies in A2(u), it follows immediately

from (3) that
D(v, u) = 0.

To show that (iii) implies (iv), notice that by the symmetry of the triple product in
the outer variables,

D(v, u)u = D(u, u)v = 0

and, hence, v lies in A0(u). Therefore, by (3), the operator D(u, v) coincides with 0.
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Finally, (iv) implies (i) because, since D(u, v) coincides with zero, it follows that

D(u, v)v = D(v, v)u = 0

and clearly u lies in A0(v).

Two tripotents u and v are said to be orthogonal if v lies in A0(u). A finite or infinite
family of tripotents is called an orthogonal family of tripotents if it consists of tripotents
which are pairwise orthogonal. This notion of orthogonality allows for establishing a
partial order relation in the set U(A) of all tripotents lying in A in the following manner.
A tripotent u is said to be less than or equal to a tripotent v, written u ≤ v, if v − u
lies in A0(u). If u ≤ v, then the tripotent u lies in the JBW ∗-algebra A2(v) and is a
projection in this algebra. Moreover, the converse is also true, since it has been shown
that a tripotent u which is a projection in A2(v) is necessarily a tripotent less than or
equal to v. Furthermore, if u and w are tripotents less than or equal to v, then u ≤ w if,
and only if, the same inequality holds also when considering u and w as projections in
the JBW ∗-algebra A2(v) (cf. [9], Lemma 2.4).

It is not difficult to realise that in a C∗-algebra the tripotents are exactly the partial
isometries, and an easy application of Proposition 2.1 yields that two partial isometries
u and v are orthogonal tripotents if, and only if, the initial projections u∗u and v∗v are
orthogonal and the final projections uu∗ and vv∗ are orthogonal.

As proved in [4], it is possible to make the assertions contained in the next lemma.

Lemma 2.2. Let A be a JBW ∗-triple. Then the following assertions hold.

(i) If {ui}i∈I is a family of tripotents in A having an upper bound, then it has a
supremum.

(ii) If (uj) is an increasing net of tripotents in A, then (uj) converges to its supremum
in the weak* topology.

Proof. (i) This assertion is an immediate consequence of [9], Theorem 4.4.
(ii) The net (uj) has a supremum u in U(A) as a direct consequence of [9], Theorem 4.6.

Hence (uj) is an increasing net of projections lying in the self-adjoint part A2(u)sa of
the JBW ∗-algebra A2(u). By the general theory of JBW ∗-algebras, it is known that
the self-adjoint part of a JBW ∗-algebra is a JBW -algebra and, consequently, a bounded
increasing net in A2(u)sa converges to its supremum in the weak* topology of this JBW -
algebra (cf. [8, 13]). Since this topology is the restriction of the weak* topology of A, the
result follows.

A comprehensive account of the general theory of the infima and the suprema of
subsets of tripotents in U(A) is beyond the scope of this work. The interested reader is
referred to [4, 9].

A notion required in the sequel is the concept of isomorphism between JBW ∗-triples.
A linear mapping T : B → C between JBW ∗-triples is said to be a homomorphism
if T{a b c} coincides with {Ta Tb Tc}, for all elements a, b and c lying in B, and a
bijective homomorphism is said to be an isomorphism. A homomorphism is necessarily
continuous, maps tripotents to tripotents and preserves the order amongst tripotents,
i.e., if u and v lie in U(B) and u ≤ v, then, in U(C), Tu ≤ Tv.
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3. Range tripotents and order. The JB∗-subtriple generated by an element a of
norm one in a JBW ∗-triple A coincides with the norm closure A(a) of the linear span
A(a) of the powers a2n+1, being the powers of a defined recursively by

a1 = a, a2n+1 = {a a2n−1 a}.

As a JB∗-triple, A(a) is isomorphic, and therefore isometrically isomorphic, to the com-
mutative C∗-algebra C0(Ω) of continuous functions vanishing at zero, defined on a locally
compact subset of ]0, 1], (cf. [9, 12, 14, 16]). The image of a under this isomorphism is
the function f(t) = t.

Let A(a)
w∗

be the weak* closure of the space A(a). Clearly, the JBW ∗-subtriple

A(a)
w∗

generated by a is isomorphic as a JBW ∗-triple to a commutative W ∗-algebra
Ba containing the C∗-algebra C0(Ω). In the following, by a slight abuse of notation, no

distinction will be made between the spaces A(a)
w∗

and Ba or between their elements.
The proposition below relates the partial ordering existing in the complete lattice of

projections in the W ∗-algebra Ba with the one existing for tripotents in A(a)
w∗

.

Proposition 3.1. Let A be a JBW ∗-triple, let a be an element of A of unit norm, let
A(a)

w∗

be the JBW ∗-subtriple generated by a and let Ba be the commutative W ∗-algebra

isomorphic to A(a)
w∗

. Then the following assertions hold.

(i) For all projections p and q in Ba, p ≤ q if, and only if, p is a tripotent less than or
equal to the the tripotent q.

(ii) Let {pj}j∈Λ be an increasing net of projections in the W ∗-algebra Ba. Then the
supremum of the net {pj}j∈Λ taken in the lattice of projections coincides with the

supremum existing in the set of tripotents in A(a)
w∗

.

Proof. To prove assertion (i), observe that, if p ≤ q are projections lying in Ba, then q−p
is a projection orthogonal to p. It follows that {p p q − p} coincides with zero and q − p
is a tripotent orthogonal to p, or equivalently the tripotent p is less than or equal to q.

Conversely, if p and q are tripotents such that p ≤ q, then q−p is a tripotent orthogonal
to p, i.e.,

0 = {p p (p− q)} = {p p q} − p =
1
2

(ppq + qpp)− p.

Since the algebra Ba is commutative, the previous equality yields that qp coincides with p.
Therefore, p is a projection less than or equal to q.

As to the remaining assertion, let p denote the supremum sup{pj}j∈Λ in the complete
lattice of projections in Ba, and recall that the net converges in the weak* topology to p.
The net {pj}j∈Λ is also an increasing net of tripotents for which p is an upper bound. By
Lemma 2.2, the net {pj}j∈Λ has a supremum u in the set of tripotents and, moreover,
converges to this supremum in the weak* topology. Therefore p coincides with u.

Proposition 3.2. Let A be a JBW ∗-triple and let a be an element in A with unit norm.
Then, there exists a smallest tripotent r(a) in U(A) such that a is a positive element in
the JBW ∗-algebra A2(r(a)) and a is less than or equal to r(a) in this algebra.

The proof below is based on the proof of [10], Lemma 3.3.
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Proof. For all non-negative integers n, the image of a2n+1 under the isomorphism men-
tioned above is the function f(t) = t2n+1 (cf. [9, 12, 14, 16]). Since there exists a sequence
of real odd polynomials converging pointwisely to the characteristic function of Ω\{0}, it
follows that there exists a sequence of real odd polynomials in a converging to a tripotent
r(a) in the weak* topology.

Clearly a is a self-adjoint element in the JBW ∗-algebra A2(r(a)), since

{r(a) r(a) a} = a and {u a u} = a.

Moreover, if b is the image of the function g(t) =
√
t under the isomorphism, then it can

be shown analogously that b is a self-adjoint element in A2(r(a)) whose square coincides
with a. It follows that a lies in the positive cone of the JBW ∗-algebra A2(r(a)). Similarly,
it can be shown that r(a)−a is a positive element in the JBW ∗-algebra A2(r(a)), which
ends the existence part of the proof.

Suppose now that u is a tripotent for which a is a positive element in the JBW ∗-
algebra A2(u). The tripotent r(a) lies in A2(u) because it is the weak* limit of a sequence
in the subspace A(a) of A2(u).

The weak* limit of the sequence (a2n+1) is a tripotent v, whose image coincides with
the characteristic function of {1}. By the Jordan triple identity (1), it follows that

a2n+1 = {u a2n+1 u}, b2n+1 = {u b2n+1 u},

and
a2n+1 = {b2n+1 u b2n+1}.

Taking weak* limits yields that v is positive and r(a) is self-adjoint in A2(u) (cf. [3]).
Clearly, v ≤ u and, by [9], Lemma 2.4, v is a projection in the JBW ∗-algebra A2(u).
Similarly, since u − a is a positive element in A2(u), it follows that the weak* limit
of the sequence

(
(u− a)2n+1

)
is also a projection in this algebra. In the associative

JBW ∗-algebra generated by a and u, the sequence
(
u− (u− a)2n+1

)
converges to r(a).

Consequently, u − r(a) coincides with v and therefore u − r(a) is a positive element
of A2(u). Hence, by [9], Lemma 2.4, the tripotent r(a) is less than or equal to u.

Proposition 3.2 allows for the possibility of assigning a tripotent to each element of
a JBW ∗-triple A in the following manner. The range tripotent r(a) of an element a is
defined to be the least tripotent r(a) such that a is a positive element in the JBW ∗-
algebra A2(r(a)).

The next lemma establishes a relation between range tripotents and range projections.
Although the lemma may be found in [19], its proof is included here for the reader’s
convenience.

Lemma 3.3. Let A be a JBW ∗-triple and let a be an element in A. Then, if u is a
tripotent for which a is positive in the JBW ∗-algebra A2(u), the range projection of a in
A2(u) coincides with the range tripotent r(a).

Proof. Suppose, without loss of generality, that a has unit norm. Since a is positive in
the JBW ∗-algebra A2(u), the range tripotent of a is less than or equal to u. Hence the
powers of a in the algebras A2(u)sa and A2(r(a))sa coincide and lie in A2(r(a))sa. By
spectral theory, the JBW -subalgebra of A2(u)sa generated by a and u is isometrically
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isomorphic to a monotone complete algebra C(X) of continuous real functions on a
compact Hausdorff space X. Denote by f(a) the inverse image of a function f through
this isomorphism.

Let (fn) be a sequence of continuous real functions defined by

fn(t) =


1, |t| ≥ 1/n,
nt, 0 ≤ t < 1/n,
−nt, −1/n < t ≤ 0.

By [13], Lemma 4.2.6, the sequence fn(a) converges in the weak* topology to the range
projection pa of a in A2(u)sa. The Stone–Weierstrass Theorem ensures that, for each n,
there exists a sequence of polynomials (pn,k) vanishing at zero and converging in norm
to fn, on X. For each n, choose kn such that

‖fn − pn,kn
‖ < 1

n

and let (qn) be the sequence defined by qn = pn,kn
. Let ϕ be any element in the predual

of A2(u)sa. Given a positive ε, it is possible to choose n such that

|ϕ(qn(a)− pa)| = |ϕ(qn(a)− fn(a) + fn(a)− pa)|
≤ |ϕ(qn(a)− fn(a))|+ |ϕ(fn(a)− pa)| ≤ ε.

It follows that (qn(a)) converges to the range projection pa of the element a in the weak*
topology. As a consequence pa lies in the weak* closure of the span of the powers of a
and, thus, this projection lies in the smallest JBW -subalgebra of A2(u)sa containing a.
Observe that pa is the unit in this JBW -subalgebra.

Let W (a) denote the smallest JBW -subalgebra of A2(r(a))sa containing a. This al-
gebra coincides with the weak* closure of the span of the powers of a. Observing that
the weak* topologies in A2(r(a))sa and in A2(u)sa coincide with the restriction, to those
algebras, of the weak* topology of the JBW ∗-triple A, it follows that the smallest JBW -
subalgebra of A2(u)sa containing a is also W (a). Since, by [9], Lemma 3.1, the range
tripotent r(a) is the unit of W (a), the lemma is proved.

A direct consequence of the Lemma 3.3 is the corollary below, which asserts that
the range tripotent of an element a in a W ∗-algebra is precisely the partial isometry
appearing in the polar decomposition of a.

Corollary 3.4. Let A be a W ∗-algebra, let a be an element in A and let a = v|a| be
the polar decomposition of a. Then, the range tripotent r(a) coincides with the partial
isometry v.

Proof. The W ∗-algebra A, when endowed with the triple product defined by the equal-
ity (2), is a JBW ∗-triple, and A2(v) together with the product ◦v, defined for all b and
c in A2(v), by

b ◦v c = {b v c},

is a JBW ∗-algebra. Straightforward computations show that a is positive in A2(v).
Let W (a) be the JBW -subalgebra, of the JBW -algebra Asa, generated by a. The

algebra W (a) is the weak* closure of the span of the powers a(n) of a in the JBW -al-
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gebra Asa. The polar decomposition of a in the W ∗-algebra A yields that

a(n) = v|a|n,

where .n denotes the n-th power taken in the W ∗-algebra A. It follows that

W (a) = vC(|a|)
w∗

,

where C(|a|) is the span of the powers |a|n and the superscript w∗ denotes the weak*

closure. Hence v(C(|a|)
w∗

) is a subalgebra contained in W (a), and, since C(|a|)
w∗

is
unital, the partial isometry v lies in W (a) and, thus, is the unit of this algebra. Hence v
is the range projection of a in A2(v). Now Lemma 3.3 yields that the partial isometry v
coincides with the range tripotent r(a).

Recall that the support projection of a self-adjoint element a in a W ∗-algebra is the
least projection p for which a = ap. The next proposition relates the support projection
of a positive element b of the W ∗-algebra Ba, defined at the beginning of this section,
with its range tripotent r(b) when alternatively the element b is seen as lying in the

JBW ∗-triple A(a)
w∗

.

Proposition 3.5. Let A be a JBW ∗-triple, let a be an element of A of unit norm,
let A(a)

w∗

be the JBW ∗-subtriple generated by a and let Ba be the commutative W ∗-

algebra isomorphic to A(a)
w∗

. Then, the suport projection of any positive element b in

the W ∗-algebra Ba coincides with its range tripotent in A(a)
w∗

.

Proof. Let b be an element lying in A(a)
w∗

such that b is positive in the commutative

W ∗-algebra Ba which is isomorphic as a JBW ∗-triple to A(a)
w∗

. The partial isometry
appearing in the polar decomposition of b is, in this case, its support projection s(b) and,
by Corollary 3.4, the range tripotent r(b) coincides with s(b).

Let B be a JBW ∗-triple, let A be a JB∗-subtriple of B and consider the set U(B)
of tripotents in B equipped with the partial ordering defined in Section 2. A tripotent u
lying in B is said to be a range tripotent relative to A if there exists a lying in A such that
u coincides with r(a). The set of range tripotents relative to A will be denoted by R(A).
To avoid unnecessarily heavy notation, sometimes the range tripotents relative to A will
be simply called range tripotents.

A natural question is to ask in what circumstances the supremum of a set of range
tripotents is itself a range tripotent. The theorem below is a first step to answer this
question.

Theorem 3.6. Let B be a JBW ∗-triple, let A be a JB∗-subtriple of B and let {ui}i∈Λ be
either a countable orthogonal family of range tripotents relative to A or a finite family of
range tripotents relative to A having an upper bound. Then, the supremum ∨i∈Λui lies in
R(A) and, moreover, there exists a family {ai}i∈Λ in A such that, for all i, the tripotent
r(ai) coincides with ui and ∨

i∈Λ

ui = r
(∑

i∈Λ

ai

)
,

where the series converges in norm.
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Proof. It will be supposed that not all tripotents are equal to zero. If they were, the
assertion would trivially hold.

In the case of the family of tripotents being finite, let u1, u2, . . . , un be tripotents in
R(A) having an upper bound in U(B) and denote by w the supremum of the family,
which exists by Lemma 2.2. Let ai, for all i = 1, 2, . . . , n, be such that ui = r(ai). Since,
for all i = 1, 2, . . . , n, the element ai is a positive element in B2(ui) and ui ≤ w, it follows
that ai is positive in B2(w) and hence also

∑n
i=1 ai is positive in B2(w).

Since r(
∑n

i=1 ai) is the least tripotent u′ for which
∑n

i=1 ai is positive in B2(u′), it
follows that

r
( n∑

i=1

ai

)
≤ w.

By [10], Lemma 3.3,

0 ≤
∑n

i=1 ai

‖
∑n

i=1 ai‖
≤ r
( ∑n

i=1 ai

‖
∑n

i=1 ai‖

)
= r
( n∑

i=1

ai

)
in the JBW ∗-algebra B2(r(

∑n
i=1 ai)).

Since the tripotent r(
∑n

i=1 ai) is less than or equal to the tripotent w, the positive
cone of the JBW ∗-algebra B2(r(

∑n
i=1 ai)) is contained in B2(w)+. Thus it follows that

0 ≤ ai

‖
∑n

i=1 ai‖
≤

∑n
i=1 ai

‖
∑n

i=1 ai‖
≤ r
( n∑

i=1

ai

)
,

also in the JBW ∗-algebra B2(w).
By [13], 4.1.13, for all i = 1, 2, . . . , n, the range projection of ai/‖

∑n
i=1 ai‖ is less than

or equal to r(
∑n

i=1 ai) whence, by Lemma 3.3,

ui ≤ r
( n∑

i=1

ai

)
in B2(w). It follows that

r
( n∑

i=1

ai

)
◦w

n∑
i=1

ui =
n∑

i=1

(
r
( n∑

i=1

ai

)
◦w ui

)
=

n∑
i=1

ui

in the JBW ∗-algebra B2(w). Therefore the range projection of
∑n

i=1 ui is less than or
equal to r(

∑n
i=1 ai). By [4], Proposition 3.9, the range projection of

∑n
i=1 ui coincides

with the supremum w and, therefore,

w ≤ r
( n∑

i=1

ai

)
.

This finally yields that w coincides with r (
∑n

i=1 ai).
Suppose now that {ui}i∈Λ is a countable orthogonal family of range tripotents. A

direct application of the proof above shows that the assertion holds for finite families.
Suppose then that Λ coincides with the set of positive integers. Since, for all n, the
tripotent un is a range tripotent, there exists a sequence (an) contained in A satisfying

un = r(an), ‖an‖ ≤
1

2n
.
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Let (bn) be the increasing Cauchy sequence in the JBW ∗-algebra B2(u) defined, for
all positive integers n, by

bn =
n∑

i=1

ai.

Observing that, by [9], Lemma 2.4, the sequence (un) is an orthogonal family of projec-
tions in the JBW -algebra B2(u)sa and applying Lemma 3.3 and [13], Lemma 4.2.2, it
follows that, in the closed unit ball of the JBW ∗-algebra B2(u)sa,

0 ≤ bn ≤
n∑

i=1

ui ≤ u.

Observe that (bn) is a norm convergent sequence whose limit b lies in the closed unit ball
of A and is the supremum of the sequence (bn). By [8], Lemma 3.1, the positive cone in
the JBW ∗-algebra B2(u) is weak* closed and it follows that b is a positive element of
this algebra. Hence, by the definition of range tripotent, r(b) is less than or equal to u.

To prove the converse assertion, observe that, in the JBW ∗-algebra B2(u), for all
positive integers n, by [10], Lemma 3.3,

0 ≤ bn ≤ b ≤ r(b),

and, using the result previously proved for finite families of range tripotents, it follows
that

n∨
i=1

ui =
n∑

i=1

ui = r(bn) ≤ r(b)

in the same algebra. Therefore, in the JBW ∗-algebra B2(u), r(b) is an upper bound
for the family {ui}i∈N, and, hence, u is less than or equal to r(b). Consequentially, r(b)
coincides with u, as required.

In spite of the good behaviour of the range tripotents displayed in the theorem above,
it should be noted that this is not a general feature, namely in what concerns continuity
properties, for example. The norm limit of the sequence (an) of the 2×2 matrices, defined
by

an =
[

1 0
0 1

n

]
,

has a range tripotent different from the limit of the corresponding sequence of range
tripotents. Nevertheless, one can go as further as to saying:

Corollary 3.7. Let B be a JBW ∗-triple and let A be a JB∗-subtriple of B. Then the
following assertions hold.

(i) If (un) is an increasing sequence of range tripotents relative to A such that, for
all n in N, the tripotent un+1 − un lies in R(A), then the supremum of the set of
tripotents {un : n ∈ N} is a range tripotent relative to A.

(ii) If u is a tripotent which is the weak* limit of an increasing sequence (an) lying in
B2(u)+

1 ∩ A and such that, for all n in N, r(an+1)− r(an) lies in R(A), then u is
a range tripotent relative to A.



244 L. OLIVEIRA

In the above corollary, B2(u)+
1 denotes the positive elements of the closed unit ball

B2(u)1 of the JBW ∗-algebra B2(u).

Proof. Denote by u the supremum of the set of tripotents {un : n ∈ N} which, by
Lemma 2.2, exists and satisfies

u = w∗- limui.

Since (un) is an increasing sequence of range tripotents, for all positive integers n,

un+1 = un + wn+1,

where wn+1 is a tripotent orthogonal to un. Hence, letting w1 coincide with 0, the sequence
(wn) forms an orthogonal family of range tripotents relative to A, whose supremum w,
by Theorem 3.6, is also a range tripotent relative to A.

The supremum u satisfies the equality

u = w∗- limun = w∗- lim
(
u1 +

n∑
i=2

wi

)
= u1 + w∗- lim

n∑
i=2

wi = u1 + w.

Thus u is the sum of two range tripotents and, as a consequence of Theorem 3.6, is a
range tripotent.

To prove assertion (ii), observe that if there exists an increasing sequence (an) in
B2(u)+

1 ∩ A such that u = w∗- lim an, then, by Lemma 3.3 and the theory of JBW -
algebras, the corresponding sequence of range tripotents (r(an)) is also an increasing
sequence in the JBW ∗-algebra B2(u).

Since, for all n,
0 ≤ an ≤ r(an) ≤ u,

it follows that u = w∗- lim r(an) and, by (i) in this proposition, the tripotent u is a range
tripotent relative to A.

An interesting question motivated by Corollary 3.7 is whether the identification of
some range tripotents relative to the JB∗-subtriple A as weak* limits of certain nets of
positive elements lying in the open unit ball of the JBW ∗-triple B might be pursued
further.

A description of how range tripotents are mapped under homomorphisms seems not
to be available yet, but for isomorphisms the following holds.

Proposition 3.8. Let B and C be JBW ∗-triples, let A be a JB∗-subtriple of B and let
T : B → C be an isomorphism. Then, T maps range tripotents relative to A to range
tripotents relative to T (A) and, for all elements a in A, Tr(a) equals r(Ta). Moreover,
T (R(A)) coincides with R(T (A)).

Proof. Let a be an element of A. Then, by the definition of range tripotent, there exists
an element b in B2(r(a)) such that

a = {b r(a) b} and b = {r(a) b r(a)}.

It follows that the images of a and b under the isomorphism T satisfy

Ta = {Tb Tr(a) Tb} and Tb = {Tr(a) Tb Tr(a)},
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which implies that the range tripotent r(Ta) is less than or equal to Tr(a). Therefore,
by [9], Lemma 2.4, the tripotent r(Ta) is a projection in C2(Tr(a)) such that

r(Ta) ◦Tr(a) Tr(a) = r(Ta).

Hence, applying the inverse mapping T−1 to the equality above, T−1r(Ta) is a projection
in the JBW∗-algebra B2(r(a)) for which

T−1r(Ta) ◦r(a) a = a.

Since r(a) is the least projection p in A2(r(a)) for which p ◦r(a) a coincides with a, it
follows that r(Ta) and Tr(a) coincide.

Finally, it should be noted that many questions regarding the subjects under scrutiny
in this work remain unanswered. For example, one may ask in what way Theorem 3.6
may be extended. Indeed, in a JBW ∗-triple B, what requirements must a subset of
range tripotents relative to a JB∗-subtriple A satisfy so that its supremum remains a
range tripotent relative to A? Or, still, how are these range tripotents mapped under
homomorphisms?
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