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Abstract. For an increasing sequence (ωn) of algebra weights on R+ we study various properties
of the Fréchet algebra A(ω) =

T
n L

1(ωn) obtained as the intersection of the weighted Banach
algebras L1(ωn). We show that every endomorphism of A(ω) is standard, if for all n ∈ N there
exists m ∈ N such that ωm(t)/ωn(t) → ∞ as t → ∞. Moreover, we characterise the continuous
derivations on this algebra: Let M(ωn) be the corresponding weighted measure algebras and
let B(ω) =

T
n M(ωn). If for all n ∈ N there exists m ∈ N such that tωn(t)/ωm(t) is bounded

on R+, then the continuous derivations on A(ω) are exactly the linear maps D of the form
D(f) = (Xf) ∗ µ for f ∈ A(ω), where µ ∈ B(ω) and (Xf)(t) = tf(t) for t ∈ R+ and f ∈ A(ω).
If the condition is not satisfied, we show that A(ω) has no non-zero derivations.

1. Introduction. In this paper we will study a class of Fréchet algebras, which are
intersections (or more formally projective limits) of decreasing sequences of weighted
convolution Banach algebras on the half-line. We start by recalling the definition and
some basic properties of these algebras (see for instance [16] for further details).

Let L1(R+) be the Banach space of (equivalence classes of) integrable functions f
on R+ = [0,∞) with the norm ‖f‖ =

∫∞
0
|f(t)| dt. A positive Borel function ω on R+

is called an algebra weight if (a) ω and 1/ω are locally bounded on R+, (b) ω is right
continuous on R+, (c) ω is submultiplicative, that is ω(t + s) ≤ ω(t)ω(s) for t, s ∈ R+,
and (d) ω(0) = 1. We then define L1(ω) as the weighted space of functions f on R+ for
which fω ∈ L1(R+) with the inherited norm

‖f‖ω =
∫ ∞

0

|f(t)|ω(t) dt.
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With the usual convolution product

(f ∗ g)(t) =
∫ t

0

f(s)g(t− s) ds for t ∈ R+ and f, g ∈ L1(ω)

it is well known that L1(ω) is a commutative Banach algebra. Similarly, the space M(ω)
of locally finite complex Borel measures µ on R+ for which

‖µ‖ω =
∫ ∞

0

ω(t) d|µ|t <∞

is a Banach algebra under convolution and contains L1(ω) as a closed ideal.
We are now ready to define the Fréchet algebras which we will study. Throughout this

paper ω = (ωn) will denote an increasing sequence of algebra weights on R+ and we let

A(ω) =
⋂
n

L1(ωn) and B(ω) =
⋂
n

M(ωn).

Equipped with the increasing sequence of norms ‖µ‖n = ‖µ‖ωn
(µ ∈ B(ω)), it is easily

seen thatA(ω) andB(ω) become Fréchet algebras. More abstractly, these Fréchet algebras
can be viewed as projective limits of the weighted Banach algebras in question (with the
inclusion maps). In particular, sets of the form {g ∈ A(ω) : ‖g‖L1(ωm) < δ} with δ > 0
and m ∈ N form a base at zero for the projective limit topology on A(ω). For a sequence
(fk) in A(ω) we thus have fk → 0 in A(ω) as k →∞ if and only if fk → 0 in L1(ωn) as
k →∞ for every n ∈ N. We refer to Michael’s original memoir [21] for general background
material on Fréchet algebras.

In the rest of the paper we will make the following assumptions on the weights ω =
(ωn):

(a) ωn(t)→∞ as t→∞ for every n ∈ N,
(b) limt→∞ ωn(t)1/t = 1 for every n ∈ N,
(c) supt∈R+ ωn+1(t)/ωn(t) =∞ for every n ∈ N.

It follows from (a) that the weights are semisimple, and the assumption (b) is equivalent
to each of the algebras L1(ωn) having the right hand half-plane as character space (see
the proof of Theorem 2.3). Moreover, condition (c) means that L1(ωn+1) ⊂ L1(ωn), so
that the descending chain (L1(ωn)) does not stabilise. We are mainly interested in the
case where we further have

(d) ωn(t)→∞ as n→∞ for every t ∈ R+,

but we will see that there are also interesting aspects in the case where the “limit weight”
ω∞(t) = limn→∞ ωn(t) is finite (for instance ωn(t) = (1 + t)1−1/n for t ∈ R+ and n ∈ N).
It may also be of interest to study A(ω) for radical weights (ωn) with ω∞ either radical
or semisimple.

The organisation of the paper is as follows: In Section 2 we collect various basic
results about the algebra A(ω) including a characterisation of B(ω) as the multiplier
algebra of A(ω). Endomorphisms of A(ω) are studied in Section 3. In particular, under a
slightly stronger assumption than (c) above we show that every endomorphism of A(ω)
is standard. Finally, in Section 4 we describe the derivations on A(ω).
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2. Basic results. In this section we present some basic results about the algebras A(ω)
and B(ω). The following result is a direct consequence of the topology on A(ω).

Lemma 2.1. A linear map T : A(ω) → A(ω) is continuous if and only if for all n ∈
N there exists m ∈ N such that T extends continuously to a map (also denoted) T :
L1(ωm)→ L1(ωn).

Similarly, a linear functional ϕ : A(ω) → C is continuous if and only if ϕ extends
continuously to L1(ωn) for some n ∈ N.

Proof. Clearly T : A(ω) → A(ω) is continuous if the continuous extensions exist. Con-
versely, assume that T : A(ω) → A(ω) is continuous and let n ∈ N. Since U = {f ∈
A(ω) : ‖f‖n < 1} is an open neighbourhood of 0 in A(ω), the same holds for T−1(U), so
there exist δ > 0 and m ∈ N such that {g ∈ A(ω) : ‖g‖L1(ωm) < δ} ⊆ T−1(U). Hence
‖Tg‖n ≤ 1

δ ‖g‖m for g ∈ A(ω), so a standard argument using Cauchy sequences shows
that T extends continuously to a map T : L1(ωm) → L1(ωn). Similarly for the second
part of the lemma.

For a weight ω let L∞(1/ω) denote the Banach space of functions h on R+ for which
‖h‖ = supt∈R+ |h(t)|/ω(t) <∞. It is well known that the duality 〈f, h〉 =

∫∞
0
f(t)h(t) dt

for f ∈ L1(ω) and h ∈ L∞(1/ω) identifies L∞(1/ω) isometrically isomorphically with
the dual space of L1(ω). As a consequence of the previous lemma we therefore have the
following characterisation of the dual space of A(ω).

Corollary 2.2. Every function h ∈
⋃
n L
∞(1/ωn) defines a continuous linear functional

on A(ω) by 〈f, h〉 =
∫∞
0
f(t)h(t) dt (f ∈ A(ω)) and conversely every continuous linear

functional on A(ω) is of this form.

Theorem 2.3. Every character on A(ω) is continuous. Moreover, for every z ∈ C with
Re z ≥ 0 the Laplace transform

L(f)(z) =
∫ ∞

0

f(t)e−zt dt (f ∈ A(ω))

defines a continuous character on A(ω) and conversely every character on A(ω) has this
form.

Proof. For z ∈ C with Re z ≥ 0 the map f 7→ L(f)(z) (f ∈ A(ω)) defines a continuous
character on each L1(ωn) by the usual characterisation of the characters on L1(ωn) ([4,
Theorem 4.7.27]) and hence defines a continuous character on A(ω). Let g(t) = e−t

(t ≥ 0). It follows from [4, Theorem 4.7.26] that the constant function with value 1 is
a polynomial generator of L1(e−tωn(t)) and thus that g is a polynomial generator of
L1(ωn) for every n ∈ N. Hence g is a polynomial generator of A(ω), so every character
on A(ω) is continuous by [4, Corollary 4.10.11]. By Lemma 2.1 it thus follows that every
character ϕ : A(ω) → C extends continuously to L1(ωn) for some n ∈ N. Hence there
exists z ∈ C with Re z ≥ 0 such that ϕ(f) = L(f)(z) for f ∈ L1(ωn).

It follows from Theorem 2.3 that the maximal modular ideals in A(ω) are exactly
the sets {f ∈ A(ω) : L(f)(z) = 0}, where z ∈ C with Re z ≥ 0. The corresponding sets
{µ ∈ B(ω) : L(µ)(z) = 0} are maximal ideals in B(ω) and their intersection equals {0},
so we have the following result.
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Corollary 2.4. The Fréchet algebras A(ω) and B(ω) are semisimple.

It is well known that each L1(ωn) (n ∈ N) has a bounded approximate identity, for
instance ek(t) = k · 1[0,1/k] (k ∈ N). Hence ek ∗ f → f in A(ω) as k → ∞ for f ∈ A(ω),
so (ek) is also a bounded approximate identity for A(ω). However, if limn→∞ ωn(t) =∞
for every t ∈ R+ (which is the case we are most interested in), then ‖f‖n → ∞ as
n→∞ for every non-zero f ∈ A(ω). Hence A(ω) does not possess a uniformly bounded
approximate identity, that is, a bounded approximate identity where the bound in L1(ωn)
is independent of n ∈ N. Note, however, that ‖ek‖n → 1 as k →∞ for every n ∈ N.

For a Fréchet algebra resp. Fréchet module with a uniformly bounded approximate
identity, Craw ([3]) resp. Summers ([24]) generalised Cohen’s factorisation theorem. (See
also [7] for a thorough discussion of approximate identities and factorisation.) These
results do not apply to A(ω) if limn→∞ ωn(t) = ∞ for every t ∈ R+ and we do not
know whether we have factorisation in A(ω) or in Fréchet A(ω)-modules; not even in
the simplest sense of being able to factor every f ∈ A(ω) as a product f = g ∗ h with
g, h ∈ A(ω). We complement the discussion by mentioning that in the special case where
there exists a > 0 such that supn∈N, 0≤t≤a ωn(t) < ∞, the sequence (ek) is a uniformly
bounded approximate identity for A(ω), and we therefore have factorisation in A(ω).

A linear map T on a commutative Fréchet algebra B is called a multiplier if T (ab) =
T (a)b for every a, b ∈ B. Recall from [8, Theorem 2.2] that every µ ∈ M(ω) defines a
continuous multiplier Tµ on L1(ω) by Tµ(f) = µ ∗ f (f ∈ L1(ω)) and that this identifies
M(ω) isometrically isomorphically with the multiplier algebra of L1(ω). For the algebra
A(ω) we have a similar result.

Theorem 2.5. Every µ ∈ B(ω) defines a continuous multiplier Tµ on A(ω) by Tµ(f) =
µ∗f (f ∈ A(ω)) and every multiplier on A(ω) has this form. In particular, every multiplier
on A(ω) is continuous.

Proof. Clearly Tµ is a continuous multiplier on A(ω) for every µ ∈ B(ω). Conversely,
let T be a multiplier on A(ω). Since A(ω) is an integral domain, it is well known (see
[4, Proposition 2.5.12]) that T is automatically continuous. Let (ek) be a bounded ap-
proximate identity for A(ω) and let n ∈ N. By Lemma 2.1 there exists m ∈ N such that
T extends continuously to a map T : L1(ωm) → L1(ωn). Hence the sequence (Tek) is
bounded in L1(ωn), and it follows from the proof of [4, Theorem 3.3.40] that the sequence
has a weak-star cluster point µn ∈ M(ωn) for which T (f) = µn ∗ f for f ∈ L1(ωn). By
uniqueness of µn it is independent of n and the result follows.

The identification in the previous theorem of B(ω) as the multiplier algebra of A(ω)
induces a strong operator topology (denoted by SO) on B(ω) in which a net (µβ) tends
to 0 if and only if µβ ∗f → 0 for every f ∈ A(ω). We will now introduce another topology
on B(ω), denoted by σ, which is the projective limit topology, when each of the spaces
M(ωn) is regarded as the multiplier algebra of L1(ωn) and is equipped with the corre-
sponding strong operator topology (denoted by SOn). Hence σ is the weakest topology
on B(ω) making all the inclusions ιn : (B(ω), σ) → (M(ωn), SOn) for n ∈ N continuous
(see, for instance, [21, Proof of Proposition 2.7]). Also, for a net (µβ) in B(ω) we have
µβ → 0 in the σ-topology if and only if µβ → 0 strongly in M(ωn) for all n ∈ N.
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We will need the following results about the σ-topology.

Lemma 2.6. We have SO⊆ σ, that is, SO is weaker than σ.

Proof. Let (µβ) be a net in B(ω) with µβ → 0 in the σ-topology, that is, µβ → 0 strongly
in M(ωn) for every n ∈ N. For f ∈ A(ω) we thus have µβ ∗ f → 0 in L1(ωn) for every
n ∈ N and thus µβ ∗ f → 0 in A(ω). Hence µβ → 0 strongly in B(ω), so the identity map
ι : (B(ω), σ)→ (B(ω), SO) is continuous and the result follows.

We do not know whether the σ- and the SO-topologies are identical, but on bounded
sets in B(ω) (that is, bounded in every M(ωn)) that is the case: Let (µβ) be a bounded
net in B(ω) with µβ → 0 strongly and let n ∈ N. Then µβ ∗ f → 0 in L1(ωn) for every
f ∈ A(ω) and by the boundeness thus for f ∈ L1(ωn). Hence µβ → 0 strongly in M(ωn)
for every n ∈ N and thus µβ → 0 in the σ-topology. Moreover, we have the following
result.

Proposition 2.7. The dual spaces of (B(ω), σ) and (B(ω),SO) are the same, that is, a
linear functional on B(ω) is σ-continuous if and only if it is strongly continuous.

Proof. It follows from Lemma 2.6 that a strongly continuous linear functional on B(ω)
also is σ-continuous. Conversely, let ϕ : B(ω) → C be a σ-continuous linear functional.
Since σ is the weakest topology on B(ω) making all the inclusions ιn : (B(ω), σ) →
(M(ωn), SOn) for n ∈ N continuous, it follows that the family of seminorms

pn,f (µ) = ‖µ ∗ f‖n (µ ∈ B(ω))

with n ∈ N and f ∈ L1(ωn) defines the σ-topology. Hence (see, for instance, [2, Theo-
rem IV.3.1]) there exist n1, . . . , nJ and fj ∈ L1(ωnj

) (j = 1, . . . , J) such that

‖ϕ(µ)‖ ≤
J∑
j=1

‖µ ∗ fj‖nj
≤

J∑
j=1

‖µ ∗ fj‖N (µ ∈ B(ω))

with N = max{n1, . . . , nJ}. A standard argument using Cauchy sequences now shows
that ϕ extends to a linear functional ϕN : M(ωN )→ C with ‖ϕN (µ)‖ ≤

∑J
j=1 ‖µ ∗ fj‖N

for µ ∈M(ωN ). In particular this shows that ϕ is strongly continuous on B(ω).

The previous proposition does not in itself imply that the σ- and the SO-topologies
are identical. For instance, if X is a Banach space, then the dual spaces of X with respect
to the norm and the weak topologies are identical ([23, p. 63]), whereas the norm and the
weak topologies themselves are not.

3. Endomorphisms. Homomorphisms between weighted convolution Banach algebras
have been studied extensively; see for instance [16], [8], [14] and [10]. For endomorphisms
of A(ω) we start with the following consequence of Theorem 2.3.

Corollary 3.1. Every endomorphism of A(ω) is continuous. More generally, if B is
a Fréchet algebra on which every character is continuous, then every homomorphism
Φ : B → A(ω) is continuous.
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Proof. This follows from Theorem 2.3 as in the proof of [4, Theorem 2.3.3] since A(ω)
is semisimple (Corollary 2.4) and since the closed graph theorem holds for operators on
Fréchet spaces ([4, Theorem A.3.25]).

Remark. It follows fom the proof of [9, Theorem 1] (see also [16, Appendix]) that every
endomorphism of A(ω) is a monomorphism.

The next result (which can be generalised to homomorphisms from A(ω) to A(ω̃)) is
similar to and follows rather easily from the corresponding result for L1(ω) ([16, Theo-
rems 3.4 and 3.6]).

Theorem 3.2. Let Φ be a non-zero endomorphism of A(ω). Then Φ has a unique ex-
tension to a continuous endomorphism Φ̃ of B(ω). Also, νt = Φ̃(δt) (t ∈ R+) defines a
semigroup in B(ω) which is strongly continuous for t > 0. Moreover,

Φ̃(µ) =
∫ ∞

0

νt dµ(t) for µ ∈ B(ω),

where the integrals exist as strong Bochner integrals in B(ω), that is, Φ̃(µ) ∗ f =
∫∞
0
νt ∗

f dµ(t) exists as a Bochner integral in each L1(ωn) (n ∈ N) for µ ∈ B(ω) and f ∈ A(ω).

Proof. By the previous theorem Φ is continuous. For n ∈ N it thus follows from Lemma 2.1
that there exists m ∈ N such that Φ extends continuously and uniquely to a homomor-
phism Φn : L1(ωm)→ L1(ωn). By [16, Theorems 3.4 and 3.6], Φn extends uniquely to a
continuous homomorphism Φ̃n : M(ωm) → M(ωn), the semigroup (νt) is strongly con-
tinuous in L1(ωn) for t > 0 and Φ̃n(µ) ∗ f =

∫∞
0
νt ∗ f dµ(t) exists as a Bochner integral

in L1(ωn) for µ ∈ M(ωm) and f ∈ L1(ωn). By uniqueness Φ̃(µ) = Φ̃n(µ) is independent
of n ∈ N for µ ∈ B(ω), and the result follows.

In the rest of this section we will investigate other continuity properties of the endo-
morphism Φ̃ of B(ω); namely with respect to a wk∗ topology and the strong topology on
B(ω). If we denote by C0(1/ω) the closed subspace of L∞(1/ω) consisting of continuous
functions h on R+ for which h/ω vanishes at infinity, then it is well known that M(ω) is
isometrically isomorphic to the dual space of C0(1/ω) with the duality being defined by

〈h, µ〉 =
∫ ∞

0

h(t) dµ(t) (h ∈ C0(1/ω), µ ∈M(ω)).

We can use this to show that B(ω) is also a dual space. Let

D(1/ω) =
⋃
n∈N

C0(1/ωn)

and equip D(1/ω) with the inductive limit topology (see, for instance, [2, Chapter IV.5]).
Since a linear functional on D(1/ω) is continuous if and only if its restriction to each
C0(1/ωn) is continuous (see, for instance, [2, Proposition IV.5.7]) we obtain the following
result.

Proposition 3.3. The duality

〈h, µ〉 =
∫ ∞

0

h(t) dµ(t) (h ∈ D(1/ω), µ ∈ B(ω))
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identifies B(ω) with the dual space of D(1/ω). Moreover, for a net (µβ) in B(ω) we have
µβ → 0 wk∗ in B(ω) if and only if µβ → 0 wk∗ in M(ωn) for every n ∈ N.

For a homomorphism Φ : L1(ω1) → L1(ω2) it was proved by Grabiner ([17, Theo-
rem 1.1]) that the extension Φ̃ : M(ω1)→ M(ω2) is automatically wk∗ continuous. (See
[22] for related results about homomorphisms from L1(ω) into other Banach algebras.)
The corresponding result for endomorphisms of A(ω) is an almost direct consequence of
Grabiner’s result.

Theorem 3.4. Let Φ be an endomorphism of A(ω), let Φ̃ be the unique extension to
an endomorphism of B(ω) and let (νt) be the semigroup in B(ω) given by Theorem 3.2.
Then Φ̃ is wk∗ continuous. Moreover, (νt) is wk∗ continuous in B(ω) for t ≥ 0 and for
every n ∈ N there exists m ∈ N such that νtωn(t)/ωm(t)→ 0 wk∗ in M(R+) as t→∞.

Proof. Let (µβ) be a net in B(ω) with µβ → 0 wk∗ in B(ω) and let n ∈ N. By Proposi-
tion 3.3 we have µβ → 0 wk∗ inM(ωn). It follows from the proof of Theorem 3.2 that there
existsm ∈ N such that Φ̃ extends to a continuous homomorphism Φ̃n : M(ωm)→M(ωn).
By Grabiner’s result Φ̃n is wk∗ continuous, so Φ̃(µβ) = Φ̃n(µβ)→ 0 wk∗ inM(ωn). Hence
Φ̃(µβ)→ 0 wk∗ in B(ω), so we deduce that Φ̃ is wk∗ continuous. Since δt is wk∗ contin-
uous in B(ω) for t ≥ 0, it follows that νt = Φ̃(δt) is wk∗ continuous in B(ω) for t ≥ 0.
Similarly δt/ωm(t) → 0 wk∗ in M(ωm) as t → ∞, so νt/ωm(t) = Φ̃(δt/ωm(t)) → 0 wk∗

in M(ωn), that is, νtωn(t)/ωm(t)→ 0 wk∗ in M(R+) as t→∞.

For homomorphisms Φ : L1(ω1)→ L1(ω2) it is not known whether the semigroup (νt)
is strongly continuous in M(ω2) at t = 0. In the papers [10] and [11] this problem was
linked to the notion of convergence factors. Using the wk∗ continuity of (νt) at t = 0 and
a result from [11] we can show that under a rather mild growth condition on the weights
ωn as n → ∞, the semigroup (νt) from Theorem 3.2 is strongly continuous in B(ω) at
t = 0.

Theorem 3.5. Let Φ be a non-zero endomorphism of A(ω), and let (νt) be the semigroup
from Theorem 3.2. Suppose that

for every n ∈ N there exists m ∈ N such that
ωm(s)
ωn(s)

→∞ as s→∞. (1)

Then (νt) is strongly continuous in B(ω) for t ≥ 0.

Proof. By Theorem 3.2 we only need to prove the strong continuity at t = 0. Let n ∈ N
and choose m ∈ N such that ωn(s)/ωm(s) → 0 as s → ∞. Let η = ωn/ωm. Then η is
bounded and M(ωmη) = M(ωn) is translation invariant. Moreover,

ωm(r + s)
ωm(s)

η(r + s) =
ωn(r + s)
ωm(s)

≤ ωn(r)
ωn(s)
ωm(s)

→ 0 as s→∞

for every r > 0. It thus follows from [11, Theorem 3.2] that η is a convergence factor for
ωm at 0. This means that if (µk) is a sequence in M(ωm) with µk → 0 wk∗ in M(ωm)
as k → ∞, then µk ∗ f → 0 in the norm of L1(ωmη) = L1(ωn) as k → ∞ for every
f ∈ L1(ωn), that is, µk → 0 strongly in M(ωn) as k → ∞. By Theorem 3.4 we have
νt → Φ̃(δ0) = δ0 wk∗ in M(ωm) as t→ 0, so we conclude that νt → δ0 = ν0 strongly in
M(ωn) and thus in B(ω) as t→ 0.
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We observe that condition (1) is only a slight strengthening of the standing assump-
tion (c): supt∈R+ ωn+1(t)/ωn(t) = ∞ for every n ∈ N; see the introduction. In order to
show that (1) is a strictly stronger condition than (c), we construct below an unbounded
weight ω which does not satisfy limt→∞ ω(t) =∞. We then let ωn = ωn and observe that
(ωn) satisfies (c) but not (1). The weight ω(t) = 2v(t) is constructed as follows. For m ∈ N
let v(m) be the number of 1’s in the binary expansion of m or equivalently the minimum
number of powers of 2 needed to sum to m and let v(0) = 0. (This is a simplified version
of the example given in [5, Example 9.17].) Then v is subadditive and unbounded on N0,
but does not tend to infinity as m → ∞. The following lemma shows that the obvious
extension of v to R+ stays subadditive. Hence ω is an algebra weight with the required
properties.

Lemma 3.6. Let v be a real-valued subadditive function on N0, and let also v denote the
continuous extension of v to R+ which is linear on each of the contiguous intervals. Then
v is subadditive on R+.

Proof. Let x, y ∈ R+ with x = m + r and y = n + s, where m,n ∈ N0 and 0 ≤ r, s < 1.
Observe that v(x) = (1 − r)v(m) + rv(m + 1) and similar for v(y). First, assume that
r + s ≤ 1. Then

v(x+ y) = (1− r − s)v(m+ n) + (r + s)v(m+ n+ 1)

≤ (1− r − s)(v(m) + v(n)) + s(v(m) + v(n+ 1)) + r(v(m+ 1) + v(n))

= (1− r)v(m) + (1− s)v(n) + sv(n+ 1) + rv(m+ 1) = v(x) + v(y)

as required. If r + s > 1, we write x + y = (m + n + 1) + (r + s − 1) and use the same
approach as above.

For homomorphisms Φ : L1(ω1)→ L1(ω2) several conditions equivalent to the strong
continuity of (νt) in M(ω2) for t ≥ 0 are given in [16, Corollary 3.13] and [14, The-
orem 2.2]. The proofs of most of these equivalencies carry over directly (with obvious
modifications) to endomorphisms of A(ω), so by using Theorem 3.5, we obtain the result
below. We say that f ∈ A(ω) is a standard element, if the closed ideal it generates in A(ω)
is the standard ideal A(ω)d = {g ∈ A(ω) : α(g) ≥ d}, where d = α(f) = inf supp(f).
Also, we say that an endomorphism Φ of A(ω) is a standard endomorphism, if whenever
f ∈ A(ω) with A(ω) ∗ f dense in A(ω), then A(ω) ∗ Φ(f) is dense in A(ω).

Theorem 3.7. Let Φ be a non-zero endomorphism of A(ω), let (νt) be the semigroup
from Theorem 3.2 and let (ek) be a bounded approximate identity for A(ω). Then the
following are equivalent:

(a) (νt) is strongly continuous in B(ω) for t ≥ 0.
(b) There is a non-zero standard element f ∈ A(ω) for which νt ∗ f → f in A(ω) as

t→ 0.
(c) Φ(A(ω)) contains a non-zero standard element.
(d) Φ is a standard endomorphism.
(e) (Φ(ek)) is a bounded approximate identity for A(ω).
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(f) There is a non-zero standard element f ∈ A(ω) for which Φ(ek) ∗ f → f in A(ω) as
k →∞.

In particular, these properties all hold if condition (1) is satisfied.

Compared to the list in [14, Theorem 2.2] there are two notable omissions in Theo-
rem 3.7, namely

(g) For every h ∈ A(ω) there exist f, g ∈ A(ω) such that h = Φ(f) ∗ g.
(h) The extension endomorphism Φ̃ of B(ω) is strongly continuous.

Considering A(ω) as a Fréchet A(ω)-module under the action f · g = Φ(f) ∗ g for
f, g ∈ A(ω), property (g) can be restated as existence of factorisation in this module,
whereas (e) states that the sequence (ek) is a bounded approximate identity for this
module. As mentioned in Section 2 we do not know whether factorisation in A(ω) and its
modules follows from the existence of a bounded approximate identity, that is, whether
(e) implies (g) (unless there exists a > 0 such that supn∈N, 0≤t≤a ωn(t) < ∞). However,
the implications (g)⇒(h)⇒(a)-(f) follow rather easily as in the proof of [14, Theorem 2.2].
Moreover, it may be possible to prove (h) from (a) (without assuming (g)). For instance, it
is easily seen that if (µβ) is a bounded net in B(ω) with µβ → 0 strongly, then Φ̃(µβ)→ 0
strongly in B(ω). We also mention in passing that if (a)-(f) hold, then Φ̃ is σ-continuous
(see Section 2 for the definition): Let (µβ) be a net in B(ω) with µβ → 0 in the σ-topology,
and let n ∈ N. There exists m ∈ N such that Φ̃ extends to a continuous homomorphism
Φ̃n : M(ωm)→M(ωn). Since (νt) is continuous in B(ω) and thus in M(ωn) for t ≥ 0, it
follows from [14, Theorem 2.2] that Φ̃n is strongly continuous. Since µβ → 0 strongly in
M(ωm) we thus have Φ̃(µβ) = Φ̃n(µβ)→ 0 strongly in M(ωn). Hence Φ̃(µβ)→ 0 in the
σ-topology on B(ω), so Φ̃ is σ-continuous.

We end this section with a remark about automorphisms of A(ω). Characterisations of
automorphisms have been obtained for the related algebras L1(ω) ([8] and [12]), L1[0, 1]
([20]) and L1

loc(R+) ([13]). For the Fréchet algebra L1
loc(R+) (which is the projective

limit of the algebras L1[0, n] (n ∈ N)) the method consists of reducing the problem
to automorphisms of L1[0, 1]. The following simple example indicates, that questions
about automorphisms of A(ω) cannot easily be reduced to questions about isomorphisms
between the algebras L1(ωn) (n ∈ N). Hence other methods are needed in order to
obtain a characterisation of the automorphisms of A(ω). For a ∈ R+ we define an algebra
weight ωa on R+ by ωa(t) = ea

√
t for t ∈ R+. Moreover, for a function f on R+ we let

Φ(f)(t) = 2f(2t) for t ∈ R+. An easy calculation shows that ‖Φ(f)‖ωa
= ‖f‖ωa/

√
2
for

a ∈ R+. With ω = (ωn) this shows that Φ is an automorphism of A(ω). However, for no
n ∈ N is there an m ∈ N such that Φ extends to an isomorphism between L1(ωm) and
L1(ωn) (but Φ does extend to an isomorphism between L1(ωn/√2) and L1(ωn)).

4. Derivations. In Theorem 4.1 below we characterise the derivations on A(ω). Johnson
([19] or [4, Theorem 5.2.32]) proved that a semisimple, commutative Banach algebra
does not have any non-zero derivations, and in particular this applies to each of the
algebras L1(ωn). For (radical) weights ω, Jewell and Sinclair (see [18, Remark 3(a)] or
[4, Theorem 5.2.18 (ii)]) proved that derivations on L1(ω) are automatically continuous.
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Moreover, Ghahramani ([8, Theorem 2.5]) showed that a linear operator D on L1(ω) is
a derivation if and only if there is a measure µ on R+ with

sup
t∈R+

t

ω(t)

∫
ω(t+ s) d|µ|(s) <∞

such that D(f) = (Xf) ∗ µ for f ∈ L1(ω), where (Xf)(t) = tf(t) for t ∈ R+ and
f ∈ L1(ω).

Carpenter ([1] or [15, Theorem 8.2.5]) partly generalised Johnson’s result by showing
that derivations on semisimple, unital Fréchet algebras automatically are continuous. We
will see in Corollary 4.3 that this implies that derivations on A(ω) are continuous. (We
remark that the proof of [4, Theorem 5.2.18 (ii)] (using a gliding hump technique) cannot
be used in this case, since A(ω) is not locally bounded, that is, has no bounded open sets
(as a ball in L1(ωn) is unbounded in L1(ωm) for m > n).)

Our main aim in this section is to prove the following result.

Theorem 4.1.

(a) Suppose that

for every n ∈ N there exists m ∈ N such that sup
t∈R+

tωn(t)
ωm(t)

<∞. (2)

Then
Dµ(f) = (Xf) ∗ µ (f ∈ A(ω))

defines a continuous derivation on A(ω) for every µ ∈ B(ω) and conversely every
derivation on A(ω) has this form.

(b) If condition (2) is not satisfied, then there are no non-zero derivations on A(ω).

We remark that when condition (2) is satisfied, then X (and thus Dµ) extends to
B(ω) by letting d(Xν)(t) = tdν(t) for ν ∈ B(ω). Also, it is easily seem that condition (2)
is equivalent with the formally weaker condition that there exists some p > 0 such that
for every n ∈ N there exists m ∈ N with

sup
t∈R+

tpωn(t)
ωm(t)

<∞.

Theorem 4.1 and its proof are closely related to Ghahramani’s result. Note however the
difference in that we only have a condition on the weights (ωn) and that if this condition
is satisfied, then every µ ∈ B(ω) gives rise to a derivation. We find it interesting that our
results and methods for the “little” algebra A(ω) are similar to those used for the “big”
algebras Mloc(R+) ([6]), L1

loc(R+) ([13]) and L1(ω) for radical weights ω ([8]).
We need a few results in order to prove Theorem 4.1. Recall that the identification in

Theorem 2.5 of B(ω) as the multiplier algebra of A(ω) induces a strong operator topology
on B(ω).

Lemma 4.2. Every derivation D on A(ω) extends to a derivation D on B(ω) which is
norm- as well as strongly continuous.

Proof. We proceed as in [13, p. 57]: For µ ∈ B(ω) we define a linear map Sµ on A(ω) by

Sµ(f) = D(µ ∗ f)− µ ∗D(f) (f ∈ A(ω)).
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It is easy to check that Sµ is a multiplier on A(ω). Hence it follows from Theorem 2.5
that there exists a unique measure D(µ) ∈ B(ω) such that Sµ(f) = D(µ) ∗ f and thus

D(µ ∗ f) = D(µ) ∗ f + µ ∗D(f) for f ∈ A(ω).

It is further easily seen that the map µ 7→ D(µ) defines a derivation on B(ω) which
extends D. Since B(ω) is semisimple by Corollary 2.4, it follows from Carpenter’s result
mentioned above that D automatically is continuous.

For the strong continuity of D, let (µβ) be a net in B(ω) with µβ → 0 strongly. Then
D(µβ) ∗ f = D(µβ ∗ f) − µβ ∗ D(f) → 0 in A(ω) for every f ∈ A(ω), so D(µβ) → 0
strongly in B(ω) as required.

Corollary 4.3. Derivations on A(ω) are continuous.

The next result is similar to [6, Lemma 1]. Since the notation is somewhat different
we include a proof for the sake of completeness. For a measure µ on R+ we let α(µ) =
inf supp(µ).

Lemma 4.4. For a derivation D on B(ω) we have

α(D(µ)) ≥ α(µ) for µ ∈ B(ω).

In particular α(D(δt)) ≥ t for t ∈ R+.

Proof. Let t ∈ R+ and k ∈ N. Since δt = (δt/k)∗k we have D(δt) = k(δt/k)∗(k−1)∗D(δt/k),
so it follows from Titchmarsh’s convolution theorem that

α(D(δt)) ≥ α((δt/k)∗(k−1)) =
(k − 1)t

k
.

Hence α(D(δt)) ≥ t. Now let µ ∈ B(ω) and let t = α(µ). We may assume that t > 0.
Define the translate µt ∈ B(ω) by µt(E) = µ(E + t) for measurable sets E ⊆ R+. Then
µ = δt ∗ µt, so D(µ) = D(δt) ∗ µt + δt ∗D(µt), and thus

α(D(µ)) ≥ min{α(D(δt) ∗ µt), α(δt ∗D(µt))} ≥ min{α(D(δt)), α(δt)} = t

as required.

The proof of the following result is identical to that of [8, Lemma 2.3] (see also [6,
Lemma 3]) and is therefore omitted.

Lemma 4.5. Let D be a derivation on B(ω). Then there exists µ ∈ B(ω) such that

D(δt) = t · δt ∗ µ for t ∈ R+.

The proof of Proposition 2.7 plays a crucial role in the proof of the next result.

Lemma 4.6. The linear span of {δt : t ∈ R+} is strongly dense in B(ω).

Proof. Let V be the linear span of {δt : t ∈ R+} and let ϕ be a strongly continuous
linear functional on B(ω) with ϕ(δt) = 0 for t ∈ R+. From the proof of Proposition 2.7
it follows that ϕ extends to a strongly continuous linear functional ϕN : M(ωN ) → C
for some N ∈ N. However, V is strongly dense in M(ωN ) by [8, Lemma 1.3] (see also [6,
Lemma 4]), so we deduce that ϕN and thus ϕ is zero, which finishes the proof.
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We are now ready to prove the characterisation of derivations on A(ω).

Proof of Theorem 4.1. (a): If condition (2) is satisfied, then X defines a continuous
linear operator X : L1(ωm) → L1(ωn) for every n ∈ N with corresponding m ∈ N, and
thus defines a continuous linear operator on A(ω). A routine calculation shows that X is
a derivation. Moreover, for µ ∈ B(ω) the map Tµ(f) = µ ∗ f (f ∈ A(ω)) defines a con-
tinuous multiplier on A(ω) by Theorem 2.5. Hence Dµ = TµX is a continuous derivation
on A(ω).

Conversely, let D be a derivation on A(ω) and let D be the continuous extension
to a derivation on B(ω) given by Lemma 4.2. Also, let µ ∈ B(ω) be the measure from
Lemma 4.5 satisfying D(δt) = t · δt ∗ µ for t ∈ R+. Define a continuous derivation ∆ on
B(ω) by

∆(ν) = D(ν)− (Xν) ∗ µ for ν ∈ B(ω).

Then ∆(δt) = 0 for t ∈ R+. Furthermore, it follows from the proof of Lemma 4.2 that ∆
is strongly continuous. Since the linear span of {δt : t ∈ R+} is strongly dense in B(ω)
by Lemma 4.6, we thus deduce that ∆ = 0, so D(ν) = (Xν) ∗ µ for ν ∈ B(ω) and thus
D = Dµ as required.

(b): Assume that D is a non-zero derivation on A(ω). As in the proof of (a), D extends
to a continuous derivation D on B(ω) and there exists µ ∈ B(ω) such that D(δt) = t·δt∗µ
for t ∈ R+. Given n ∈ N it follows from Lemma 2.1 that there exists m ∈ N such that
D extends continuously to a map D : L1(ωm) → L1(ωn). Hence Grabiner’s extension
([16, Theorem 3.4]) D : M(ωm) → M(ωn) is also an extension of the derivation D

on B(ω), so there exists a constant cn such that ‖D(δt)‖n ≤ cn‖δt‖m for all t ∈ R+.
However, ‖D(δt)‖n =

∫∞
0
tωn(s+ t) d|µ|(s) ≥ tωn(t)|µ|(R+), whereas ‖δt‖m = ωm(t), so

we conclude that (2) is satisfied.

5. Summary of open problems. We finish by gathering some open problems that
have been mentioned in this paper.

(I) Do we have factorisation in A(ω) (and in Fréchet A(ω)-modules) if limn→∞ ωn(t) =
∞ for every t ∈ R+? (See the discussion preceding Theorem 2.5.)

(II) Are the σ- and the SO-topologies identical? (See the end of Section 2.)
(III) Are the conditions

(g) for every h ∈ A(ω) there exist f, g ∈ A(ω) such that h = Φ(f) ∗ g,

(h) the extension endomorphism Φ̃ of B(ω) is strongly continuous,

equivalent to the conditions in Theorem 3.7? (See the discussion following Theo-
rem 3.7.)
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