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Abstract. Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and
Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras,
L1(G) and M(G), in a sense which generalizes the Pontryagin duality theorem on abelian groups.
We wish to consider the amenability properties of A(G) and B(G) and compare them to such
properties for L1(G) and M(G). For us, “amenability properties” refers to amenability, weak
amenability, and biflatness, as well as some properties which are more suited to special settings,
such as the hyper-Tauberian property for semisimple commutative Banach algebras. We wish to
emphasize that the theory of operator spaces and completely bounded maps plays an indispens-
able role when studying A(G) and B(G). We also show some applications of amenability theory
to problems of complemented ideals and homomorphisms.

1. Introduction. This article, as the title literally suggests, is a survey of the amenabil-
ity results around Fourier and Fourier-Stieltjes algebras which are known to the author.
These are displayed in comparison to the results on group and measure algebras. In par-
ticular, I intend to highlight the indispensable role which operator spaces play in this
theory.

The scope of this article has been purposely restricted to only amenability properties of
Fourier and Fourier-Stieltjes algebras, and to the motivating results in their dual objects,
group and measure algebras. There are, thus, clear omissions of discussions of Herz–Figà-
Talamanca algebras Ap(G), in general, and their amenability properties; and of locally
compact quantum groups or even Kac algebras, though they do provide a convenient
language for discussing the duality. However, limited liberty is taken to indicate some
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relevant literature on such topics, as they relate to the present article. The scope of
this article has been restricted mainly because the topic has reached a certain maturity,
though there are still interesting open problems on Fourier and Fourier-Stieltjes algebras.
Moreover, it is hoped that this limitation in scope improves coherence and depth, though
at the cost of breadth.

We acknowledge that this is far from being the first survey of amenability problems
in Fourier and Fourier-Stieltjes algebras. See surveys of Runde [67, 69] and Kaniuth
and Lau [48]. However, the subject has advanced significantly, even since the latter of
these surveys. Moreover, our focus differs from the foci of these articles, thus we offer a
complement to them.

1.1. Some Banach algebras of harmonic analysis. Let G be a locally compact
group. The group and measure convolution algebras of G, are denoted by L1(G) and
M(G), respectively. These classical objects are defined in many texts; see the treatise
[37] for definitions and historical details. These algebras represent complete invariants
for the underlying group in the sense that if H is another locally compact group for
which L1(G) ∼= L1(H), or M(G) ∼= M(H), isometrically isomorphically, then G ∼= H

isomorphically and homeomorphically, as shown by Wendel [82]. We may, and will, regard
L1(G) as the ideal in M(G) of measures which are absolutely continuous with respect to
the Haar measure.

If G is abelian, it admits a dual group Ĝ, and the Fourier-Stieltjes transform µ 7→ µ̂ :
M(Ĝ)→ Cb(G) (bounded continuous functions on G) restricts to the Gelfand transform
f 7→ f̂ : L1(Ĝ) → C0(G) (continuous functions vanishing at infinity). Their respective
images B(G) and A(G), each endowed with the norm which makes the transform an
isometry, are thus Banach algebras of functions, which are invariants for G. It follows
from Jordan decomposition in M(Ĝ), and Bochner’s theorem, that B(G) is the span of
continuous positive definite functions; and then a version of the Gelfand-Naimark-Segal
construction shows that B(G) consists of the family of continuous matrix coefficients
of all unitary representations on G. Since each element of L1(G) factors as a pointwise
product of two square-integrable functions, i.e. L1(Ĝ) = L2(Ĝ) · L2(Ĝ), it follows from
the Plancherel theorem that A(G) = L2(G) ∗ L2(G).

Eymard [17] showed, using representation theory, how to construct generalizations of
A(G) and B(G) for any locally compact group. The Fourier-Stieltjes algebra B(G) is the
space of continuous matrix coefficients of unitary representations of G: s 7→ 〈π(s)ξ | η〉
for any weak operator continuous unitary representation π : G → B(H), ξ, η ∈ H. The
Fourier algebra A(G) is the space of matrix coefficients of the left regular representation:
s 7→ 〈λ(s)f | g〉 = ḡ ∗ f̌(s), f, g ∈ L2(G), where λ : G→ B(L2(G)) is given by λ(s)f(t) =
f(s−1t), and f̌(t) = f(t−1). B(G) may be identified as the dual space of the universal
C*-algebra C∗(G), of G, and this norm makes B(G) a Banach algebra, under pointwise
operations. A(G) is a closed ideal of B(G) a fact which may be verified by showing
that A(G) is generated by the compactly supported elements of B(G), or, alternatively,
by an application of Fell’s “absorption principle” [18]. These are semisimple commutative
Banach algebras, andG is the Gelfand spectrum of A(G). Walter [81] showed the analogue
of Wendel’s theorem: if H is another locally compact group then A(G) ∼= A(H), or
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B(G) ∼= B(H), isometrically isomorphically, exactly when G ∼= H isomorphically and
homeomorphically. Walter’s result foreshadows the use of operator space methods, in that
he employs Kadison’s characterizations of surjective isometries between C*-algebras [46].

It will be useful to identify various subalgebras of B(G). We let Br(G) denote the
weak*-closure of A(G) in B(G). It is a result of Hulanicki [39] that Br(G) = B(G) if and
only if G is amenable. Let Af (G) denote the norm-closed subspace of B(G) generated
by matrix coefficients of continuous finite dimensional representations. Then Af (G) ∼=
A(Gap) where Gap is the almost periodic compactification of G. We note that if G is
abelian, Af (G) is the image under the Fourier transform of the closed span of Dirac
measures `1(Ĝ) in M(Ĝ). We let the Rajchman algebra be given by B0(G) = B(G)∩C0(G).
For any non-compact abelian group, it is known that B0(G) ) A(G); see §6 of [32].

1.2. Amenability and related properties. If A is a Banach algebra, a Banach space
X is called a (contractive) Banach A-bimodule if there are bounded (contractive) maps,
a homomorphism A → B(X ) : a 7→ (x 7→ a · x) and an anti-homomorphism A → B(X ) :
a 7→ (x 7→ x · a), with commuting ranges. The adjoints of these maps make the dual
space X ∗ into a dual Banach A-bimodule. A linear map D : A → X is called a derivation
if D(ab) = a · D(b) + D(a) · b for a, b in A. Inner derivations are those of the form
D(a) = a · x− x · a for some x in X .

In his seminal memoir [42], Johnson definedA to be amenable if, for every dual Banach
A-bimodule X ∗, every bounded derivation D : A → X ∗ is inner. He further showed in
[43] that amenability is equivalent to a certain averaging property: A is amenable if and
only if it admits a bounded approximate diagonal, i.e. a bounded net (dα) in A ⊗γ A
(projective tensor product) such that

m(dα)a, am(dα)→ a and a · dα − dα · a→ 0

where m : A ⊗γ A → A is the multiplication map m(a ⊗ b) = ab, and a · (b ⊗ c) =
(ab × c), (b ⊗ c) · a = b ⊗ (ca). Bounded approximate diagonals allow for a quantitative
measurement of amenability: we say A is C-amenable if it admits a bounded approximate
diagonal of norm at most C, and let the amenability constant ofA, CA denote the infimum
of such C. Bounded approximate diagonals are also useful in the following application of
amenability due to Helemskĭı (see the monograph [35] or [10]; the role of the bounded
approximate diagonal is apparent in [66]): if A is amenable and X is a Banach A-bimodule
with a boundedly complemented subspace Y, which is also an A-bimodule, then there is
a bounded projection P : X ∗ → Y⊥ which is an A-bimodule map.

We say A is contractible or super-amenable if all bounded derivations into (not neces-
sarily dual) A-bimodules are inner. A contractible C*-algebra is necessarily finite dimen-
sional (see [66], for example).

We say A is a dual Banach algebra if there is a closed A-bimodule A∗ ⊂ A∗∗ such
that (A∗)∗ ∼= A. If every weak*-weak* continuous derivation D : A → X ∗ is inner, we
say A is Connes amenable. This terminology first appeared in [65], and honours Connes’s
version of amenability for von Neumann algebras.

A Banach algebra is weakly amenable if every bounded derivation D : A → A∗ is
inner. For the case of commutative A, this terminology was coined in [4], where it was
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shown that any derivation D : A → X for symmetric X (right and left actions coincide)
vanishes, exactly when A is weakly amenable. Given a character character χ : A → C, a
non-zero linear functional d ∈ A∗ such that d(ab) = χ(a)d(b) + d(a)χ(b) is called a point
derivation. If a non-zero derivation exists, the derivation D : A → A∗, D(a) = d(a)χ,
shows that A cannot be weakly amenable.

We indicate some related properties due to Helemskĭı [35]. A is biprojective if there is
a bounded A-bimodule map S : A → A⊗γ A such that m◦S = idA. A is biflat if there
is a bounded A-bimodule map T : (A ⊗γ A)∗ → A∗ such that m∗◦T = idA∗ . A biflat
algebra is automatically weakly amenable. We also have that A is amenable if and only
if it is biflat and has a bounded approximate identity.

1.3. Commutative Banach algebras. We let, for this section, A be a regular function
algebra on a locally compact space X, i.e. A is a semisimple commutative Banach algebra
for which there is a contractive inclusionA ⊂ C0(X) whose image contains functions which
separate compact sets from disjoint closed sets. If E ⊂ X is closed we let

IA(E) = {u ∈ A : u|E = 0}, IcA(E) = {u ∈ IA : suppu is compact}
and I0

A(E) = {u ∈ IcA : suppu ∩ E = ∅}.

We note that I0
A(E) is the smallest ideal of elements of A which vanish on E (see [62]), and

IA(E) is the largest. We say that E is a spectral set for A if I0
A(E) = IA(E), approximable

if IA(E) has a bounded approximate identity, locally spectral if I0
A(E) ⊃ IcA(E), and

essential if IA(E)2 = IA(E). The Tauberian property for A is that ∅ is spectral for A.
There is a notion of support of a functional µ in A∗, which generalizes that for a

measure. Using this, Samei [77] devised an amenability-type property for some Banach
function algebras. A is called hyper-Tauberian if every bounded linear local map T :
A → A∗, i.e supp(Tu) ⊂ suppu for u in A, is an A-module map. He proved that the
hyper-Tauberian condition implies weak amenability.

We have the following relationship between amenability conditions and spectral con-
ditions.

Theorem 1.1. Let A be a regular function algebra on X for which A⊗γA is semi-simple.
Then A ⊗γ A is regular on X×X and IA⊗γA(∆) = kerm where ∆ = {(x, x) : x ∈ X}.
Moreover we have

(i) A is amenable if and only if ∅ is approximable for A and ∆ is approximable for
A⊗γ A;

(ii) A is hyper-Tauberian if and only if ∅ is spectral for A and ∆ is locally spectral for
A⊗γ A;

(iii) if ∅ is approximable for A, then A is weakly amenable if and only ∆ is essential
for A⊗γ A;

(iii’) A is weakly amenable if ∅ is essential for A and ∆ is spectral for A⊗γ A.

We note that (i) is a specialized version of a famous splitting result of [35]; see also [10].
The result (ii) is a mild generalization of a result in [77]; there, the only extra assumption
is that X is the spectrum of A. The result (iii) is in [34]; (iii’) is an easy corollary of the
same theorem of [34] in which (iii) is stated.
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Question 1.2. (i) Is it the case that amenability implies hyper-Tauberianness?
(ii) Is there an example of an approximable set which is not (locally) spectral?

A positive answer to (ii) would dismiss an obvious route to proving (i).

2. Amenability properties of Banach algebras of harmonic analysis

2.1. Group and measure algebras. Let G be a locally compact group. The property
of amenability for groups is well known; see the monograph of Paterson [58].

Theorem 2.1. The following are equivalent:

(i) G is an amenable group;
(ii) L1(G) is amenable; and
(iii) L1(G) is biflat.

The equivalence of (i) and (ii) is a famous and motivating theorem of Johnson [42].
The equivalence of (i) and (iii) is due to Helemskĭı [35]. Note that since L1(G) always
has a bounded approximate identity, (ii) and (iii) are equivalent. It is well-known that
L1(G), which injects densely into a C*-algebra (say C∗(G)), is contractible if and only if
G is finite.

Theorem 2.2. L1(G) is always weakly amenable.

This result is due to Johnson [44]; a simpler proof may be found in [15]. Helemskĭı [35]
proved the biprojectivity result below.

Theorem 2.3. L1(G) is biprojective if and only if G is compact.

The characterization of amenability for measure algebras is due to Dales, Ghahramani
and Helemskĭı [11].

Theorem 2.4. The following are equivalent:

(i) M(G) is weakly amenable;
(ii) M(G) admits no point derivations; and
(iii) G is discrete (and hence M(G) = `1(G)).

It is an immediate consequence that M(G) is amenable if and only if G is discrete and
amenable. For abelian groups, Theorem 2.4 was established by Brown and Moran [5]. We
note that since M(G) is unital, if it is biprojective it is then contractible. Moreover since
M(G) injects densely into a C*-algebra (for example the closure of λ(M(G)) in VN(G)),
M(G) is contractible if and only if G is finite.

We close this section with a result of Runde [68].

Theorem 2.5. M(G) is Connes amenable if and only if G is amenable.

2.2. Fourier and Fourier-Stieltjes algebras. For an abelian locally compact group
G, we have that G is compact if and only if Ĝ is discrete; and, by Pontryagin duality, G
is discrete if and only if Ĝ is compact. Given this, it was long expected that for general
locally compact G, the results for A(G) and B(G) would parallel those for L1(G) and
M(G). In particular, Leptin [52] showed that A(G) has a bounded approximate identity
if and only if G is amenable. In particular, if A(G) is amenable, then we must have
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G amenable. It was, for a long time, thought that the converse must hold. Hence the
following result of Johnson [45] was a surprise.

Theorem 2.6. For the compact group G = SO(3), A(G) is not weakly amenable.

This was proved by taking a “twisted” convolution map u⊗v 7→ u∗v̌ : A(G)⊗γA(G)→
A(G), and identifying its range Aγ(G) as a Banach algebra in its own right. A non-zero
point derivation was found on Aγ(G), which was used to show that ∆ is not essential
for A(G) ⊗γ A(G) → A(G) (see Theorem 1.1). Plymen [60] showed that such a point
derivation can be found for Aγ(G) of any compact semi-simple Lie group.

The actual characterization of amenability is due to Forrest and Runde [24] (see also
a more qualitative version in [71]). We say G is virtually abelian if it admits an abelian
subgroup of finite index.

Theorem 2.7. The following are equivalent:

(i) A(G) is amenable;
(ii) ∆̌ = {(s, s−1) : s ∈ G} ∈ Ω(G), where Ω(G) denotes the smallest ring of subsets

containing all cosets; and
(iii) G is virtually abelian.

Moreover, B(G) is amenable if and only if G is compact and virtually abelian.

It is interesting to note that operator space techniques were used in the proof (and
that this proof is intimately related to Theorem 4.7, below). It seems that (ii)⇔(iii) can
be proved by purely group theoretic techniques, though the author knows of no reference
for this. The implication (iii)⇒(i) can be found in [50]. We note that if Br(G) is amenable,
it must have a bounded approximate identity whose cluster point must be the constant
function 1; this means that Br(G) = B(G). Contractibility of A(G) is equivalent to
finiteness of G; indeed A(G) injects densely into the commutative C*-algebra C0(G).

The characterization for weak amenability is not yet entirely known, but we have
strong partial results.

Theorem 2.8. (i) If the connected component of the identity Ge of G is abelian, then
A(G) is hyper-Tauberian (hence weakly amenable).

(ii) If G contains a non-abelian connected compact subgroup, then A(G) is not weakly
amenable.

(iii) If G is compact and connected, A(G) is hyper-Tauberian if and only if G is abelian.

We note that connected [SIN] (small invariant neighbourhood) and [MAP] (maximally
almost periodic) groups (see tables in [57]) contain non-abelian connected compact sub-
groups whenever they, themselves, are non-abelian. Forrest and Runde [24] proved (i) for
weak amenability, while Samei [77] proved it for the hyper-Tauberian property. Results
(ii) and (iii) were proved in [26]; they follow from the next result in the same article which
we give below. See Section 1.3 for notation and terminology.

Theorem 2.9. Let G be a compact group. Then the following are equivalent:

(i) Ge is abelian;
(ii) A(G) is hyper-Tauberian; (ii’) ∆ is spectral for A(G)⊗γ A(G);
(iii) A(G) is weakly amenable; and (iii’) ∆ is essential A(G)⊗γ A(G).
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The proof of this theorem builds on that of Theorem 2.6 and the associated result
of Plymen, and uses the characterization of connected compact groups from [61]. The
equivalences (ii)⇔(ii’) and (iii)⇔(iii’) are direct applications of Theorem 1.1.

Question 2.10. Is it the case that A(G) is weakly amenable only if Ge is abelian? Is the
Fourier algebra weakly amenable for any of the groups SL2(R), the ax+ b-group, or any
of the Heisenberg groups?

Given Theorems 2.4, 2.7 and 2.8, it is reasonable to expect that B(G) ought to be
weakly amenable if and only if G is compact and Ge is abelian; compare this with The-
orem 3.7 (iii), below.

The best results known for biflatness and biprojectivity are recently due to Runde [73];
though some components of this theorem were developed by Aristov [1].

Theorem 2.11. (i) If A(G) is biflat then either (a) G is virtually abelian, or (b) G
is non-amenable and does not contain a discrete copy of the free group on two
generators.

(ii) If A(G) is biprojective then G is discrete and one of (a), or (b), in (i) above, holds.
Conversely, if (a) holds (and G is discrete) then A(G) is biflat (biprojective).

It seems unlikely that A(G) could be biflat for any non-amenable group, but little is
known about harmonic analysis on non-amenable groups not containing free groups; see
Ol’shanskii and Sapir [56] for an up-to-date treatment of the groups themselves. Much
as is the case for M(G), above, B(G) is biprojective if and only if G is finite: B(G) has a
commutative C*-algebra, the Eberlein algebra, as its uniform closure in Cb(G).

Results on Connes amenability for B(G) are also incomplete. The best results pub-
lished are due to Runde [70].

Theorem 2.12. (i) If G is either discrete and amenable, or is a product of finite
groups, then B(G) is Connes amenable if and only if G is virtually abelian.

(ii) If G is discrete, then Br(G) is Connes amenable if and only if G is virtually abelian.

3. Operator amenability properties. It is unfortunate that A(G) is amenable so
rarely. The theory of operator spaces, which developed into its modern form in the 1990s,
gives a new perspective to these problems. Banach spaces (or even normed spaces) have
clear advantages over simple vector spaces for posing problems in infinite dimensional set-
tings. The main reason is that there are useful theorems regarding properties of bounded
linear operators, while little can be said about linear operators alone, in general. The
theory of operator spaces and completely bounded maps offers a similar refinement in
terms of control, however still leaves us enough morphisms for a usable theory.

3.1. Operator spaces and completely bounded maps. We use, as a standard ref-
erence for operator spaces, the book of Effros and Ruan [16]; all results in this section
can be found there. We also recommend the book of Paulsen [59].

The axioms of Ruan give a simple abstract definition of operator spaces. Let V be a
C-vector space and for each n in N, let Mn(V) denote the space of n×n matrices with
entries in V. An operator space structure is a sequence of norms (‖·‖n : Mn(V)→ R≥0)n∈N
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which satisfy

(OS1):
∥∥∥∥[U 0

0 V

]∥∥∥∥
n+m

= max{‖U‖n , ‖V ‖m}, (OS2): ‖αUβ‖n ≤ ‖α‖ ‖U‖n ‖β‖

where U ∈ Mn(V), V ∈ Mm(V) and α, β ∈ Mn(C), where the latter space is normed as
the space of linear operators on an n-dimensional Hilbert space. We generally assume
that (V, ‖·‖1) is complete, and hence a Banach space. We will call V, equipped with an
operator space structure, an operator space. It is easily checked that any closed subspace
of B(H) (H a Hilbert space) is an operator space, where we identify Mn(B(H)) ∼= B(Hn)
in the usual manner.

A linear map between operator spaces T : V → W is called completely bounded
if its amplifications, [vij ] 7→ [Tvij ] : Mn(V) → Mn(W), are uniformly bounded in n.
These are the natural morphisms of operator spaces. We denote the space of such maps
CB(V,W). It is itself an operator space via the natural identification Mn(CB(V,W)) ∼=
CB(V,Mn(W)), [Tij ] ∼= (v 7→ [Tijv]). All bounded linear functionals are automatically
completely bounded, thus V∗ is naturally an operator space. In particular B(G) ∼= C∗(G)∗

is an operator space and A(G) inherits its operator space structure as a subspace. We
note that M(G) ∼= C0(G)∗ is a maximal operator space, as is the subspace L1(G). For a
maximal operator spaceM, any bounded map T :M→ V is automatically completely
bounded, whenever it is bounded. In particular, operator space theory does not restrict
the natural morphisms emanating from M(G) or from L1(G).

A bilinear map B : V×W → Z on operator spaces is called jointly completely bounded
if the amplifications B(n,m) : Mn(V)×Mm(W)→Mnm(Z), given by B(n,m)([vij ], [wkl]) =
[B(vij , wkl)], are uniformly bounded in pairs (n,m). The operator projective tensor prod-
uct V ⊗̂ W is the canonical object which linearizes jointly completely bounded bilinear
maps into completely bounded bilinear maps. A remarkable result, proved by Effros and
Ruan, is a Grothendieck-type identification of the operator space projective tensor prod-
uct of the preduals of two von Neumann algebras: ifM and N are von Neumann algebras
with predualsM∗ and N∗, thenM∗ ⊗̂N∗ ∼= (M⊗N )∗, the predual of the von Neumann
tensor product of M and N . The author does not know of any method of proving this
identity without appeal to Tomita-Takesaki theory, in particular the commutation for-
mula (M⊗N )′ ∼=M′ ⊗N ′. For locally compact groups G and H this gives rise to the
identification

A(G) ⊗̂A(H) ∼= A(G×H).

This contrasts with the result of Losert [54], which was proved using techniques of subho-
mogeneous von Neumann algebras, that A(G)⊗γ A(H) ∼= A(G×H) if and only if at least
one of G or H is virtually abelian. Recall the role of virtually abelian groups in Section
2.2. These results suggest that the recognition of the natural operator space structures on
A(G) and on B(G) should play a role in gaining a more satisfactory amenability theory.
For example, using Losert’s result, Forrest and Wood [29] showed that all bounded maps
on A(G) are automatically completely bounded exactly when G is virtually abelian.
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To this end, an algebra A, which is also an operator space, is called a completely
contractive Banach algebra if the multiplication map m : A×A → A is jointly completely
contractive, i.e. all amplifications m(n,k) are contractions. An A-bimodule, V, which is
also an operator space, is a completely contractive A-bimodule provided the module ac-
tions A×V,V×A → V are both jointly completely contractive, which is the same as
having that each of the module-defining homomorphism and anti-homomorphism from A
into CB(V) is completely contractive. If V is such a module, then V∗ is a dual completely
contractive A-bimodule. The entire theory of amenability, contractibility, weak amenabil-
ity, biflatness and biprojectivity (in the case of a function algebra, hyper-Tauberianness)
can be adapted to be rephrased with completely bounded derivations, operator projective
tensor products, or module maps (or local maps), and turned into the theories of operator
amenability, operator weak amenability, etc. In short, the qualifier “operator” means that
we convert all results from the Banach space setting into the operator space one. Note
that the maximal operator spaces structures on L1(G) and M(G) allow the following
important fact.

Remark 3.1. Every Banach algebra theorem on L1(G) or on M(G) is automatically a
completely contractive Banach algebra theorem.

In other words, all of the results of Section 2.1 are really operator amenability results.

3.2. Fourier and Fourier-Stieltjes algebras as operator spaces. Now, with oper-
ator spaces in hand, we can state the true analogues of the theorems of Section 2.1. We
let G denote a locally compact group. The seminal theorem is by Ruan [63].

Theorem 3.2. A(G) is operator amenable if and only if G is amenable.

The success of this result has inspired constructions of operator space structures on
Herz–Figà-Talamanca algebras Ap(G) to gain similar operator amenability results: two
quite different constructions are obtained by Lambert et al. [49] and Daws [12]. The only
systematic attempt, of which the author is aware, to generalize Theorems 2.1 and 3.2 to
a locally compact quantum group or Kac algebra setting is by Aristov [2].

Theorem 3.2 is the appropriate dual analogue to (i)⇔(ii) of Theorem 2.1. Since the
dense inclusion A(G) ↪→ C0(G) is completely contractive, operator contractibility of A(G)
implies that of C0(G). Since each maximal ideal is co-dimension 1, the arguments of §4.1
of [66] can be readily adapted to show that G is finite. The facts stated immediately after
Theorem 2.1, along with duality considerations, lead to the following.

Conjecture 3.3. A(G) is always operator biflat.

We do not yet know the truth of this conjecture, but there is strong evidence in its
favour. We say that a closed subgroup H in G admits a bounded approximate indicator
in G if there is a net (vα) ⊂ B(G) for which

vα|Hu→ u for u ∈ A(H) and vαw → 0 for w ∈ IA(G)(H).

(See explanation of notation in Section 1.3.) This concept was introduced in [3]. It was
proved there that bounded approximate indicators can always be built of positive defi-



374 N. SPRONK

nite functions. We observe that they may not be realized in general as elements whose
restriction to H is the constant function 1; see [47].

We say a locally compact group Q is a [QSIN] (quasi-small invariant neighbourhood)
group if L1(Q) admits a bounded approximate identity (eα) for which ‖eα ∗ δs − δs ∗ eα‖1
→ 0 for each Dirac measure δs in M(Q).

Theorem 3.4. (i) If the diagonal subgroup ∆ in G×G admits a bounded approximate
indicator, then A(G) is operator biflat.

(ii) If G injects continuously into a [QSIN] group, then ∆ admits a bounded approximate
indicator in G×G.

(ii) If G = SL3(R), then ∆ does not admit a bounded approximate indicator in G×G.

This theorem was proved in [3], but we note that Ruan and Xu [64] proved directly
that the assumed condition in (ii), above, implies that A(G) is operator biflat. We do not
know if A(SL3(R)) is operator biflat.

We observe that results (ii) and (i), with Leptin’s theorem [52], show directly the fact
that for an amenable group G, A(G) is operator amenable. It is interesting to note that
a device in [78] allows us directly to obtain an operator bounded approximate diagonal
for A(G), for amenable G. If G is amenable then G is itself [QSIN] (see [55, 79]), and
hence, by (ii), there is a bounded approximate indicator (vα) for ∆ in G×G. Let (uβ) be
a bounded approximate identity for A(G×G). Then

(vαuβ) ⊂ A(G×G) ∼= A(G) ⊗̂A(G)

and a net (wµ) can be extracted from this set which allows limits to be taken first in α,
then in β. This net is the desired bounded approximate diagonal.

If Conjecture 3.3 were true, it would imply (i) of the following, which is the dual
analogue of Theorem 2.2.

Theorem 3.5. (i) A(G) is always operator weakly amenable.
(ii) A(G) is always operator hyper-Tauberian.

Part (i) was proved in [78], and independently by Samei [76]. While the proof of [78]
relied on the operator space analogue of Theorem 1.1 (iii’), that of [76] was the genesis for
the hyper-Tauberian condition of [77]. It was there that (ii) was proved; moreover, this
result was extended to Herz–Figà-Talamanca algebras Ap(G), using the operator space
structure of [49]. As mentioned in Section 1.3, (ii) implies (i). An important fact used
in both of these proofs is that the subgroup ∆ is spectral for A(G×G); see [36, 80]. We
note that it follows from Theorem 3.5, and the fact that bounded linear functionals are
automatically completely bounded, that A(G) admits no non-zero point derivations.

We have the following dual analogue of Theorem 2.3 which is due to Aristov [1] and,
independently, Wood [84].

Theorem 3.6. A(G) is operator biprojective if and only if G is discrete.

Daws [13] has recently provided evidence which suggests that Theorems 2.3 and 3.6
are really results on compact Kac algebras, and may not be extended to general compact
quantum groups.
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The success of finding the dual analogue of each amenability result about L1(G) in
Section 2.1 for A(G) (except possibly operator biflatness) led us to think that Theorem 2.4
should admit a dual analogue for B(G) in the operator space setting. Thus (ii) and (iii)
below were a surprise. The operator amenability constant CopA is defined for a completely
contractive Banach algebra A analogously to the amenability constant of Section 1.2.

Theorem 3.7. (i) If B(G) is operator amenable with operator amenability constant
CopB(G) < 5, then G is compact.

(ii) There is a class of groups, the “Fell” groups, G, for which each B(G) is operator
amenable with CopB(G) = 5.

(iii) For each Fell group G, B(G) is weakly amenable.

Part (i) was proved in [74], while parts (ii) and (iii) are from [75]. For a Fell group
G – an example of which is the semi-direct product Gp = Zp n Qp for a prime p – we
have the decomposition B(G) = Af (G)⊕`1 A(G). This is a “semi-direct product” of two
operator amenable Banach algebras. The lack of the word “operator” in (iii) is not a
typographical error. Since a Fell group G is totally disconnected, and so too is its almost
periodic compactification – in the case Gp, above, it is Zp – both the algebras A(G) and
Af (G) ∼= A(Gap) are weakly amenable by Theorem 2.7 (ii).

In particular we notice that for a Fell group, B(G) has no non-zero point deriva-
tions. There are other known examples of this absence of point derivations. If G is a
connected semi-simple Lie group, it was shown by Cowling [9] that there is a finite family
of closed normal subgroups N1, . . . , Nn, with quotient maps qj : G → G/Nj , for which
B(G) = `1-

⊕n
j=1 B0(G/Nj)◦qj . Moreover, Cowling applied his generalized Kunze-Stein

phenomenon [8] to show that each B0(G/Nj)/A(G/Nj) is a radical Banach algebra.
Since each A(G/Nj) admits no non-zero point derivations (Theorem 3.5), neither can
B0(G/Nj). These examples stand in marked contrast to (i)⇔(ii) of Theorem 2.4. (The
author is grateful to M. Ghandehari for pointing out this example.)

It is further interesting to consider amenability properties of the Rajchman algebras
B0(G). In contrast to the examples above, if G is abelian and non compact, Ghande-
hari [30] has shown that point derivations exist on B0(G).

Question 3.8. (i) When is B(G) operator amenable? Operator weakly amenable?
(ii) What possible values are there for CopB(G)?
(iii) When is B0(G) operator amenable? Operator weakly amenable?
(iv) When do B(G), or B0(G), admit non-zero point derivations?

In partial answer to (ii), it is suggested in [31] that CopB(G) takes only values 4n + 1.
However no example is known to us of examples taking values other than 1 or 5. It is
reasonable to expect that B0(G) is operator weakly amenable only if B0(G) = A(G).

Even when the dual structure is taken into account, the situation for B(G) is still not
clear.

Theorem 3.9. (i) Br(G) is operator Connes amenable if and only if G is amenable.
(ii) If G = F2, the free group on two generators, then B(G) is operator Connes amen-

able.
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This theorem is proved in [74]. The proof of (i) is easy: Br(G) can be operator Connes
amenable only if it is contains the constant function 1; conversely if G is amenable, then
A(G) is operator amenable and weak* dense in Br(G). The proof of (ii) invokes the fact,
due to Choi [6], that for G = F2, C∗(G) is residually finite dimensional. This implies
that Af (G), which is operator amenable, is weak* dense in B(G). We have, presently, no
natural conjectures as to when B(G) is operator Connes amenable, in general. It is not
clear that B(G) ought to admit an operator normal virtual diagonal in such a case; this
condition is not automatic [72].

4. Applications

4.1. Ideals of Fourier algebras with bounded approximate identities. It is a
natural question, given a Banach algebra, to ask if it is possible to classify its ideals.
For an algebra such A(G), even for G = T, this is a difficult question, since it is known
that there are non-spectral subsets (see definition in Section 1.3). Hence one may wish to
classify a nice subclass of ideals, say, those admitting bounded approximate identities. For
abelian groups this was achieved by Liu et al. [53], using methods of invariant means; this
pointed towards the need for some form of averaging in A(G). Since A(G) is amenable only
for virtually abelian G, this points to the necessity to import operator space techniques
so we can access arbitrary amenable G.

Let Ω(G) denote the smallest Boolean ring of subsets containing cosets of subgroups,
and Ωc(G) the set of closed elements in Ω(G). The following is the main result of [23].

Theorem 4.1. Let G be amenable. Then every closed ideal of A(G), which has a bounded
approximate identity, is of the form IA(G)(E) where E ∈ Ωc(G).

The proof is based on the fact that an ideal I, in an (operator) amenable Banach alge-
bra A, has a bounded approximate identity if [and only if] it is weakly (completely) com-
plemented. i.e. there is a (completely) bounded projection P : A∗ → I⊥, the annihilator of
I in A∗ (see [35, 66]). This follows from the fact that this projection can be “averaged” to a
(completely) bounded A-bimodule projection. Now if H is a closed subgroup of an amen-
able group G, then VN(H) is an injective von Neumann algebra, from which it can be de-
duced that there is a completely bounded projection P : VN(G)→ IA(G)(H)⊥ ∼= VN(H).
Since, by Theorem 3.2, A(G) is operator amenable, P can be averaged to invariance (see
[83, 28]), hence giving the fact that IA(G)(H) admits a bounded approximate identity.
Then, careful arguments, using the structure of elements of Ωc(G), shows that for any E
in Ωc(G), IA(G)(E) has a bounded approximate identity.

To see the converse, consider I a closed ideal in A(G) with bounded approximate
identity (uα), and let E = {s ∈ G : u(s) = 0 for u ∈ I}. Then (uα) has a weak*
(pointwise) cluster point in B(Gd) (Gd is G with discrete topology) which is necessarily
the indicator function 1G\E . By Host [38], E ∈ Ω(G), and is closed, so E ∈ Ωc(G). We
moreover show that elements of Ωc(G) are spectral sets, hence I = IA(G)(E).

We remark that in the setting of Fourier algebras important results leading to Theorem
4.1 were obtained by Forrest [19, 20]. Operator space techniques were applied to this
problem for the first time by Ruan and Xu [64] and Wood [83].
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In the case that G is discrete, Wood [85] uses operator biprojectivity (Theorem 3.6)
to obtain the following.

Theorem 4.2. If G is discrete, then a closed ideal I in A(G) is completely complemented
if and only if there is a completely bounded A(G)-bimodule map P : A(G)→ I.

In the case that G is amenable it follows that I = IA(G)(E) for some E in Ω(G). How-
ever, for non-commutative free groups F there are certain free sets E, due to Leinert [51],
which are not elements of Ω(F ), but for which IA(F )(E) is completely complemented.

The desire to understand ideals in A(G) for non-amenable G has led us to consider
the algebra Acb(G), which is the closure of A(G) in the algebra of completely bounded
multipliers McbA(G); the latter space was introduced by De Canniere and Haagerup [14]
and shown to be a dual space. For “weakly amenable” G, as defined in [14] (this should
not be confused with weakly amenable algebras), we always have that Acb(G) admits
a bounded approximate identity (see [22]). Thus, Acb(G) represents faithfully on many
canonical modules, such as A(G) and VN(G), whereas A(G) does not. It is shown in [14]
that SL2(R) is weakly amenable and that F2, being a finite index subgroup of a lattice in
SL2(R), also enjoys this property. The following result is from [25] and uses techniques
similar to those in Theorem 3.9 (ii).

Theorem 4.3. (i) McbA(F2) is operator Connes amenable.
(iii) Acb(F2) is operator amenable.
(iii) Every weakly complemented closed ideal in Acb(F2) has a bounded approximate iden-

tity.

4.2. Fourier algebras of homogeneous spaces. Let G be a locally compact group
and K a compact subgroup. The Fourier algebras of the homogeneous spaces A(G/K)
were defined by Forrest [21]: A(G/K) = {u ∈ A(G) : k ·u = u for k ∈ K}, where k ·u(s) =
u(sk). It was shown in that article that these spaces have many of the accoutrements of
operator amenable algebras: for example, they admit bounded approximate identities
when G is amenable. Moreover, the analogue of the Grothendieck-Effros-Ruan tensor
product formula was shown in [27]: A(G/K) ⊗̂ A(G/K) ∼= A(G/K × G/K) (where, of
course G/K×G/K is the homogeneous space (G×G)/(K×K)). Hence the following
contrast to Theorem 3.2, proved in [27], was a surprise.

Theorem 4.4. If G is a compact semi-simple Lie group, then A(G×G/∆) is not operator
weakly amenable.

As an interesting consequence, we could show that for G, as in the theorem, (G×G×
G×G)∆×∆ is not spectral for A(G×G×G×G). We note that the natural identification
s 7→ (s, e)∆ gives rise to an isomorphic identification A(G×G/∆) ∼= A(G) only when G
is virtually abelian. Otherwise A(G×G/∆) identifies with a subalgebra A∆(G) of A(G),
which is very similar to the algebra Aγ(G) of Johnson [45]. Hence Theorem 4.4 is really
an analogue of Theorem 2.6.

We say that G is [MAP]K if the almost periodic functions on G separate the points
on K. In [27] we obtained the following results for locally compact G.
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Theorem 4.5. (i) If Ge is abelian, then A(G/K) is hyper-Tauberian, and if G is
[MAP]K , then (K×K)∆ is a set of local synthesis for A(G×G).

(ii) If G is amenable and [MAP]K , then A(G/K) is operator amenable if and only if
(K×K)∆ ∈ Ω(G×G).

If G contains a compact non-abelian connected subgroup K, then there is a compact
subgroup K∗ of G×G for which A(G×G/K∗) is not operator weakly amenable; a partial
converse to (i). The only cases which we know of where (K×K)∆ ∈ Ω(G×G) are when
K has a subgroup of finite index which is normal in G.

In the follow-up paper [26] we gained an improvement of Theorem 4.4, but with less
illustrative methods.

Theorem 4.6. Let G be a compact group. Then the following are equivalent:

(i) A∆(G) is operator weakly amenable; (i’) A∆(G) is weakly amenable;
(ii) A∆(G) is operator hyper-Tauberian; (ii’) A∆(G) is hyper-Tauberian;
(iii) Ge is abelian.

Moreover, the following are equivalent:

(a) A∆(G) is operator amenable; (a’) A∆(G) is amenable;
(b) G is virtually abelian; (b’) A∆(G) = A(G).

What is interesting about this result is that it suggests that A∆(G) contains, in its
Banach space structure, critical information about the operator space structure of A(G).

4.3. Homomorphisms on Fourier algebras. Let G andH be locally compact groups.
Cosets ofH can be characterized at those subsets C which are closed under the ternary op-
eration (r, s, t) 7→ rs−1t. A map α : H → G is called affine if α(rs−1t) = α(r)α(s)−1α(t)
for r, s, t in C. We say α : Y → G is piecewise affine if there is a partition Y =

⋃n
j=i Yn

of Y , where each Yj ∈ Ω(H) and for each j a coset Cj ⊃ Yj and an affine αj : Yj → G

for which α|Yj = αj |Yj . We will call α : Y ⊂ H → G a continuous piecewise affine map if
each Yj ∈ Ωo(G) (the smallest ring of subsets generated by open cosets) and α is contin-
uous. If u : G→ C is a function, we can define for piecewise affine α, as above, the map
Φαu : H → C by Φαu(s) = u(α(s)) if s ∈ Y , and Φαu(s) = 0 if s ∈ H \ Y .

The following result was proved, for abelian groups by Cohen [7], generalized to the
case that G is virtually abelian by Host [38], and then to the case that G is discrete and
amenable by Ilie [40]. The definitive form, as presented here, is in [41].

Theorem 4.7. (i) If α : Y ⊂ H → G is continuous piecewise affine, then Φα : A(G)→
B(H) is a completely bounded homomorphism.

(ii) If G is amenable, then every completely bounded homomorphism Φ : A(G)→ B(G)
is of the form Φ = Φα, as in (i) above.

(iii) The homomorphism Φα maps A(G) into A(H) if and only if α is proper, i.e. α−1(K)
is compact for each compact K ⊂ H.

As an obvious corollary, we have that if H is connected, only affine α are allowed as
“symbols” for completely bounded homomorphisms from A(G) (G amenable) to B(G).
This theorem seems nearly sharp in the following respects. First, the map u 7→ ǔ : A(G)→



AMENABILITY PROPERTIES 379

A(G) (ǔ(s) = s(s−1)) is completely bounded only if G is virtually abelian; compare to
Theorem 2.7 (ii) and comments in the paragraph below. Second, if E is a free set in a
non-commutative, hence non-amenable, free group F , then u 7→ 1Fu : A(F ) → A(F )
is completely bounded (see Leinert [51]) but not implemented by a completely bounded
symbol (in particular E 6∈ Ω(F )).

Let us illustrate the role of Theorem 3.2 in the proof of (ii). If Φ is completely bounded,
then

Φ⊗ idA(G) : A(G) ⊗̂A(G) ∼= A(G×G)→ B(H ×G)

is well-defined. If (wµ) is an operator bounded approximate diagonal for A(G) of the type
whose construction is outlined after Theorem 3.4, then the net (Φ(wµ)), considered as a
bounded net in B(Hd ⊗Gd) (discretized groups) must have a cluster point which is the
indicator function 1Y . Hence Y ∈ Ω(H×G), by Host [38]. It can then be checked that Y
is the graph of a piecewise affine function α, which, moreover, must be continuous.

We define α : Y ⊂ H → G to be mixed piecewise affine if Y partitions as above into
elements Y1, . . . , Yn of Ω(H), and for j = 1, . . . , n there is a coset Cj ⊂ Yj and either an
affine αj : Cj → G, or an anti-affine αj (i.e. αj(rs−1t) = αj(t)−1αj(s)αj(s)−1), such that
α|Yj = αj |Yj . If Φα is defined as above, it is clear that Φα : A(G) → B(G) is a bounded
homomorphism.

Conjecture 4.8. If G is amenable then every bounded homomorphism Φ : A(G) →
B(H) is of the form Φ = Φα for some continuous mixed piecewise affine α : Y ⊂ G→ H.

It is an interesting open question to characterize completely bounded, never mind
bounded, homomorphisms on Fourier algebras of non-amenable groups. As suggested by
the proof Theorem 4.7, illustrated above, the completely bounded question is closely
linked to our understanding of the idempotents in McbA(H×G) (see section 4.1 above
for notation).

For group algebras, only the contractive homomorphisms Ψ : L1(G)→ M(H) are well
understood; see Greenleaf [33]. It would be interesting to see if, for amenable G, bounded
approximate diagonal methods shed light on the understanding of such bounded homo-
morphisms. If these structures can be understood, then there is hope for understanding
the completely bounded homomorphisms on predual algebras of locally compact quantum
groups.
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