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Abstract. Results on the asymptotic stability of solutions of the exterior Navier—Stokes problem
in R® are proved in the framework of weak L” spaces.

1. Introduction. Our aim in this paper is to prove an asymptotic stability result for
small solutions of the exterior problem for the Navier—Stokes equations

(1.1) u—Au+(u-Vu+Vp=f, 2€Q, t>0,
(1.2) u(z,t) =0, €0, t>0,
(1.3) V-u=0, z€Q, t>0,
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u(z,0) = ug(z), x € Q,
lm w(z,t) = ue, t>0.
|z]—o0

Here O C R? is an exterior domain, i.e. the complement of a compact set K with
a smooth boundary 0f). The initial condition ug is supposed to be divergence free in
the sense of distributions, and it is attained in the weak sense as ¢ \, 0. The condi-
tion at infinity (1.5) is understood in the sense of the weak Lebesgue space (or the
Marcinkiewicz space) L3°°(Q) of divergence free distributions belonging to L>°°((2).
Following the physical interpretation of the above problem, the set K represents an ob-
stacle, and the Navier-Stokes flow has the asymptotic velocity at |z| = co equal t0 Uo.
In particular, if us, = 0, the flow is at rest at infinity.

There is a huge amount of publications analyzing solutions to the exterior problem
(1.1)—(1.5); here, we mention only some of them where the interested reader can find
more complete references.

Leray [14] studied the stationary problem associated with (1.1)—(1.5) and proved
the existence of a smooth steady state with a finite Dirichlet integral. Later, Finn [6]
gave an asymptotic analysis for the so-called “physically reasonable” solutions proving
a uniqueness result for small data in such a class. Moreover, his solutions present as well
a paraboloidal wake structure behind the obstacle. We refer the reader to the two volume
monograph by Galdi [7] for several other results on the stationary exterior problem and
for the most complete bibliography. Here, we also quote the recent paper by Shibata and
Yamazaki [19] on the behavior as || — oo of stationary solutions to the exterior problem.

In the case of nonstationary solutions, Heywood proved [9] that for small data one can
solve the, so-called, stability problem for physically reasonable solutions. In other words,
for small data one can solve the equations obtained by replacing in (1.1)—(1.5) with
a perturbed flow, with respect to smooth L? perturbations, within the class of physically
reasonable solutions. As far as the behavior as ¢ — oo of nonstationary solutions is
concerned, this result was later improved by several authors, (see [1, 2, 3, 5, 8, 9, 13, 17,
18, 20] for further and more detailed accounts on the subject). However, Finn pointed out
in [4] that if u(x) is a stationary physically reasonable solutions and if the external force
exterted on the obstacle does not vanish, then u(z) — us is not square integrable. This
is why it appeared interesting to study the existence of solutions to (1.1)—(1.5) within
a class of functions larger than L?((2).

In this direction the most comprehensive theory, that applies in a more general frame-
work that the energy one, was that making a systematic use of LP — L9 estimates of the
Stokes semigroup. These techniques were applied in the context of various function spaces
and related problems (cf. e.g. [2, 3, 8, 10, 13, 18, 20]). Compared to the Navier—Stokes
problem in the whole space R?, the case of an exterior domain is more difficult because
the scaling properties of the equations are harder to exploit.

One of the most important problems is to find an adequate functional setting. There
have been many approaches to the exterior Navier-Stokes problem, including Lebesgue
spaces, anisotropically weighted Sobolev spaces, Morrey-Campanato spaces. Here, our
choice is that of weak Lebesgue spaces LP'*°(2) that contain functions with the decay for
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|x] — oo expected for the solution from physical similarity arguments. However, to get
suitable estimates we need to use also a larger scale of Lorentz spaces LP" ().

In this paper, we prove a result on the asymptotic stability of solutions for (1.1)—(1.5)
whose existence has been recently proved by H. Kozono, Y. Shibata and M. Yamazaki in
[12, 13, 17, 18, 19, 20]; see also the work [3] of N. Depauw. The plan of the paper is the
following. First, we gather the information on the linearized evolution problem, i.e. on the
Stokes and Oseen semigroups. Then, we recall the results on the existence and stability
of solutions. Our main results on the asymptotic stability of solutions are contained in
Theorem 3.4 (the case us, = 0) and in Theorem 3.5 (the general case with u., # 0 small
enough). Finally, we will analyze the regularity of solutions in Theorems 4.1 and 4.2.

Notation. Here LP" denote the LP"(2) Lorentz spaces of vector functions with values in
R, and LP"(Q2)—their respective intersections with the divergence free (in the distribu-
tional sense) vector fields. The case 7 = oo corresponds to the Marcinkiewicz (or weak
Lebesgue) spaces. The letter C' denotes inessential constants which may vary from line
to line, but do not depend on particular solutions.

2. Stokes and Oseen semigroups. Since we will use the Duhamel type formulas for
representing the solutions of the full nonlinear problem, estimates on the linearized prob-
lems are of importance.

Given us € R we consider the linear problem

(2.1) v — AV + (Use - V) 4+ Vg =0, 2€Q, t>0

(2.2) v(z,t) =0, €, t>0,
(2.3) Vv=0, z€Q, t>0,

(2.4) v(z,0) = vo(x), =€,

called the Stokes problem for u., = 0, and the Oseen problem if u., # 0. The corre-
sponding semigroups are called the Stokes and the Oseen semigroups, respectively, and
are denoted by T'(¢t) and T,,__(t), t > 0.

The semigroups 7'(t) and T, (t) have been studied for (at least) 75 years, cf. [16].
Here, we recall only the contribution made by Shibata and Yamazaki in [17, 18, 20] which
is important for the topic studied in the present paper.

The main technical tools used in the present paper are the Lorentz space estimates
of the Stokes and Oseen semigroups which are consequences of usual Lebesgue spaces
LP — L9 estimates, cf. [11], via an interpolation argument.

Thus, we begin with the estimates for the Stokes and Oseen semigroups.

PROPOSITION 2.1. Assume that 1 < p < ¢ < oo and vg € LE(Q). There exists eg > 0
such that for all us € R? such that |us| < g9 we have

(2.5) T (Yol o < 2G| 1

for allt > 0 (here, T,,__(t) = T(t) for uss = 0). Moreover, the gradient of the semigroup
satisfies the estimate
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(2.6) IV T, (B)voll o < et~ 25578 |lug | 10
forl<p<g<3. =

The passage from the Lebesgue spaces to the Lorentz spaces estimates for those
semigroups is made using the real interpolation method.

PROPOSITION 2.2. Under the assumptions of Proposition 2.1,
(2.7) 1T (00l < et 3G ol o,
fort>0,1<p<g<oo,1<r<oo, and

(2.8) 19T Bvoll . < et 2670 o] o,
fort>0,1<p<g<3, 1<r<co.m

These are particular cases of the estimates recorded in [18]. The estimates for the
Stokes semigroup with u., = 0 have been proved earlier in [20].
In the following, we also use the integral estimate

(2.9) / 367373 | VT (B)voll o dt < Cllvo| o
0

which holds true under the assumptions of Proposition 2.1 and which is valid for all
vp € L2(Q), 1 < p < ¢ <3, and a constant C' > 0. In the case of the Stokes semigroup,
inequality (2.9) is due to Yamazaki [20, Cor. 2.3]. For the Oseen semigroup T, (¢),
the analogous result holds true which is a consequence of the real interpolation method
applied to (2.8) and a reasoning in the proof of [20, Cor. 2.3].

We will also need some technical lemmata which we formulate below.

LEMMA 2.1. Under the assumptions of Proposition 2.1, the following estimate is satisfied:

H/ $)PVG(s) ds

for each function G € L>°((0,00); L3/>°°(Q)), all t > 0, and a constant C > 0.

< C sup [[G(s)|pa/2.

L3,00 0<s<t

Proof. The proof of this lemma can be inferred from the reasoning contained in [20, 18];
here, we reproduce it for the completeness of the exposition. Given a test function ¢ €
3 2’I(Q) it follows from the Holder inequality in Lorentz spaces that

‘</otT (t—s)PVC(s ds‘p>’ /‘ uoo (t = 8)p) | ds

< sup G(s)] 132~ / IV T (t — 5l o ds.

Now, the Yamazaki estimate (2.9) leads to the majorization of the second factor on the
right hand side by

/ IV T (s)epll o ds < / VT (8)gll o ds < Cligllgs/as.

The duality argument completes the proof. m
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LEMMA 2.2. Under the assumptions of Proposition 2.1, if G € Cy,([0,00); L3/%°°())
satisfies lim; oo ||G(¢)|| p3/2.00 = 0, then

/t T(t —s)PVG(s)ds
0

Proof. An analogous result in the case of the whole space {2 = R? can be found in [2].

(2.10) lim

t—o0

=0.

3.0

We split the integral into the sum fg/ o+ ftt/Q ..., and proceeding as in the proof of
Lemma 2.1 with ¢ € L§/2’1(Q) we estimate

t/2 t)2
‘</ T(t — $)PVG(s) ds,<p>‘ < / 1G ()| gosam VT (E — )0l ot ds
0 0

t/2
<c / 1G(3) s (t — 8)~ ]l oson ds.
0

Hence, by duality, we have

H/ T(t — $)PVG(s) ds

t/2
< c/ (t — 8) "L G(5) | pome ds
L3/2,00 0

1/2
< c/ (1= ) UGt o dr
0

which tends to 0 as ¢ — co by the Lebesgue dominated convergence theorem.
To bound the second integral term we apply Lemma 2.1 with the function G restricted
to the interval [t/2,t] and equal O otherwise. Hence, we obtain

H//2 (t — $)PVG(s) ds

as t — 0o, by the assumption on G. =

<C sup |G(s)|ps/2.00 = 0
3,00 t/2<s<t

3. Existence and stability of solutions for the nonlinear problem. In the re-
mainder of the paper we assume that the external forces are of potential type, that is f
is derived from a tensor function F' = (Fjj(x))?,_,, so that

OFjy k
(Fy(@))iey =V (z k(s 1.
The forces F' may also depend on time if some continuity assumptions are made.

DEFINITION 3.1. A function u € X = C,(][0,00); L3°°(€)) is said to be a mild solution
of the Navier—Stokes system (1.1)—(1.5) if

t
(3.1) u(t) = Ty, (t)ug — / Tu (t—s)[PV(u®@u)(s) +PV - F(s)]ds.
0
The above integral is understood in the weak sense, i.e. the identity
0
(u(t) ) = (w0, T, ; [ (w56Du806) — E, s (= ) s
7,

holds for every test function ¢ € Ly 2’1(9) and all ¢ > 0.
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Note that in the case 2 # R3, the operators V and T;,__(¢) do not commute. Thus,
the estimates on the decay of VT, _(t) could not be applied directly to the integral
formulation (3.1), so the weak formulation is more suitable.

In the three-dimensional domains, the Lorentz class L>°°({) is a natural general-
ization of the class of physically reasonable solutions satisfying the asymptotic relation
u(z) ~ 1/|x| as |z| — oo, see [5]. The reason for considering the space of weakly continuous
vector valued functions C,, ([0, 00); L3°°(£2)) is that the Stokes and the Oseen semigroups
on L>>(Q) (like the heat semigroup e’ on the Lorentz space L>>(R?), cf. e.g. [2])
are not strongly continuous at ¢ = 0. Hence, instead of the space of strongly continuous
functions C([0,00); L3>°(£2)), we choose the space C,,([0,00); L3>°(£2)) of bounded vec-
tor valued functions which are strongly continuous in (0, c0), and weakly continuous as
t\, 0.

For three-dimensional exterior domains, the best spatial decay expected is, in gen-
eral, u(t) € L>°°(Q). Thus, the expression in the integral formulation (3.1) might not be
Bochner integrable. The weak formulation circumvents this difficulty. For an explicit ex-
ample of such a non-Bochner integrable expression in (3.1) related to forward self-similar
solutions of the Navier—Stokes equations in R3, we refer the reader to [20, Remark 1.2],
see also [2].

We begin with the case uy, = 0 which is a bit simpler. The basic estimate which leads
to a proof of existence of solutions, as well as to a proof of stability, is the boundedness
of the quadratic term in the Navier—Stokes equations in the space

X = Cy([0,00); LY ()
chosen in our functional framework.

PROPOSITION 3.1. The bilinear form B defined by
t
(3.2) B(u,v)(t) = 7/ T(t—s)PV - (u®v)(s)ds
0

is bounded on the space X, i.e. || B(u,v)||x < nl|ul|x||v]|x for all u,v € X and a constant
n > 0.

The proof of Proposition 3.1 is contained in [20, Th. 3.1]. A different proof by Y. Meyer
in the case of 2 = R® can be found in [15, Ch. 18].

THEOREM 3.1. Assume that ug € L>>®(Q) and F € L??>(Q) satisfy ||uo| s~ +
|1E || pa/2.00 < € for some 0 < e < 1/(4n), where n is defined in the Proposition 3.1. There
ezists a global in time solution of (1.1)—(1.5) in the space X = C,,([0,00); L3>°(Q)). This
is the unique solution satisfying the condition ||u||x < 2e. Moreover, this solution depends
continuously on the initial data and the external forces.

Proof. This is an application of the estimate of the bilinear form (3.2) from Proposi-
tion 3.1 and the Banach fixed point theorem, see e.g. [20, 17, 2]. =

REMARK 3.1. It is easy to modify the construction of solutions in Theorem 3.1 to the
case of nonautonomous forces F € C,,([0,00); L3/%°°(2)) (cf. [20]). =
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In the case of u., # 0, first, the existence of a stationary solution w is established,
and then the evolution equation for u — w is solved. The precise statements are given
below.

THEOREM 3.2 ([19, Theorems 1.1 and 1.2]). There exists e1 > 0 such that if F €
L3/2°°(Q) and u., € R® satisfy Z?’k:l | Fikllp3/2.00 + |uss| < €1, then the stationary
problem

(3.3) —Aw + (teo - VIw + (w-V)w + Vr =V - F,
(3.4) V-w =0,
(3.5) Wign = —Uoso,
(3.6) ‘wlliinoow(:c) =0,

admits a solution w € L3> (Q) with Vw € L3/%°°(Q), and it satisfies the estimate
||Vw||L3/2,oo + Hw||L3oe + H7THL3/2,00 < 051

with a constant C' independent of F', w, w, €1 and u,. This solution is unique in the
class of small L3°°(Q)) functions. m

REMARK 3.2. In general, the solution w of the stationary problem (1.1)—(1.5) with ue =
0 (even if it is small enough) does not belong to the space L3({2), in contrast to the case
when 1, # 0 and w—u., € L3(Q2). The recent paper [19] deals with the space asymptotics
of the stationary solutions of the Navier—Stokes equations when u,, — 0. =

In the evolution case, the solution of the perturbed problem (obtained using again
a contraction argument) is described in the following result based on [18, Th. 5.1].

THEOREM 3.3. Assume that w = w(x) is the stationary solution constructed in Theorem
3.2. There ezists co > 0 such that if 29 € L3°°(Q) satisfy ||zol|ps.~ + ||®]| 13200 < €2,
then the problem

(3.7 z2—Az+ (w-V)z+ (z-Vw+ (2-Vz)z+ Vo=V -0,
(3.8) V.z=0,
(3.9) 290 = 0,
(3.10) z(z,0) = z(x),
(3.11) |z1\ii>noo z(z,t) =0,

with 2o = up — Use — W, admits a unique solution z in C,([0,00); L3°°(2)) satisfying the
estimate sup,~q ||2(t)||ps. < Cey with a constant C' independent of U, and uy. w

The proof of Theorem 3.3 is an obvious modification of the corresponding result
contained in [18] where ® = 0.

Now we formulate our main results on the asymptotic stability of solutions in the
weak Lebesgue space L>°°(€)). We begin with the case u., = 0.

THEOREM 3.4. Assume that u and u are two solutions of the problem (1.1)-(1.5) with
Uso = 0 constructed in Theorem 8.1 and corresponding to the initial conditions ug, ug €
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L3°°(Q) and the external forces F, F € Cy ([0, 00); L3/2:°°(2)), respectively. Suppose that
(312)  Jim [[T()(u0 — 7o) [ 2w =0 and  lim [F(t) = F(D)]|sn =0.

Then
(3.13) lim ||u(t) — u(t)| gz = 0.
t—oo

The above result means that if the difference of the solutions of the Stokes problem
issued from ug and %y becomes negligible as t — oo (this holds if, e.g., the difference of
the initial data uy and % is not too singular), and if F'(¢) and F(t) have the same large
time asymptotics, the solutions of the full nonlinear Navier—Stokes problem (1.1)—(1.5)
behave similarly for large times. It can be interpreted as a kind of asymptotic stability
when the choice of % is restricted to the initial data in a neighborhood of u satisfying
additionally (3.12). It is easy to verify that the first condition in (3.12) is satisfied if, e.g.,
ug — tp € LP(Q) N L3°°(Q) with some 1 < p < 3.

In the case uy, # 0 we have a slightly different statement but the proof will be
practically the same.

THEOREM 3.5. Let z be the solution of the perturbed problem constructed in Theorem 3.8
corresponding to the initial data zy € L>°°(Q) such that

Tuoc (t)Zo =0.

L3,oo

lim
t—o0

Then lim; o ||2(t)]| L3.« = 0 is satisfied.

Recall that z = u — w is the difference of the solution of the evolution problem (1.1)-
(1.5) and the steady state solution of (3.3)—(3.6) corresponding to the same asymptotic
velocity uso. Thus, unlike the situation in the preceding Theorem 3.4 for u,, = 0, we
consider here the asymptotic stability of stationary solutions, only.

With Lemmata 2.1-2.2, we are ready to begin the proofs of Theorems 3.4 and 3.5.

Proof of Theorem 8.4. We assume that u., = 0. For u, # 0, the solutions u, u should
read z, w and the Duhamel formula (the counterpart of (3.1)) used in this case is

(3.14) z(t) =Ty _(t)zo — /0 Ty (t—8)P(V-(w®z(s) + z2(s) @w + z(s) ® 2(s))) ds,

(see also [18, p. 163]).
Recall first that, by Theorem 3.1, we have

1 ~ 1
sup ||u(t)|| s~ <26 < — and supl||u(t)]pse <2 < —.
>0 2n >0 2n

Subtracting the integral equation (3.1) for ¥ from the analogous expression for u we get

(3.15)  [Ju(t) = u(®)||zs. < IT(t)(uo —to)| Lo~

+H /otm PV (- DSut+ TS (- D)) ds)|

+H /OtT(t — $)PV - (F(s) — F(s)) ds

L3,
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- H/O‘”T(tsmv.((ua)@um@(ua))(s)ds

L300

+9(t),

L3,

_|_H/5:T(t—s)IPV-((u—ﬂ)@u-i-ﬂ@(U—ﬂ))(S)dS

where the function g = ¢(t) is the sum of the first and the third terms in (3.15), and the
number 0 < § < 1 will be determined later.

The norm of the integral foﬁt ... above is estimated using the Yamazaki estimates
(2.7)~(2.8) combined with the weak Holder inequality and with the bound on solutions
in Theorem 3.1 by the following quantity:

5t
(3.16) c/ (=) ® ut T® (u—0))(5)]| oy ds

ot
< C/O (t =) (lu(s)ll Lo + [[@(s) | o) (Ju(s) | oo + [[@(8) ]| 2. ) ds

< C4e)? /O&(t _ $)~lds = C(42)? log (ﬁ)

The norm of the | ;t ... integral is bounded from above by using Lemma 2.1 with
G=(u—u)®u+u® (u—7u) on the interval [§t, t] and 0 otherwise, combined again with
the weak Holder inequality, by
(317)  n( sup lu(s)llzs.~ + sup [[u(s)|[Ls.=) sup [lu(s) —u(s)||Ls~

It<s<t t<s<t t<s<

<den sup [u(s) —u(s)l|pa.e.
It<s<t

Putting A = limsup,_... [1u(t) — T(0)l| o = linges koo uDgsy 1u(t) — T~ we
see that 0 < A < oo since u, u € L®((0,00); L3°°(2)). We claim that A = 0. Since
SUD; >, SUPgr <5<y [|U(8) — U(s) L300 < SUPsLcsco [[Uls) = Uls)]| Lo, we have

limsup( sup [[u(s) — u(s)]|s.) < A.
<t

t—oo  0t<s<

Moreover, the function g is, by the assumptions and Lemma 2.2, bounded and converges
to 0 as t — oo. Finally, computing the limsup,_,., of both sides of (3.15) and using
(3.16), (3.17), we arrive at

A < C(4e)*log < ) + 4enA.

-0
Since 4em < 1 as was assumed in Theorem 3.1, we get
1
A< (1—4en)t0(4e)? log (1 — 5)
which can be made arbitrarily small by taking a suitable 0 < § < 1. Therefore A = 0,

and this finishes the proof. m

4. Regularity properties of solutions. The solutions v and z constructed in Theo-
rems 3.1, 3.3 enjoy some a posterior: regularization effect as well as a better decay for
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t — oo. Constructed a priori in L3°°(Q), they belong to LP>°(Q) with any 3 < p < oo,
and satisfy the estimates

(4.1) lu(t) — @) ||zre < Ct275) and  ||2(t)|| o < Ct3(75),

respectively (for the proof, see [20, 19]). As the complements of Theorems 3.4 and 3.5,
we are able to improve these two inequalities.
First, however, we need some preliminary results. For a function

He Lloc((07 00)7 LSP/(p+3),oo(Q)) with P > 3
we define an auxiliary norm

3(i_1
1100 = sup 2G5 H©)] 00107
t>

It is obvious that [|H||; ., = sup, [|[H(?)]1s/2.-
Using this new notation we have the following generalizations of Lemmata 2.1 and 2.2.

LEMMA 4.1. For each function H € L. ((0,00); L3P/ (P+3):20(Q)), p > 3, the following
estimate holds:

3171
3 P

N|

<ClHl,

Lp.o

‘/ _(t— $)PVH(s) ds

with a constant 0 < C' < 0.

Proof. The idea is essentially that of [18, proof of Th. 5.1], see also [2, Lemma 7.3]. For
any test function ¢ € L%(Q2) and 1/p + 1/q = 1, we are going to estimate the following
quantity:

(4.2) Kt%(%_%)/otTuw(ts)IP’VH(s) ds,<p>‘
G-l [ t <H(s>,VT_ux (1= 5)¢ ) ds|.

S+ f:/Z ..., we bound the first of them by

Njw

o=
S =

=1

Splitting the integral over [0,t] into [; b2,

o

(l,

N

3(1 1 3(1 1 t/2
C( sup 55(35)|H(s)||uoo)(t5(§5)/ (t—s)"
0
with 1/¢g—1/v =1/p—1/p = 1/3, and then by
O(sup 5353 |[H(s)]|me) ] -

0<s<t

=3 3(5-3) ds) [

The remaining term is bounded by

3(1 1

a3y (t -3(-3) gt
ct2\z7 %) 2 ) IVT—. (t = 8)p|lva ds
t/2

<c / VT (8) gl o ds < Cllgll o
0

after an application of the estimate (2.9).
The duality argument completes the proof. m
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LEMMA 4.2. Under the assumptions of Lemma 4.1, if moreover

(4.3) Jim G2 [ H(0)]| v = 0,

and if either H € C,([0,00); LP">°(Q)) or sup(;tésgt8%(%7%)||H(S)HLap/<p+s>,oo — 0 as

t — oo, then
’/ s)PVH(s)ds

Proof. We split the integral into fo et f s¢ - - -» and estimate the two terms separately.
First, it follows from the semigroup estimates contained in Proposition 2.2 that

’/ét s)PVH(s)ds

§ll
23p

=0.
Lp.oo

lim ¢
t—o0

5t
< C/ (tfs)_%(%_%)_1 ds -sup || H(s)|| ps/2.00
[p,oo 0 s>0

—C(1-(1- 5)*%(%*%))55(5*5) =o(1) -3(3-%)
as § \, 0. Second, applying Lemma 4.1 directly, we arrive at

H/ (t—s)PVH(s)ds <ot 3-3) sup s%(%fé)|\H(s)||L3p/(p+3>,m,
5t

Lo St<s<t

which is o(t™ 2 (57’)) at t — oo by the assumption on the function H.

Now, we are ready to improve inequalities recalled in (4.1).
THEOREM 4.1. Under the assumptions of Theorem 3.4, if additionally for some 3 < p <
OO)

supt2(E73) | F(t) = F(t)| onsoror e < 00,
t>0

then
lim 2 (5=%) |Ju(t) — A(t)]| Lo = 0.

t—oo
Proof. Tt follows from [20, Th. 1.3] that solutions u and @ in Theorem 4.1 satisfy u(t) —
u(t) € LP*>°(Q) for each 3 < p < oo. Moreover,

sup 3 (3=5)ju(t) — U(t)|| Lo < 0.
t>0

In order to prove that the above quantity tends to 0 as ¢ — oo, we decompose the
difference of the solutions as

uw(t) —a(t) = T(t)(ug — up) + /0 Tt —s)PV-(u® (u—1u))(s)ds

+/0 T(t—s)IP’V-((u—ﬂ)@ﬂ)(s)der/o T(t— s)PV - (F(s) — F(s)) ds.

Now we estimate the LP->°({2) norms of each of the above terms. First we have

RO

which is o(™ e )) as t — oo by the assumption on the behavior of the Stokes semigroup
applied to ug — ug-.

-1
1700~ o)len= < (3

L300
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The second and the third integrals are estimated in a completely analogous way
using Lemma 4.1 with H = v ® (u — @) and H = (u — @) ® u, resp. Note that here
|1H ($)| 3o/ t3),00 < Cllu(s)]| L3 ||u(s) — @(s)||Lr.o by the weak Holder inequality.

The last fourth term is estimated directly from Lemma 4.2. m

Essentially the same arguments as in the proof of Theorem 4.1 apply to the problem
(3.7)—(3.11) leading to the following result.

THEOREM 4.2. Under the assumptions of Theorem 3.5, if im_,o || T, (t)20] 3.c = 0,
then lim;_, o t%(%_%)ﬂz(t)nm,oo =0. u
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