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Abstract. The existence of stationary solutions and blow up of solutions for a system describing
the interaction of gravitationally attracting particles that obey the Fermi-Dirac statistics are
studied.

1. Introduction. Parabolic-elliptic systems of the form

(1) ny =V - (D« (Vp+nVy)),
appear in the statistical mechanics of self-attracting particles. Here n = n(z,t) > 0 is
the density function defined for (z,t) € Q x R*, Q c R%, » = ¢(x,t) is the Newtonian

potential generated by the particles of density n, and the pressure p > 0 is determined
by the density—pressure relation with a sufficiently regular function p

(3) p :p(n,ﬁ).
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The parameter ¥ > 0 plays the role of the temperature, and D, > 0 is a diffusion
coefficient which may depend on n, 9, z, ¢, .... Such systems can be studied either in
the canonical ensemble (i.e. the isothermal setting), when ¥ = const is fixed, or in the
microcanonical ensemble with a variable temperature: either ¥ = ¥(t) or ¥ = 9(x,t).
Then, the energy balance is described by a relation like

1
(4) E:co/pdx+f/n<pdx:const
Q 2 Ja

(which defines ¢ in an implicit way) in the former case, or by an evolution partial dif-
ferential equation for ¥ as was in [21, 22, 5] in the latter case. The term ¢ [, pdz with
a fixed ¢y > 0 in (4) is interpreted as the kinetic energy of particles while % fQ nedz
corresponds to the potential energy.

Thus, (1)—(2) can be viewed as equations for evolution of self-consistent gravitational
field. In fact, the starting point of the derivation of such a mean field model in astrophysics
in [16] is an analysis of kinetic equations whose evolution in time is governed by the
Maximum Entropy Production Principle. A short description of this procedure is also
given in [6].

The examples of the density—pressure relations (3), studied by P.-H. Chavanis and his
collaborators in a series of papers including [10, 11, 12, 13, 14, 15, 16], are

(5) p=1dn,

which is the Boltzmann relation corresponding to the classical Brownian diffusion of
particles. They also considered
(6) p=rn'T7,

a polytropic equation of state of a gas, and the Fermi—Dirac density—pressure relation
L _ _

(7 p =0V Ly 0 Iy ) @n(pd??) 7,

which is in a sense intermediate between (5) and (6) with v = 2/d, and (4) with ¢y = d/2.

The symbol I,, in the equation (7) above denotes the Fermi integral of order o > —1

_ [T ydy
®) O

defined for all A > 0, and p > 0 in (7) is a parameter of physical origin, see [6]. In fact,
the density and the pressure are defined via a parameter \ > 0, called the fugacity

(9) n = g'ﬁgd/zld/zfl()\),
(10) p= %19d/2+11d/2()\).

Since we will be mainly interested in the Fermi-Dirac model, properties of the Fermi
functions collected in Section 5 are of importance.
We consider the system (1)—(2) with the natural no-flux boundary condition on 9

(11) (Vp+nVep)-7=0
(7 is the unit exterior normal vector to 9f2), and an initial condition

(12) n(x,0) = ng(z).
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We impose on the potential ¢ either the physically acceptable “free” condition
(13) o =FEq %n,

E, being the fundamental solution of the Laplacian in R?, or the homogeneous Dirichlet
boundary condition

(14) vloa =0,

which is mathematically somewhat simpler. In the case of radially symmetric solutions
(14) is equivalent to (13) by adding a constant to the potential ¢, cf. also the discussion
of this issue in [7, 8, 2, 4].

As a consequence of (11), the total mass of particles

(15) M:/Qn(x,t) dx

is conserved during the evolution. Moreover, sufficiently regular solutions of the evolution
problem with ny > 0 are positive, cf., e.g. [6].
The main mathematical questions concerning these systems are:

e existence, nonexistence and multiplicity of steady states, either for given M, ¥ or
for M, F fixed,

e local in time existence of solutions of the evolution problem,

e asymptotics of global in time solutions,

e possibility of finite time blow up of solutions (corresponding either to a gravitational
collapse or an explosion).

The model of self-gravitating Brownian particles, which consists of (1)—(2), (5) sup-
plemented by (4) with ¢y = d/2, has been considered in [16, 13] for radially symmetric
solutions (n, ¢), and in [17, 9] without those symmetry assumptions. Studies of the cor-
responding isothermal problem with ¢ = 1 had been conducted earlier, see e.g. [7, 4, 1].
However, the motivations had been a bit different—stemming from statistical mechanics
of interacting charged particles in semiconductors, electrolytes, plasmas (see also [3] for
different density—pressure relations) with (2) replaced by Ay = —n, and afterwards for
gravitating particles.

We refer the reader to [13, 17, 9, 2, 8] for the Brownian particles models. The main
issues are:

e gravitational collapse is possible for d > 2 in the isothermal model ([7, 1]), and for
d > 3 in the nonisothermal model ([9]),

e the existence of steady states with prescribed mass and energy in d > 3 dimensions
is controlled by the parameter F/M? which should be large enough (|2, 8]).

The Fermi—Dirac model involves nonlinear diffusion, and thus even local in time ex-
istence of solutions is much harder to establish than in the Brownian (linear diffusion)
case, see [6] where a specific choice of the diffusion coefficient D, = D in (19) has been
considered in the isothermal case. There are also many results on radially symmetric
stationary solutions in [10, 11, 12]. In particular:

e gravitational collapse cannot occur in d < 3 dimensions ([6]),
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e structure of the set of steady states with given M and ¢ is different (and less
complicated) than in the Brownian case ([11]).

It is worth noting that while “local” results on the existence of steady states (i.e. for a
small range of control parameters M, 1, E) are quite similar for general p = p(n, ), the
global structure of the set of steady states is rather sensitive to variations of the form of
pin (3).

The main outcome of our present study is that for the systems of Fermi-Dirac self-
attracting particles, the gravitational collapse is possible for d > 4 for suitable initial
data in the nonisothermal case, in contrast to the case of the isothermal problem in d < 3
dimensions.

All this shows that the Fermi-Dirac diffusion prevents the overcrowding of particles
in lower dimensions, thus is more suitable to describe evolution of real stellar systems
than Brownian diffusion models.

In particular, we will study in this paper:

e nonexistence of global in time solutions of (1)—(2) with general density—pressure
relations (3), D, = 1, one of the conditions (13), (14), and low energy in Section 2
(thus, a fortiori, we obtain nonexistence of steady states for arbitrary D..),

e various estimates of the pressure, energy and entropy functionals in Section 3,

e existence of steady states with prescribed mass and the energy, E sufficiently large,
in Section 4,

e properties of the Fermi functions in Section 5.

We do not consider here the question of the local in time existence of solutions of the
evolution problem. This will be the subject of a separate paper.

Notation. In the sequel |.|, will denote the LP(€2) norm. The letter C' will denote
inessential constants which may vary from line to line.

2. Nonexistence of global in time solutions. Star-shaped domains 0 € Q C R? are
defined by the condition 3 > 0, where

(16) B= inf z-7.

Similarly, strictly star-shaped domains are those with 3 > 0. Geometric assumptions on
the shape of the domain () expressed in terms of § permit us to prove, under some
restrictions on the ratio £//M?, nonexistence of steady states of (1)-(2), (4), (11) with
fairly general density—pressure relations (3). In this section, by solutions we mean the
classical ones n € C2(2 x (0,00)) N CH(Q x [0, 00)).

THEOREM 2.1. Let Q C R be a bounded star-shaped domain, d > 3, and ¢y > d/(d — 2),
E/M? < ((d = 2)co — d)/ (2dog(d — 2)(diam Q)4=2). Then sufficiently regular, positive
solutions of the problem (1)-(2), (11), with a general density—pressure relation (8), D, = 1,
ng > 01in (12), and (18), satisfying the energy relation (4) cannot be defined globally in time.

REMARK. There exist initial data (ng, J) leading to E/M? < 0. It suffices to consider an
arbitrary 0 < ng # 0in (12), Yy > 0, and take the density Mng with M >> 1 large enough,
cf. Lemma 3.5, (ii). A similar property holds for the energy (4) in the Brownian model.
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Proof. Let us multiply (1) by |z|? and integrate over €, which leads to

d n\x|2d:cf72/Vp rdr —2 /nch rdx

dt
:2d/pdx—2/ px- udo——// d (x—y)-xdmdy.
Q o0 |:c—y\

After symmetrization of the double integral above, we arrive at

d 2
<2 _
pn n|x\ dx d/pdx // |x—y|d 3 d dy

since (z —y) -z + (y z) -y = |z — y|?. Then, from (4) we conclude that

d ) °0d 1
— <ZFE+4+ — d dy
dt Qn‘xl dz < co +0d(( d—2)cg )// |:cf |d 2

1 -2
< — (2dE + —MMQ(diam Q)Q_d) .
Co gd d—2

Under the assumptions of Theorem 2.1 we obtain

pn n|x\2dx <—e<0
for some ¢ > 0. This leads to a contradiction with the existence of a positive solution n
for t > Thnax = [ nolz|* dz/e. =

A counterpart of Theorem 2.1 for the Dirichlet condition (14) is
THEOREM 2.2. Let Q C R? be a bounded star-shaped domain, d > 3, ¢y > d/(d — 2)
and E/M? < co3/(2d|0Q)|). Then sufficiently regular, positive solutions of the problem
(1)-(2), (11), with a general density—pressure relation (3), D. =1, ng > 0 in (12), and
(14), satisfying the energy relation (4) cannot be defined globally in time.
Proof. Proceeding as in the proof of Theorem 2.1, let us multiply (1) by |z|? and integrate
over §). Taking into account the no-flux boundary condition (11), and the Pohozaev—
Rellich identity for ¢ € C2(Q) N C'(Q), pjan =0

1 oo\ ” d—2
ApV -xdx:—/ mﬁ(—_) da—l——/ Vl|? de,
/Q<p ® 2 o 5 5 Q| \

we get a differential inequality for the second moment of the distribution n(z,t). Namely,
we have

d /n|x|2dx——2/Vp xdx—Q/nch rdx
dt Q
_ _(92\? 2
= 2d pd;v—Q px-vdo — 2T —=—) do—(d—2) | |Vy|*dz
o0 o0 ov Q
2
2
d<E+ /|V<p|2dx) 3 (6—f) da—(d—2)/|V<p\2da:
Co o0 ov Q

2 d M?
= —dE—i— <—+2—d>/|w|2dx—ﬁ— <0.
€o €o Q |5Q|

The remainder of the reasoning is as in the proof of Theorem 2.1. m

I /\
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COROLLARY 2.3. There is no steady state of the Fermi-Dirac system (1)-(2), (7), (11)
with the energy (4) and co = d/2, arbitrary D, > 0, in star-shaped domain Q) C R¢ with
either d >4, E <0 ord >4, E <0, and one of the boundary conditions (13), (14).

Proof. Evidently, steady states do not depend on D, > 0, cf. (38), so that % Jonlz?de =
0 for each steady state. Thus, the proofs of Theorems 2.1, 2.2 apply in this situation.
Moreover, even if E/M? < (d — 4)/ (4(d — 2)o4(diam 2)?~2), then there is no steady
state satisfying (13), and similarly if F/M? < 3/(4|0Q|)—with (14). =

REMARK. Using the comparison results discussed in [1] (see also [9, Sec. 3]) one can show
that

lim n(z, t)|z|*dz =0
t,/ Tmax J

implies by the Shannon inequality (e.g. [1, Lemma 1])
t/hﬂr“ﬂax A n(z,t)logn(z,t) de = oo,
and thus for each § > 0

lim o (z,t) do = oo,
t/ Tmax JO

so by the energy relation (4) one infers that

li t t) dz = —oo0.
i /Q n(z,t)p(z,t) dr = —oo
This gives an insight into the problem: How do the blowing up solutions behave near the
maximal existence time (which can be, of course, strictly less than T},,x)? The question
is also related to necessary regularity conditions on initial data guaranteeing the local

existence of smooth solutions of the evolution system.

3. A priori estimates of energy and entropy

3.1. Pressure. The Fermi-Dirac model results, in a certain sense, as an interpolation
between mean field models involving the Brownian diffusion and diffusion in gases.

In the classical limit A /' oo (i.e. n/l?”l/2 N\ 0, e.g. for fixed ¥ > 0 and the small
density n — 0) the relation

2 Ign(A
(17) p = _ﬁL() ~
n d Id/2—1(>\)

holds by (57). This limit corresponds to the linear Brownian diffusion as in [13, 9, 17].

The completely degenerate case (white dwarf in astrophysics), A \, 0 (i.e. n/9%/? ~
00, e.g. for ¥ > 0 fixed, n — o0), by (56) corresponds to the relation

2/d
P 2 d o
(18) —n1+2/d ~ —d+ B (;) = Kk = const,

i.e., to a polytropic equation of state of a gas. This defines an evolution equation with
a nonlinear diffusion as, e.g., in the porous media equation.
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In order to eliminate the variable A we introduce auxiliary functions D, V, F and H
defined by

W P e G ) Ty 0 Ty )07 )

(20) V(z) = 2D(2),
/‘D (@Afmw@.

(21) F'(z) = (D (2))2, F(0) =
(22) h(z) = /

We gather some properties of these functions of z, depending also on %}, in the next
lemma, see [6, Lemma 2.1].

LEMMA 3.1. The function V belongs to C%([0,00)), is nonnegative, and can be extended
as the odd function to an element (still denoted by V') of C*(R).

Similarly, the function F belongs to C3([0, 00)), is nonnegative, increasing and convexz.
It can be extended to a convex increasing function in C3([—d,00)) for some § > 0. The
function H 1is nonnegative and convez on [0, 00).

Moreover, the asymptotic relations following from (56)

d+2

(23) Vi(z) ~ K224 V/(2) ~ iy 73
(24) F'(2) ~ K224,

d
(25) p(z) ~ ﬁszHg/d, P (2) ~ VK 2%/,
(26) hz) ~ Sk H() _ e

2 ’ 2(d+2)
hold as z — oo for some positive constant K. In fact, K = dff k is related to the constant
K in (18).
Recalling (7) we see that

0

(27) 5 =¥(n) = 0D(n),

so that the relation Vp = g—gVn = 9D(n)Vn holds.
LEMMA 3.2. The pressure function p in the Fermi—Dirac model (7) is

e increasing and strictly conver with respect to the density n

9?p
(28) p"(n) = p i 0 for n>0,
[
(29) p > max{9n, kn'T?/4}

e strictly monotone with respect to the temperature ¥
Ip
09
Proof. By (27), the desired property (28) of p as a function of n follows from Lemma 5.2
with a =d/2, 8 =d/2 — 1.

(30) >0 for all n>0,9>0.
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The first part of (29) is a consequence of (17) and the strict monotonicity of the
quotient
P2 Lap) 2 Lpn (N 51
O dlypa (N d+2 1,00 ’
which follows from Lemma 5.2 with a = d/2+ 1 and 8 = d/2.
The second part of the inequality (29) follows from (18) and the strict monotonicity

of

d+2 /2" 100
P + (_) d/2(A) o1,

pn¥2/d ~ 2 \d Igja—1(A)1F2/d
which is implied by Lemma 5.4 with o« =d/2 and § =d/2 — 1.
To prove (30) let us represent the considered derivative as
op [d p d d 1 1d 155 (M)
L (2 1) 2 Sap = (S 1) SLyp(N) + o2
29 <2 * > g 2" (2 * ) gl )+22)\Ié/271()\)
Then, to conclude we can apply Lemma 5.3 with @ = d/2 and § = 1. Indeed, by (54)

ool , 2, (T2
sgn{a—ﬁ}—bgn{—k[d/Q_l()\)—i-ax\ m >0. =

3.2. Energy. The energy relation (4) for the Fermi-Dirac model leads to interesting
a priort estimates in low dimensions.

LEMMA 3.3. If d < 3, then the total energy (4) controls the thermal energy % prdx
and the absolute value of the potential energy % ‘ fQ ne da:| from above. More precisely, if
d = 3, then for each 0 < ¢; < 3/2 there exists co = ca(c1,€Y) such that

(31) Ech/pdx+ /mpd:v — e MT/3,
Q Q

Similarly, if d < 2 then

(32) Ech/pda:—l—’/mpdx — coM?
Q Q

for each 0 < ¢; < d/2 and suitable co > 0. If d = 4 such an estimate is meaningful for
small values of mass M only, namely for 0 < M < M,

(33) E2(203M1/2)/pdx+‘/ngadx
Q Q

for some c3, ¢4 > 0.

—cy

Proof. Clearly, the integral [, n¢ dz is bounded from above. In fact, for either d > 3 or
d > 1 and (14), we have [, npdx <O0.

For d = 3, using the Holder inequality and the Sobolev imbedding theorem we obtain
for each € > 0

/ngpd:c
Q

with a suitable C. > 0 independent of ¥J. Since p satisfies (29), the claimed estimate
follows.

5/6 7/6 5/3
< |nlsyslels < Clnld s < Clnly)gnly/® < elnl2)s + C-M™/?
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In the case d < 2 a similar argument applies to |fQ ne da:| < |nlqlely with g close to
1, so that with arbitrarily large ¢'.

For d = 4 the inequality
‘ / ne dz
Q

holds and (33) follows immediately. m

< Clnfj5M"/?

COROLLARY 3.4. If either d < 3 ord =4 and M > 0 is small enough, then the relation
(4) gives a uniform apriori estimate from above for [, p(x,t)dx, |[,n(z,t)p(x,t)dx|
and 9(t) in the evolution problem.

Proof. If d = 3, Lemma 3.3 and (29) imply E > ¢;9M — coM"/3. This leads to 9(t) <
Y1 < oo for all ¢ > 0, whenever solutions n(x,t) with fixed M, E exist. m

Simple properties of the energy function (n,9) — E are gathered in

LEMMA 3.5. Define for a bounded domain Q2 C R? and M > 0 the conver subsets of
L1+2/d(Q)

Mg ={n e L'*?/4Q) : n > 0}, MLLM:{neMd:/ndx:M}.
Q

The following properties of the energy function E hold for all ¥ > 0:

(i) if d > 1 then sup , , £ = oo,

(i) if d > 2 then infpq, E = —o0,

(iii) if d = 2, then infrq, E/M? > —o0,

(iv) if d = 4, then for each sufficiently small M < My, infuq, ,, B > —o0,
but infrq, ,, B = —o0 for all M > My,

(v) if d > 5 then for each M >0, infuy, ,, E = —oo,

(vi) given d > 2, n € Mg1 and ¥ > 0, if M > 0 is sufficiently small,
then E > 0 for (Mn, ),

(vii) for each fived n with [nde =M >0, limy_. E(n,?) = occ.

Proof. (i) follows from the calculation of the function E for n = I, /|w| with w CC Q,
0 < |w| < 1. Indeed, E ~ |w|~?/¢ — const for such n.

(ii) Fix ¥ > 0 and take a smooth function n € M ; with compact support, and
consider the densities Mn, M > 1. For these functions E ~ ¢M'*+2/¢ — C'M? holds.

(iii) Observe that, by Lemma 3.3, for d = 2 ¢; = infy, , £ > —o0 holds. Then the
scaling of the both terms in F leads to the desired estimate.

(vii) This follows from the strict monotonicity of p with respect to ¥ in (30) and
(29). m

REMARK. Given E and the instantaneous value of n = n(x,t), the property (vii) in
Lemma 3.5 above permits us to define the temperature ¥ = ¥(¢) (and thus p = p(n,?))
in a unique way.

3.3. Entropy. For particular density—pressure relations (3) there may exist important
functionals which play the role of a Lyapunov function for the dynamical system as-
sociated with (1)—(2), (11)—(12), (4). For instance, in the isothermal Brownian case
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fQ (Inlogn + lmp) dx decreases in time. Similarly, in the nonisothermal Brownian case,
the classical Boltzmann (neg)entropy [, n(logn — ¢ log?) dz is a decreasing function of
t, cf. e.g. [13, 9, 5].

Moreover, for the polytropic case W, = fQ(an"y + %ngo) dx decreases in ¢ (the first
term in this entropy is known as Rényi entropy by mathematicians, and Tsallis entropy
by physicists). Indeed,

dWw.
4 T — D,
(34) = /n

Finally, in the Fermi-Dirac case Wiso = [, (0H (n) + iny) dz is an entropy for the
isothermal model, see [6], and

- f o1

is an entropy in nonisothermal case, see [16]. Here H = H(n, ) is the convex function
defined in (22). Indeed, the entropy W satisfies, for all sufficiently regular solutions of
the evolution problem the relation

(36) % = f/ﬂﬂnD* v<h(n) + %) :

The proof of the above entropy production formula follows from multiplication of (1) by
h(n) 4+ ¢/9¥ and integration by parts. We use also the relations

d d
_E: — =
o Q/thd:r:—i—/gntgodx 0,

d d d
Pt = (5 + 1) Py <log19) +m9%h(n),

and the properties (22) of the functions h, H.
The asymptotic properties of the Fermi integrals in Lemma 5.1 permit us to show

LEMMA 3.6. For d > 2 the entropy functional W defined in (85) is of order
W~ —019/ n'=4 g
Q

2

o dr < 0.

R

V(n")+ Ve

dx <0.

with some constant C > 0. In particular, this implies that if W(0) is strictly negative,
then a lower bound for the temperature ¥(t) > 91 > 0 holds.

Proof. Indeed, using the notation in (59), we get

W= /( nlo A—Mg) dz

= %ﬁd/2/(_log)\)d/Q—le/Z_l()\) dz > _019/ nl=2/d g,
“ Q

with a constant C' > 72/3 by the properties of R, proved in Lemma 5.1 for large values
of n.

Note that this entropy functional is not convex since the second derivative With respect
to n of the entropy density (i.e. the integrand in (35)) equals 2 D— dD’ = 3n b5, and this
expression changes the sign: for 0 < n < 1 it is positive, while for n > 1 is negative. m
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4. The steady state problem with fixed mass and energy. For general density—
pressure relations (3) the steady states (N, ®) of (1)—(2) are determined from the equation

(37) M)+ =

where the constant ¢ is chosen from the mass constraint [, N dz = M, and the function
h = h(n,?) is defined in a similar way as in the Fermi-Dirac case (22)

on _ 1o
on  Inon’
Indeed, multiplying the stationary version V- (D,(VP+ NV®)) = 0 of (1) by 9h(N)+ P
(38) / 9?ND,
Q

and integrating over (2, we obtain
)
VI h(N)+ =
(h)+5)
which implies (37).

The Brownian case with 4(n) = log n has been considered in [2] and [8]. The polytropic
case with h(n) = %HTVnW was studied using monotonicity methods in e.g. [18], and then,
in the radially symmetric case, in [14]. Variational methods are also available in certain

cases when v > 1 —2/d.

2
dx =0,

Whenever an entropy exists for (1)—(2) with a general relation (3), there is an alterna-
tive way to derive the equation (37) for steady states. Namely, the production of entropy
formula leads to (37) as in (34), (36), and in the Brownian case studied in [2, 8].

In the problem of finding steady states for fixed E and M, (37) is supplemented by
(4) and (15), so that the temperature ¥ is to be determined from these constraints.

In the Fermi-Dirac case the stationary solutions (N, ®) of the problem (1)—(2), (11),
(14) (or (1)-(2), (11), (13)) with an arbitrary diffusion coefficient D, and a constant ¥
satisfying (4), are characterized by the identity V(d¥1log A — ®) = 0 equivalent to (37).
Here, the relation between A and N is as for A and n in (9). Taking into account the
relations (7), (9) and the Poisson equation (2), we arrive at the relation

(39) N=Ad= %ﬂd/ﬁd/zq(e@w*c)v

for the stationary potential ®, the density N and a constant temperature ¢, called the
Poisson—Fermi—Dirac equation. The constant c is such that the mass constraint

(40) /Ndxz/A(I)dx:M
Q Q

is satisfied. The equation (39) can be simplified a bit by introducing the new potential
U = —P /9 leading to

(41) AW+ S92 4 (777 = 0
with the constant c satisfying the mass constraint
v M
(42) g’lgd/271/ Id/2_1(€ v )diC = g
Q
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We are looking for solutions satisfying a boundary condition and also the energy con-
straint (4) which is now for P = P(N,9):

3 E=_ T — = T
4 d Pd v NUd
2 Ja 2 Ja

ey 1 Ve
= gﬂd/Q/(Id/Q(e v )*i\I/Id/Q—l(e Y70)) da.
Q

First, we recall results on steady states with a prescribed temperature ¥ > 0 from [6]
(based on constructions in [23]), and [19, 20].

PROPOSITION 4.1. For d = 1, 2, 3, given M > 0 there exists at least one solution ® of
the Poisson—Fermi-Dirac equation (39) satisfying the Dirichlet condition (14) and (40).
For d = 4 such a solution exists for all sufficiently small M > 0.

Minimizing the entropy (either (35) or Wig,) at a fixed temperature ¥ > 0 and under
the mass constraint M > 0, one obtains existence results similar to those in Proposi-
tion 4.1.

PROPOSITION 4.2. For d = 1, 2, 3, given M > 0 there exists at least one solution ® of
the Poisson—Fermi-Dirac equation (89) satisfying the free condition (13) and (40).
For d = 4 such a solution exists for all sufficiently small M > 0. m

The question of the existence of multiple solutions of the equation (39), and their
stability as solutions of the evolution problem (1)—(12), is rather delicate. There are
some numerical results in the case of radially symmetric solutions in the ball of R? in
[10, 11, 12].

REMARK. For another approach to the problem of the existence of solutions of (41), (42)
with U satisfying the Dirichlet condition (14) for small M > 0 and each d > 3, we refer
the reader to [19]. These results are proved in the spirit of fixed point theorems based
on the compactness properties of the operator N +— W in [19], and using contraction
arguments in [20]. For the free condition (13) and d > 3, the proofs of analogous results
are practically the same, as well as in the two-dimensional case for either of the boundary
conditions (13), (14). Also, by an application of the Pohozaev identity, it is shown in [19]
that for d > 5, the equation (41) with the Dirichlet boundary condition in star-shaped
domains has no solution for sufficiently large M, say M > M (+}) with M (9)/9 > 1.

Now we are ready to study stationary solutions satisfying the energy and mass con-
straints (i.e. in the microcanonical ensemble). The details of the fixed point arguments
can be found in [19, 20]. However, it should be noted that in the aforementioned papers
the dependence on ¥} was not explicitly stated (as irrelevant in the canonical ensemble),
while it is of crucial importance herein.

To simplify the notation, define the parameter ¢ = %ﬂd/ 2. and the function g(z) =
Iq/2—1(e7?), d > 2. The function g and its derivative g’ are strictly increasing on R, and

(44) 9(z) ~g'(z) ~T <g) e as 2z — —00,
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see (54) and (56)—(57). Using the monotonicity of g together with the positivity of ¥, we
get from (42)

(45) c<gt (Qﬁﬁl) .

Moreover, for any ¥ € L>°((2) there exists a unique value ¢ = ¢(¥) satisfying (42). The
function c is Lipschitz continuous:

|c(W1) = c(W2)| < [¥1 — Walo
by (42), cf. [19, (1.11)]. Thus, looking for a solution of the problem (41)—(42) is reduced
to finding a fixed point of the integral operator
(46) T(¥) = o0~ (=A)7H (g(¥ + (D)) -

Here (—A)~! denotes the inverse of —A with an appropriate boundary condition, defined
by an integral operator with the kernel equal either to the Green function of 2 or to the
fundamental solution of the Laplacian. Its norm, as the operator considered in L>°(£2),
is denoted by A.

Applying the mean value theorem for the function g and monotonicity properties of g
and ¢, we see that the Lipschitz constant L(M, 1) of T on the unit ball B(0,1) C L>°(Q)
satisfies the estimate

(47) L(M,9) < 24007} g’<1 +g7! (QMQ'»

Moreover, 7 maps the ball B(0,1) into itself provided

M 9
-1 [ < < =) 1)
(48) Ap? g(l +g <QQ|>> <1, ie. M< gQ|g<g <AQ> 1)

Since ¥/p = %191_‘1/ 2. we conclude from (44), (47) that for sufficiently large ¥: M /9 < 1,
say M /¥ < mg, the conditions

M 1
(49) L(M,9) < C— < 3,
and (48) are satisfied. Applying the Contraction Mapping Principle we get, for each
positive M, ¢ such that (48)—(49) are satisfied, a solution ¥ = W, », unique in the ball
B(0,1). The norm of that solution ¥ = 7 (¥) satisfies, by (49) and |7 (0)| < C%,

M
(50) |Warole <205 < 1.

Stationary solutions constructed above have positive energy. Indeed, for fixed M > 0
the energy E defined in (43) for the solution —9¥ = —9¥,; » of (39) with mass M in
(40) at the temperature 9, satisfies, by (29) and |V|. < 1,

1 ~1
E> gﬁM — SOM| U)o > dTﬂM >0,

thus
(51) sup E = co.
9>M/mo
Since both W,;. and E are continuous functions of ¥} along the branch of solutions
constructed above, we obtain the following
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PROPOSITION 4.3. For d > 2 and M > 0 there exists Eg = Eo(Q, M) > —oco such that if
E > Ey, then there is at least one solution of (39), (40), (4), with one of the conditions

(13), (14). =

REMARK. For d = 3 steady states exist for each M > 0 and ¢ > 0, see Propositions 4.1,
4.2. However, the corresponding values of the energy E are not arbitrary: for instance,
by (31) the quantity £/M7/3 is always bounded from below.

In the case of dimension d = 2 we can prove a stronger result

PROPOSITION 4.4. For d = 2 there exists o = {o(Q2) > 0 such that if E/M? > {y, then
there is at least one solution of (39), (40), (4), with one of the conditions (18), (14).

Proof. By Propositions 4.1 and 4.2, for ¥ = 1 and each M > 0 the equation (39) has
a solution (N, ®). Using the scaling properties of (39) for d = 2, it is easy to see that for
each ¥ > 0 the couple (9N, ¥®) solves (39) at the temperature 9.

Observe that by the formula (7)

(52) p(9*n,9) = 92 p(n, 1),

so for d = 2 we have p(YN, ) = 9?p(N, 1). Together with the relation (N )(9®) = 92N ®,
this leads to the same scaling of both (kinetic and potential) parts of the energy, so
E(YN,9) =92E(N,1) for 9 > 0.

As we have already established in the proof of Proposition 4.4, the problem (41)—(42)
for fixed M and 0 < m = M/9 < my can be solved by a contraction argument. These
solutions V¥,,; = ¥,, u form a continuous branch in the space L>°(2). They lead to

m

solutions (—2AW,, |, —2y,, 1) of (39)-(40) whose energy varies continuously with m.
Since [, p(—A¥y,,1)dz < Cm by (17), their energies satisfy

E 1 1 C
. £ 1 _ < i 1 _C
(53) 0<71)£1§fm0 ]\42 - 0<7lr?§fmo m2 LP( A\Iln“ 1) dr - 0<71)£1;fm0 mQ Cm mo
Together with (51) this proves Proposition 4.4.
Note that for d = 2 the ratio E/M? > {; > —oc is bounded from below by (32) for

any density N and any temperature ¥ (not necessarily for steady states). m

REMARK. In d > 3 dimensional case, the kinetic and potential parts of the energy scale
in a different way. As a consequence, a sufficient condition for the existence of steady
states with given I and M reads
. E E
min {W’ W} > 60
for some £y = £y(2) > 0, see a paper in preparation by the third named author.

REMARK. Results in Theorems 2.1 and 2.2 show that for steady states in d-dimensional
star-shaped domains, d > 4 (which exist for ¥ > 0 and each 0 < M < M()), the ratio
E/M? is also bounded from below.

5. Appendix: properties of Fermi functions. In this section we collect some formu-
las and estimates related to Fermi integrals.
Let us recall from [6] that Io(\) = log(1 + 1/)), because -4 Io(\) = —m.
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For o > —1 we have the formula for the derivative of I,

d < y*eYdy
54 Lrny=-| LW
&9 === 01 e

Cy* d 1 @
- £ dy = — I, 1 (),
/0 X\ dy<1+)\ey> y=—3la1()

the second line being valid for o > 0 only. Moreover,
d2 o] a2y d
(55) —2[a()\>:2/ e
Therefore, I, is a decreasing convex function of .
It is important that the Fermi integrals (8) have the following asymptotics:

1 a+1 .
(56) I, (\) ~ P (—logA) as A\, 0,
and
(57) In(X) ~ Lla+1) as A/ oo.

We refer the reader to [6, Sec. 2] for a proof.
More precise asymptotics for the Fermi integrals near A = 0 are given in

LEMMA 5.1. The following asymptotic relations hold as X\ "\, 0:

(58) Ta(A) = Ia(A) — % =0 ((flog)\)o‘fl) for each o« >1,
and for each a > 0

2
(59) Ra(X) = (~log A)Q{Ia()\)(_log A) = Z—ﬁfaﬂ()\)} -3

Proof. First we prove (58) for 1 < o < 2, and then by recurrence, using the de 'Hopital
rule, for k <a<k+1with k=2, 3,.... Let £ = —log \; evidently ¢/ — oo as A — 0.
Rewrite r,, as

0o « 4
ra(A)=/0 1y+ ;l‘zy —/0 y* dy
_ /2 ey dy /°° y© dy
o 14+ Aev ¢ 14+ Xev
/z (efu)adv+/°° (0 +u)* du
0 1+4ev 0 14 ev

£ a _ @ o «
:/ (4w (.~ du+/ MdUEjl-FJQ.
0 1+€u ) 1+€u

Clearly,

o0 ad
0§J2§2“/ U c9ag (1) < oo,
Y 1+€u

and even Jo = o(1) holds as ¢ — oc.
Next, we note an elementary inequality

(60) (1+7)*=(1-7)*—2ar<Cr?
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for 1 <a<2,0<7<1and some C = C,. This follows by showing that the difference
of the left and right hand sides is a decreasing function on the interval 0 < 7 < 1.
Then, we have

El u\& 1_204
Ogjlga/(—i_f) ( 6) du
0

1+ev
4 u u)3 e} 0 3
2008 +C' (%
gga/ L(f)du<ga12a/ udu +ga*3c/ u du’
0 1_|_eu 0 1+€u 0 1+€u

which shows the claim (58).
Similarly, we obtain
a+2

Ra()) = z—a{ra(x)e - ran ()\)}

£a+1/e (4w — (€ —u)" du+£*a/oo (L4 u)*du
0 ¢

14 ev 14ev
L at+l _ ool o a+1
_a+2€_a /((—i—u) (£ —u) du+/ (L +uw)* T du
a+1 0 14ev ) 14ev
£20% —2a+2)%+0((4)°)
—K/ du+£7°0(1)
1+ev
¢ 2
wdu 0
=—4 O +0(™) - ——

as ¢ — oo. Again by the recurrent use of the de I’Hopital rule, this result extends from
the parameter range 0 < a<ltok<a<k+1.

Finally, note that —<= (1og/\+ 1) < Ry(A) <0 for A > 1 and some C, > 0, and
Ra(A) +4 [ s gOfor/\<1 .

LEMMA 5.2. Fora > (3, 1, OIB_1 is an increasing convez function on RT while for a < 3
this is an increasing concave function on RT.

Proof. This result follows from the strict monotonicity of the quotient I/, /I, which is
decreasing for « > 3, and increasing for « < 3, see the argument in [6, Lemma 2.2]|. m

LEMMA 5.3. For all B < a+ 1 the inequality
Lopslop—1,)° 20
holds on RY.

Proof. Using the integral representation (54) of the derivatives of Fermi functions we

write

Yy TPeypa—Pev — yeYy®e?
! NI/ A // dy d
arsMap) = T+ re)2(1+rev)2 Y
Yy Bevyrlev
F— o) dydv >0
// 1+)\ey (14 dev)? z (" = v dydv =0,

after the symmetrization of the double integral. m
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LEMMA 5.4. For a > 3 the function
Ié/(thl)
f) = 1/(ﬂ+1)(>\)
Ig (A)

is increasing on RT.

Proof. Observe that by the property (54)

. . ’ I (A
sgn{f'(\)} = Sgn{fé/(aﬂ)()\)fﬂ_ RARICY (a _1|r 1 ﬁigi; B 41— 1 IZEAD }

N E YRR A I 10
- {A< TR0y *Igm))}
= sen{I5 (N Ty (V) — IV T4 (V).

The expression in braces can be represented using (54) as
yotley Bev _ YyB+le
/ / eYvPe’ — y*eVu dy dv
(14 xe¥)? (14 ev)?

BeYyBev
y-e’v e o o
/ / 1+ Xev) (1+)\€”)2 (y B_y ﬂ) (y—v)dydv >0,

after the symmetrization of the double integral. m
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