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Abstract. We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck

equations associated with an effective generalized thermodynamical formalism. These equations

have a rich physical and mathematical structure that can describe phase transitions and blow-up

phenomena. On general grounds, our formalism can have applications in different domains of

physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics

(stars, vortices, bacteries,...) which were previously disconnected. The common point between

these systems is the (attractive) long-range nature of the interactions.

1. Introduction. The statistical mechanics of systems with long-range interactions is

currently a topic of active research in physics [1]. Systems with long-range interactions

are numerous in nature: self-gravitating systems, two-dimensional vortices, non-neutral

plasmas, metallic clusters, dipoles, fracture etc. These systems exhibit similar features

such as negative specific heats, inequivalence of statistical ensembles, phase transitions,

self-organization and persistence of metastable states. Among all the previous examples,

self-gravitating systems and 2D vortices play a special role because they both interact

via an unshielded Newtonian potential (in dimensions D = 3 or D = 2) and possess

a rather similar mathematical structure [2]. Coincidentally, the chemotactic aggregation

of bacteries in biology has some connexions with the collapse and organization of self-

gravitating systems and 2D vortices [3, 4].

For systems with long-range interactions, the mean-field approximation turns out to

be exact in a proper thermodynamic limit [5]. Therefore, their equilibrium description

amounts to solving a variational problem, namely the maximization of the Boltzmann

entropy SB [f ] at fixed mass M = M [f ] and energy E = E[f ]. In the case of quantum

particles, the Boltzmann entropy is replaced by the Fermi-Dirac entropy SFD[f ]. This

maximization problem determines the most probable distribution of particles at statisti-
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cal equilibrium, assuming that all the accessible microstates (with given E and M) are

equiprobable. However, if, for some reason, the microstates are not equiprobable, other

forms of entropy can emerge. This appears in the physics of complex media displaying a

fractal (or multifractal) structure and exhibiting anomalous diffusion. In general, these

effects are due to the existence of “hidden constraints” [6] that change the form of the

transitions probabilities that we would naively expect. Motivated by this problem, we

shall develop an effective generalized thermodynamical formalism (in µ space) associated

with a larger class of entropy functionals. Specifically, we consider the maximization of a

generalized entropy S[f ] = −
∫
C(f)dDrdDv, where C is a convex function, at fixed mass

M and energy E. Since the energy is fixed, we call this a microcanonical description. We

also consider the minimization of a generalized free energy F = E − TS at fixed mass

M and temperature T . Since the temperature is fixed, we call this a canonical descrip-

tion. We discuss the inequivalence of these two descriptions when the caloric curve β(E)

presents turning points or bifurcations. This occurs in particular when the potential of

interaction is long-ranged.

We also introduce a new class of relaxation equations associated with this generalized

thermodynamical formalism [3, 6, 7]. We first consider a generalized class of Fokker-

Planck equations extending the ordinary Kramers and Smoluchowski equations [3]. These

equations have a canonical structure as they decrease a generalized free energy. When

the potential of interaction is long-ranged, these equations are non-local in space and can

exhibit a rich variety of behaviors including phase transitions and blow-up phenomena.

In the limit of short-ranged interactions, they reduce to Cahn-Hilliard equations [7]. We

also consider a generalized class of kinetic equations extending the ordinary Boltzmann

and Landau equations [6]. These kinetic equations have a microcanonical structure as

they conserve energy and increase a generalized entropy.

Our formalism can have applications in different domains of physics, astrophysics,

fluid mechanics, biology, economy etc. with various interpretations that are not necessar-

ily connected to thermodynamics. It is therefore important to develop a general formalism

without reference to a specific context. Then, a justification has to be given in each case.

For example, the maximization of the functional S[f ] = −
∫
C(f)dDrdDv, where C is

convex, at fixed mass and energy determines a nonlinearly dynamically stable stationary

solution of the Vlasov-Poisson system for collisionless stellar systems (and 2D vortices).

In this context, S[f ] is a H-function [8], not an entropy. Then, our generalized relaxation

equations [3] can be used as numerical algorithms to construct stable stationary solu-

tions of the Vlasov-Poisson system. On the other hand, equations similar to generalized

Fokker-Planck equations appear in biology in relation with the chemotactic aggregation

of bacterial populations. In any case, it is useful to develop a thermodynamical analogy [3]

and use a vocabulary borrowed from thermodynamics. Thus, we can directly transpose

the methods developed in thermodynamics to a different context.

2. Maximum entropy principle. Let us consider a system of N particles in interaction

and denote by f(r,v, t) their distribution function defined such that fdDrdDv gives the

mass of particles with position r and velocity v at time t. The spatial density is
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ρ(r, t) =

∫
f(r,v, t)dDv,(1)

and the total mass

M =

∫
ρ(r, t)dDr.(2)

Let F(r, t) = −∇Φ be the force (per unit mass) experienced by a particle. We assume

that the potential Φ(r, t) is related to the density ρ(r, t) by a relation of the form

Φ(r, t) =

∫
ρ(r′, t)u(r− r′)dDr′,(3)

where u(r− r′) is an arbitrary binary potential depending only on the absolute distance

|r− r′| between the particles. The energy can be expressed as

E =

∫
1

2
fv2dDrdDv +

1

2

∫
ρΦdDr = K +W,(4)

where K is the kinetic energy and W the potential energy. The following results remain

valid if Φ = Φext(r) is a fixed external potential, in which case the potential energy reads

W =
∫
ρΦextd

Dr.

We introduce a generalized entropy of the form

S = −
∫
C(f)dDrdDv,(5)

where C(f) is a convex function, i.e. C ′′(f) > 0. We are interested by the distribution

function f(r,v) which maximizes the generalized entropy (5) at fixed mass and energy,

i.e.

Max S[f ] | E[f ] = E, M [f ] = M.(6)

Since the energy is fixed, we shall associate this maximization problem to a microcanonical

description. Introducing Lagrange multipliers and writing the variational principle in the

form

δS − βδE − αδM = 0,(7)

we find that the critical points of entropy at fixed mass and energy are given by

C ′(f) = −βε− α,(8)

where ε = v2

2 + Φ(r) is the energy of a particle by unit of mass. The Lagrange multipliers

β = 1/T and α can be interpreted as a generalized inverse temperature and a generalized

chemical potential, respectively. Equation (8) can be written equivalently as

f = F (βε+ α),(9)

where F (x) = (C ′)−1(−x). From the identity

f ′(ε) = −β/C ′′(f),(10)

resulting from Eq. (8), we find that f(ε) is a monotonically decreasing function of energy

if β > 0. The case of negative temperatures β < 0 can also be of interest depending

on the form of the function C. Explicating the relation between the potential and the

density, the equilibrium distribution is determined by the integro-differential equation

C ′(f) = −β
{
v2

2
+

∫
f(r′,v′)u(r− r′)dDr′dDv′

}
− α.(11)
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The conservation of angular momentum L =
∫
fr × vd3rd3v (in D = 3) can be easily

included in the variational principle (7) by introducing an appropriate Lagrange multiplier

βΩ, where Ω is the angular velocity. Equation (8) remains valid provided that ε is replaced

by the Jacobi energy εJ = ε−Ω · (r×v) = 1
2w2 +Φeff where w = v−Ω×r is the relative

velocity and Φeff = Φ− 1
2 (Ω×r)2 is the effective potential accounting for inertial forces.

We now introduce the generalized free energy

J [f ] = S[f ]− βE[f ],(12)

associated with the functionals (4) and (5). We are interested by the distribution function

f(r,v) which maximizes the generalized free energy (12) at fixed mass and temperature,

i.e.

Max J [f ] = S[f ]− βE[f ] | M [f ] = M.(13)

Since the temperature is given, we shall associate this maximization problem to a canon-

ical description. Introducing Lagrange multipliers and writing the variational principle in

the form

δJ − αδM = 0,(14)

we find that the critical points of free energy at fixed mass and temperature are given by

C ′(f) = −βε− α,(15)

as in the microcanonical description.

3. Stability conditions. The critical points of the variational problems (6) and (13)

are the same. The equilibrium state is then obtained by solving the integro-differential

equation (11) and relating the temperature β to the energy E. We can thus plot the gener-

alized caloric curve β(E) parameterizing the series of equilibria. We need now determine

the stability of these solutions by investigating the sign of the second order variations of

S or J . In the microcanonical situation, we must select maxima of S[f ] at fixed mass and

energy. The condition that f is a maximum of S at fixed mass and energy is equivalent

to the condition that δ2J ≡ δ2S − βδ2E is negative for all perturbations that conserve

mass and energy to first order. This condition can be written

δ2J = −
∫
C ′′(f)

(δf)2

2
dDrdDv − 1

2
β

∫
δρδΦdDr ≤ 0,

∀ δf | δE = δM = 0.(16)

The condition of stability in the canonical situation requires that f is a maximum of J [f ]

at fixed mass and temperature. This is equivalent to the condition that δ2J is negative

for all perturbations that conserve mass. This can be written

δ2J = −
∫
C ′′(f)

(δf)2

2
dDrdDv − 1

2
β

∫
δρδΦdDr ≤ 0,

∀ δf | δM = 0.(17)

Using Eq. (10), the functional arising in these stability criteria can be expressed as

δ2J =
1

2
β

{∫
(δf)2

f ′(ε)
dDrdDv −

∫
δρδΦdDr

}
.(18)
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We emphasize the importance of the first order constraints in the stability analysis. We

note that canonical stability implies microcanonical stability but that the converse is

wrong in general. Indeed, if inequality (17) is satisfied for all perturbations that conserve

mass, it is a fortiori satisfied for perturbations that conserve mass and energy. Since the

converse is wrong, this implies that some solutions can be stable in the microcanonical

ensemble while they are unstable in the canonical one. The microcanonical and canonical

descriptions are inequivalent when the caloric curve β(E) presents turning points. This

situation is well-known in the case of systems with long-range interactions such as self-

gravitating systems [9]. The stability of the solutions can be decided by using the turning

point criterion of Katz [10] which extends the theory of Poincaré on linear series of

equilibria. It is found that a change of stability in the series of equilibria occurs in the

microcanonical ensemble when the energy is extremum and in the canonical ensemble

when the temperature is extremum. Stability is lost or gained depending on whether

the series of equilibria β(E) turns clockwise or anti-clockwise at that critical point. An

illustration of these results is proposed in [9], in the case of self-gravitating fermions. A

change of stability along a series of equilibria can also occur at a branching point [10],

where the solutions bifurcate. A general classification of phase transitions for systems

with long-range interactions has been proposed by Bouchet & Barré [11].

4. The free energy functional. The maximization problem (13) in the canonical en-

semble can be simplified. First of all, we write the free energy in the usual form

F [f ] = E[f ]− TS[f ].(19)

To solve the minimization problem

Min F [f ] = E[f ]− TS[f ] | M [f ] = M,(20)

we shall proceed in two steps. We first minimize F [f ] at fixed density ρ(r). Introducing

a Lagrange multiplier λ(r), we find that the global minimum f∗(r,v) of this variational

problem is determined by

C ′(f∗) = −β
[
v2

2
+ λ(r)

]
.(21)

The distribution function f∗ can be written

f∗ = F

[
β

(
v2

2
+ λ(r)

)]
,(22)

where F (x) = (C ′)−1(−x). We define the density and the pressure by

ρ =

∫
fdDv, p =

1

D

∫
fv2dDv.(23)

Substituting Eq. (22) in the foregoing expressions, we find that

ρ =
1

βD/2
g(βλ), p =

1

β
D+2

2

h(βλ),(24)

with

g(x) = 2
D−2

2 SD

∫ +∞

0

F (x+ t) t
D−2

2 dt,(25)
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h(x) =
1

D
2
D
2 SD

∫ +∞

0

F (x+ t) t
D
2 dt,(26)

where SD is the surface of a unit sphere in D dimensions. Eliminating λ between the

foregoing expressions, we find that the fluid is barotropic, in the sense that p = p(ρ)

where the equation of state is entirely specified by C(f). We can now express the free

energy (19) as a functional of ρ by using F [ρ] = F [f∗]. The energy (4) is simply given by

E =
D

2

∫
pdDr +

1

2

∫
ρΦdDr.(27)

On the other hand, the entropy (5) can be written

S = −2
D−2

2 SD
βD/2

∫
dDr

∫ +∞

0

C[F (t+ βλ)] t
D−2

2 dt.(28)

Integrating by parts and using C ′[F (x)] = −x, we find that

S = −2D/2SD
DβD/2

∫
dDr

∫ +∞

0

F ′(t+ βλ)(t+ βλ)tD/2dt.(29)

Integrating by parts one more time and using Eqs. (24), (25) and (26), we finally obtain

S =
D + 2

2
β

∫
pdDr + β

∫
λρdDr.(30)

Collecting all the previous results, the free energy (19) becomes

F [ρ] = −
∫
ρ

(
λ+

p

ρ

)
dDr +

1

2

∫
ρΦdDr.(31)

Finally, using the relation h′(x) = −g(x) obtained from Eqs. (25) and (26) by a simple

integration by parts, it is easy to check that Eq. (24) implies

λ+
p

ρ
= −

∫ ρ

0

p(ρ′)
ρ′2

dρ′.(32)

Hence, the free energy can be written more explicitly as

F [ρ] =

∫
ρ

∫ ρ

0

p(ρ′)
ρ′2

dρ′dDr +
1

2

∫
ρΦdDr.(33)

We are led therefore to study the minimization problem

Min F [ρ] | M [ρ] = M,(34)

for the free energy functional (33). Writing the first order variations in the form

δF − αδM = 0,(35)

we find that the critical points of free energy satisfy the condition of hydrostatic balance

∇p = −ρ∇Φ,(36)

and that λ = Φ +α/β. We can easily check that the condition of hydrostatic equilibrium

is directly implied by the relation f = f(ε) derived in Sec. 2. This immediately results

from the identities

ρ =
1

D

∫
f
∂v

∂v
dDv = − 1

D

∫
∂f

∂v
· vdDv = − 1

D

∫
f ′(ε) v2dDv,(37)
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∇p =
1

D

∫
∂f

∂r
v2dDv =

1

D

∫
f ′(ε)∇Φv2dDv = −ρ∇Φ.(38)

Explicating the relation between the potential and the density, the condition of hydro-

static equilibrium can be written in the form of an integro-differential equation

p′(ρ)

ρ
∇ρ = −∇

∫
ρ(r′)u(r− r′)dDr′.(39)

This equation determines the equilibrium solutions (critical points of F ). Their stability

(minima of F ) is determined by the condition

δ2F =

∫
p′(ρ)

2ρ
(δρ)2dDr +

1

2

∫
δρδΦdDr ≥ 0,

∀ δρ | δM = 0.(40)

Using the condition of hydrostatic equilibrium, the above functional can be rewritten as

δ2F =
1

2

∫
(δρ)2

−ρ′(Φ)
dDr +

1

2

∫
δρδΦdDr.(41)

5. Examples of entropy functionals. Among all functionals of the form (5), some have

been discussed in detail in the literature. The most famous functional is the Boltzmann

entropy

SB [f ] = −
∫
f ln fdDrdDv.(42)

It leads to the isothermal distribution

f = Ae−βε.(43)

The corresponding distribution is physical space is the Boltzmann distribution

ρ = A′e−βΦ, A′ =

(
2π

β

)D/2
A.(44)

The distribution function (43) leads to the classical equation of state

p = ρT,(45)

and to the free energy

F [ρ] = T

∫
ρ ln ρdDr +

1

2

∫
ρΦdDr.(46)

Closely related to the Boltzmann entropy is the Fermi-Dirac entropy

SFD[f ] = −
∫ {

f

η0
ln
f

η0
+

(
1− f

η0

)
ln

(
1− f

η0

)}
dDrdDv,(47)

which leads to the Fermi-Dirac distribution function

f =
η0

1 + λeβη0ε
.(48)

The Fermi-Dirac distribution function (48) satisfies the constraint f ≤ η0 which is related

to Pauli’s exclusion principle in quantum mechanics. The isothermal distribution function
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(43) is recovered in the non-degenerate limit f � η0. The distribution in physical space

associated with the Fermi-Dirac statistics is

ρ =
η0SD2

D
2 −1

βD/2
ID

2 −1(λeβΦ),(49)

where In is the Fermi integral

In(t) =

∫ +∞

0

xn

1 + tex
dx.(50)

The distribution function (48) leads to the quantum equation of state given in parametric

form as

ρ =
η0SD2

D
2 −1

βD/2
ID

2 −1(λ′), p =
η0SD2

D
2

Dβ
D
2 +1

ID
2

(λ′).(51)

Recently, there was a considerable interest in physics for functionals of the form

Sq[f ] = − 1

q − 1

∫
(fq − f)dDrdDv,(52)

where q is a real number. Such functionals introduced by Tsallis [12] are called q-entropies.

They lead to polytropic distribution functions

f =

[
µ− (q − 1)β

q
ε

] 1
q−1

.(53)

The index n of the polytrope is related to the parameter q by the relation n = D/2 +

1/(q − 1) [13]. Isothermal distribution functions are recovered in the limit q → 1 (i.e.

n→ +∞). The distribution function (53) leads to the polytropic equation of state

p = Kργ , γ = 1 +
1

n
,(54)

with

K =
1

n+ 1

{
2
D
2 −1SDAB

(
D

2
, n+ 1− D

2

)}−1/n

,(55)

where A = [(q − 1)β/q]
1
q−1 and B(n,m) is the Beta function. The corresponding free

energy can be written

F [ρ] =
K

γ − 1

∫
(ργ − ρ)dDr +

1

2

∫
ρΦdDr,(56)

and the density in physical space is

ρ =

[
λ− γ − 1

Kγ
Φ

] 1
γ−1

.(57)

We note that a polytropic distribution with index q in phase space yields a polytropic

distribution with index γ = 1 + 2(q − 1)/[2 + D(q − 1)] in physical space. In this sense,

Tsallis distributions are stable laws. By comparing Eqs. (53) and (57) or Eqs. (19), (52)

and (56) we note that K plays the same role in physical space as the temperature T = 1/β

in phase space. It is sometimes called a “polytropic temperature”.

We have started a systematic study of the variational problems (6), (13) and (34) by

considering first the gravitational interaction in D dimensions. The case of isothermal

self-gravitating systems associated with the Boltzmann entropy has been considered in
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[14]. The case of self-gravitating fermions associated with the Fermi-Dirac entropy has

been considered in [9, 15]. The case of polytropic self-gravitating systems associated with

the Tsallis entropy has been considered in [13].

6. Physical applications. The maximization problems discussed previously can have

various physical applications (not necessarily related to thermodynamics) that we briefly

mention.

(i) Statistical mechanics: The variational principles (6), (13) and (34) determine the sta-

tistical equilibrium states of systems with long-range interactions, such as self-gravitating

systems. In that case, S[f ] is the Boltzmann entropy (42) for classical particles (e.g.,

stars in globular clusters) [16] or the Fermi-Dirac entropy (47) for fermions (e.g., mas-

sive neutrinos in dark matter models) [9]. The microcanonical situation (6) applies to

isolated Hamiltonian systems such as stellar systems [17]. The canonical situation (13)

or (34) applies to systems in contact with a heat bath imposing its temperature, like for

the interstellar medium [18]. This is also the proper statistical description of a gas of

self-gravitating Brownian particles [19, 20]. This discussion remains valid for other types

of long-range interactions.

(ii) Vlasov equation: The variational principle (6) determines nonlinearly dynamically

stable stationary solutions of the Vlasov-Poisson system

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂v
= 0,(58)

∆Φ = 4πG

∫
fd3v,(59)

which describes collisionless stellar systems. These robust organized states can emerge

as a result of a violent relaxation [22, 23]. In that context, S[f ] is called a H-function

[8]. Boltzmann and Tsallis functionals are particular H-functions (not true entropies in

that context) associated with isothermal and polytropic stellar systems [21, 3]. Note that

the criterion of nonlinear dynamical stability (6)-(16) is more refined than the stability

criterion (13)-(17). These results on nonlinear dynamical stability remain valid when the

force F is related to the distribution function f by a relation of the general form (3).

(iii) Euler-Jeans equation: The variational principle (34) determines the nonlinear dy-

namical stability of stationary solutions of the Euler-Jeans-Poisson system

∂ρ

∂t
+∇ · (ρu) = 0,(60)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p−∇Φ, ∆Φ = 4πGρ,(61)

describing barotropic stars. In that context,W [ρ] = F [ρ]+
∫
ρu

2

2 d
3r represents the energy

of the star. The first term in Eq. (33) is the internal energy of a barotropic gas and the

second term is the gravitational energy (a kinetic term has also to be introduced in

the energy functional W). Since the stability condition (34) implies (6), we note that a

stellar system is stable with respect to the Vlasov equation whenever the corresponding

barotropic star with the same equation of state is stable with respect to the Euler-Jeans
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equations (but the reciprocal is wrong in general) [21]. In astrophysics, this is known as

the Antonov’s first law [24].

(iv) Generalized thermodynamics: The variational principles (6), (13) and (34) determine

the generalized thermodynamical stability of complex systems exhibiting anomalous dif-

fusion. Such systems have a complicated phase space structure (fractal, multifractal,...)

due to the action of microscopic constraints (hidden constraints) that are often difficult to

formalize. These systems can be described by effective equations resembling generalized

Boltzmann and Fokker-Planck equations [3, 6]. The variational principles (6), (13) and

(34) also determine the linear dynamical stability of stationary solutions of these equa-

tions. Accordingly, there is a close connexion between thermodynamical and dynamical

stability [3].

7. Generalized Kramers equation. We shall introduce formally a relaxation equation

associated with the minimization problem (20). We write this equation in the form

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂v
=

∂

∂v
·
[
Dβf

∂

∂v

(
δF

δf

)]
,(62)

where δ/δf denotes a functional derivative. By construction, this equation conserves mass

since the right hand side is the divergence of a current −Jf . Using the expression of the

free energy (19) with Eqs. (4) and (5), we obtain the generalized Fokker-Planck equation

∂f

∂t
+ Lf =

∂

∂v
·
{
D

[
fC ′′(f)

∂f

∂v
+ βfv

]}
,(63)

where L is the advection operator. Morphologically, Eq. (63) can be viewed as a gener-

alized non-local Kramers equation [25]. It describes the dynamics (in phase space) of a

system of Langevin particles in interaction governed by a generalized class of stochastic

processes [3, 5]:

dri
dt

= vi,
dvi
dt

= −ξvi −∇iU(r1, ..., rN ) +

√
2Dfi

[
C(fi)

fi

]′
Ri(t),(64)

where −ξvi is a friction force and U(r1, ..., rN ) =
∑
i<j u(ri − rj) is a potential of

interaction. The last term is a generalized stochastic force. The usual white noise term

Ri(t), satisfying 〈Ri(t)〉 = 0 and 〈Ra,i(t)Rb,j(t′)〉 = δijδabδ(t − t′), where a, b = 1, ..., D

refer to the coordinates of space and i, j = 1, ..., N to the particles, is multiplied by a

function that can depend on the local (macroscopic) distribution function fi ≡ f(ri,vi, t).

When C(f) = f ln f , which is related to the Boltzmann entropy (42), Eq. (64) reduces

to the usual Langevin equations

dri
dt

= vi,
dvi
dt

= −ξvi −∇iU(r1, ..., rN ) +
√

2DRi(t).(65)

This stochastic process describes a system of Brownian particles in interaction. More

generally, the term in front of Ri(t) in Eq. (64) can be interpreted as a multiplicative

noise since it depends on r,v. Note that it depends on r,v through the distribution

function f(r,v, t). Therefore, there is a back-reaction from the macrodynamics, leading

to a situation of anomalous diffusion. In that context, the generalized Kramers equation
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(63) can be derived from the N-body Fokker-Planck equation by using a Kramers-Moyal

expansion and a mean-field approximation [4, 5]. The first term in Eq. (63) is a generalized

diffusion (depending on the distribution function) and the second term is a friction. The

friction coefficient ξ = Dβ satisfies a generalized Einstein relation. Note that D can

depend on r, v and t without altering the general properties of the equation. We can use

this indetermination to write the generalized Kramers equation in the alternative form

∂f

∂t
+ Lf =

∂

∂v
·
{
D′
[
∂f

∂v
+

β

C ′′(f)
v

]}
,(66)

which will have the same general properties as Eq. (63). This equation involves an ordi-

nary diffusion and a nonlinear friction. Equation (66) can be deduced from Eq. (63) by

the substitution D′ = DfC ′′(f). One of these two forms will be prefered depending on

the situation contemplated.

The generalized Kramers equation (63) can also be obtained from a variational prin-

ciple by maximizing the rate of free energy dissipation Ḟ at fixed mass and temperature

[3]. Therefore, Eq. (63) satisfies a canonical H-theorem Ḟ ≤ 0, provided that D ≥ 0.

Indeed, an explicit calculation yields

Ḟ = −
∫
DT

f

[
fC ′′(f)

∂f

∂v
+ βfv

]2

dDrdDv ≤ 0.(67)

This shows that F is the Lyapunov functional of the generalized Kramers equation. Now,

at equilibrium Ḟ = 0, so that according to Eq. (67),

∂C ′(f)

∂v
+ βv = 0.(68)

Integrating with respect to v, we get

C ′(f) = −β v
2

2
+A(r).(69)

The cancellation of the advective term Lf = 0 in Eq. (63) combined with Eq. (69) implies

that f = f(ε) and ∇A = −β∇Φ. Therefore, A(r) = −βΦ(r)−α and we recover Eq. (15).

This shows that a stationary solution of Eq. (63) extremizes the free energy F at fixed

mass and temperature. In addition, only minima of F at fixed M and T are linearly

stable with respect to the generalized Kramers equation (63). Indeed, considering the

linear stability of a stationary solution of Eq. (63), we can derive the general relation

2λδ2F = δ2Ḟ ≤ 0,(70)

connecting the growth rate λ of the perturbation δf ∼ eλt to the second order variations

of the free energy F and the second order variations of the rate of free energy production

δ2Ḟ ≤ 0 [3]. Since the product λδ2F is negative, we conclude that a stationary solution

of the generalized Kramers equation (63) is linearly stable (λ < 0) if, and only if, it is a

minimum of free energy F at fixed mass and temperature. This aesthetic formula shows

the equivalence between dynamical and thermodynamical stability for the generalized

Kramers equation. Therefore, it only selects minima of F , not maxima or saddle points.

8. Generalized Smoluchowski equation. We shall now introduce formally a relax-

ation equation associated with the minimization problem (34). We write this equation in



90 P.-H. CHAVANIS

the form
∂ρ

∂t
= ∇ ·

[
1

ξ
ρ∇
(
δF

δρ

)]
.(71)

Using the expression of the free energy (33), we obtain the generalized Fokker-Planck

equation
∂ρ

∂t
= ∇ ·

[
1

ξ
(∇p+ ρ∇Φ)

]
.(72)

Morphologically, Eq. (72) can be viewed as a generalized non-local Smoluchowski equation

[25]. It can be obtained from a variational principle by maximizing the rate of free energy

dissipation Ḟ at fixed mass and temperature [3]. Therefore, Eq. (72) satisfies a canonical

H-theorem Ḟ ≤ 0. Indeed, an explicit calculation yields

Ḟ = −
∫

1

ξρ
(∇p+ ρ∇Φ)2dDr ≤ 0.(73)

This shows that F is the Lyapunov functional of the generalized Smoluchowski equation.

Now, at equilibrium Ḟ = 0, and we recover the condition of hydrostatic balance (36). It

is also possible to show [3] that only minima of free energy F are linearly stable with

respect to the generalized Smoluchowski equation (72).

Explicating the relation between the potential and the density, the generalized Smolu-

chowski equation (72) can be written

∂ρ

∂t
= ∇ ·

{
1

ξ

[
p′(ρ)∇ρ+ ρ∇

∫
u(r− r′)ρ(r′, t)dDr′

]}
.(74)

The Lyapunov functional associated with this equation is the free energy

F [ρ] =

∫
ρ

∫ ρ

0

p(ρ′)
ρ′2

dρ′dDr +
1

2

∫
ρ(r, t)u(r− r′)ρ(r′, t)dDrdDr′.(75)

The stationary states are determined by the integro-differential equation

p′(ρ)

ρ
∇ρ = −∇

∫
ρ(r′)u(r− r′)dDr′.(76)

Equation (74) generalizes the usual Smoluchowski equation in two respects. First, the

coefficient of diffusion 1
ξ p
′(ρ) is an arbitrary function of the density ρ associated with

a generalized entropy functional (first term in Eq. (75)). Second, this equation is non-

local due to the presence of an arbitrary binary potential of interaction u(r − r′) in the

energy functional (second term in Eq. (75)). This equation possesses therefore a very rich

mathematical and physical structure.

We have started a systematic study of the generalized Smoluchowski equation (74) by

considering first the gravitational interaction in D dimensions. The case of an isothermal

equation of state corresponding to the Boltzmann free energy has been considered in

[19, 14, 26, 27]. It describes a system of self-gravitating Brownian particles (see a review

in [20]). The case of a quantum equation of state associated with the Fermi-Dirac free

energy has been considered in [28, 4]. It describes a system of self-gravitating Brownian

fermions. Finally the case of a polytropic equation of state associated with Tsallis free

energy has been considered in [13]. It describes a system of self-gravitating Langevin

particles experiencing anomalous diffusion.
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9. The method of moments. The Smoluchowski equation can be derived from the

Kramers equation in a high friction limit ξ → +∞, or equivalently for large times t� ξ−1.

This can be shown easily by using a method of moments. Integrating Eq. (63) over

velocity, we get the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0,(77)

where u = (1/ρ)
∫
fvd3v is the local velocity. Multiplying Eq. (63) by v and integrating

over velocity, we get the momentum equation

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂

∂xj
Pij + ρ

∂Φ

∂xi
= −

∫
D

[
fC ′′(f)

∂f

∂vi
+ βfvi

]
d3v,(78)

where Pij =
∫
fwiwjd

3v is the pressure tensor and w = v − u the relative velocity.

Introducing the notation φ(f) =
∫ f

xC ′′(x)dx, the first term in the right hand side can

be rewritten ∂φ(f)/∂v and, since it is a gradient of a function, it vanishes by integration.

We are left therefore with
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂

∂xj
Pij + ρ

∂Φ

∂xi
= −ξρui.(79)

In the high friction limit ξ = Dβ → +∞, assuming β of order unity, the term in

bracket in Eq. (63) must vanish so that the distribution function satisfies

C ′(f) = −β
[
v2

2
+ λ(r, t)

]
+O(ξ−1),(80)

where λ(r, t) is related to the spatial density ρ(r, t) through the relation

ρ =

∫
fdDv.(81)

We find therefore that u = O(ξ−1) and Pij = pδij + O(ξ−1) where p(r, t) is the local

pressure

p =
1

D

∫
fv2dDv,(82)

determined by Eq. (80). As in Sec. 4, the fluid is barotropic, i.e. p(r, t) = p[ρ(r, t)]. To

first order in ξ−1, the momentum equation (79) implies that

ρu = −1

ξ
(∇p+ ρ∇Φ) +O(ξ−2).(83)

Inserting the relation (83) in the continuity equation (77), we get the generalized Smolu-

chowski equation (72). The generalized Smoluchowski equation, as well as the first order

correction to the distribution function f(r,v, t), can also be obtained from a formal

Chapman-Enskog expansion [7].

10. Generalized kinetic equations. The Kramers equation and the Smoluchowski

equation have a canonical structure in which the temperature is fixed. We shall now

introduce a generalized kinetic equation possessing a microcanonical structure in which

the energy is fixed [3, 6]. This is the generalized Landau equation

∂f

∂t
+ Lf =

∂

∂vµ

∫
d3v1 K

µνff1

{
C ′′(f)

∂f

∂vν
− C ′′(f1)

∂f1

∂vν1

}
,(84)
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with

Kµν =
A

u

(
δµν − uµuν

u2

)
,(85)

where u = v1 − v is the relative velocity and A is a constant. We can also consider the

alternative form

∂f

∂t
+ Lf =

∂

∂vµ

∫
d3v1 K

µν

{
1

C ′′(f1)

∂f

∂vν
− 1

C ′′(f)

∂f1

∂vν1

}
.(86)

The generalized Landau equation can be derived from a generalized Boltzmann equation

in a weak deflexion approximation. In turn, the generalized Kramers equation (63) can be

derived from the generalized Landau equation in a thermal bath approximation [6]. The

generalized Landau equation satisfies a H-theorem (Ṡ ≥ 0) for the generalized entropy

(5). The entropy (5) plays therefore the role of a Lyapunov functional. At equilibrium,

Ṡ = 0, and we obtain the distribution (8). In addition, it can be shown [6] that only

maxima of S at fixed M and E are linearly stable with respect to the generalized Landau

equation.

Generalized kinetic equations such as (84) appear when the transition probabilities

are different from the form that we would naively expect due to the action of microscopic

constraints (hidden constraints). One particular case is when the particles are fermions.

In that case, the “hidden constraints” correspond to the Pauli exclusion principle that

prevents two particles with equal spin to occupy the same phase space cell. This exclusion

has been explained by quantum mechanics. More generally, the “hidden constraints” may

not have necessarily a fundamental origin.

11. Particular examples. It may be of interest to discuss some special cases explicitly.

For the Boltzmann entropy (42), C ′′(f) = 1/f and Eq. (63) reduces to the ordinary

Kramers equation
∂f

∂t
+ Lf =

∂

∂v
·
[
D

(
∂f

∂v
+ βfv

)]
.(87)

The corresponding equation in physical space, obtained in the high friction limit, is the

ordinary Smoluchowski equation

∂ρ

∂t
= ∇ ·

[
1

ξ
(T∇ρ+ ρ∇Φ)

]
.(88)

Finally, Eq. (84) leads to the ordinary Landau equation

∂f

∂t
+ Lf =

∂

∂vµ

∫
d3v1 K

µν

(
f1
∂f

∂vν
− f ∂f1

∂vν1

)
.(89)

For the Fermi-Dirac entropy (47), C ′′(f) = 1/f(η0 − f). In order to avoid the diver-

gence of the term fC ′′(f) as f → η0, it is appropriate to consider the alternative form

(66) of the generalized Kramers equation. This yields

∂f

∂t
+ Lf =

∂

∂v
·
{
D′
[
∂f

∂v
+ βf(η0 − f)v

]}
.(90)

The corresponding equation in physical space is given by Eq. (72) with the equation of

state (51). In fact, when the Kramers equation is written in the form (66), the coefficient
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in factor of the diffusion current in Eq. (72) is not 1/ξ but is more complex. We refer to

[7] for a detailed discussion of this subtle point. Finally, Eq. (86) leads to the fermionic

Landau equation

∂f

∂t
+ Lf =

∂

∂vµ

∫
d3v1 K

µν

{
f1(η0 − f1)

∂f

∂vν
− f(η0 − f)

∂f1

∂vν1

}
.(91)

For the Tsallis entropy (52), C ′′(f) = qf q−2 and Eq. (63) has the form of a nonlinear

Kramers equation
∂f

∂t
+ Lf =

∂

∂v

[
D

(
∂f q

∂v
+ βfv

)]
.(92)

The corresponding equation in physical space is the nonlinear Smoluchowski equation

∂ρ

∂t
= ∇

[
1

ξ
(K∇ργ + ρ∇Φ)

]
.(93)

Finally, Eq. (84) leads to the q-Landau equation

∂f

∂t
+ Lf =

∂

∂vµ

∫
d3v1 K

µν

(
f1
∂f q

∂vν
− f ∂f

q
1

∂vν1

)
.(94)

12. Maximum entropy principle in physical space. We now consider a system of

N particles in interaction with total mass

M =

∫
ρ(r, t)dDr,(95)

and energy

E =
1

2

∫
ρΦdDr,(96)

where the potential Φ(r, t) is related to the density ρ(r, t) by a relation of the form

Φ(r, t) =

∫
ρ(r′, t)u(r− r′)dDr′.(97)

We introduce a generalized entropy in physical space

S = −
∫
C(ρ)dDr,(98)

where C(ρ) is a convex function, i.e. C ′′(ρ) > 0. We are interested by the distribution

ρ(r) which maximizes the generalized entropy (98) at fixed mass and energy, i.e.

Max S[ρ] | E[ρ] = E, M [ρ] = M.(99)

Since the energy is fixed, we shall associate this maximization problem to a microcanonical

description. Introducing Lagrange multipliers and writing the variational principle in the

form

δS − βδE − αδM = 0,(100)

we find that the critical points of entropy at fixed mass and energy are given by

C ′(ρ) = −βΦ− α.(101)

The Lagrange multipliers β = 1/T and α can be interpreted as a generalized inverse

temperature and a generalized chemical potential, respectively. Equation (101) can be
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written equivalently as

ρ = F (βΦ + α),(102)

where F (x) = (C ′)−1(−x). From the identity

ρ′(Φ) = −β/C ′′(ρ),(103)

resulting from Eq. (101), ρ(Φ) is a monotonically decreasing function of Φ if β > 0 and

a monotonically increasing function of Φ if β < 0. Explicating the relation between the

potential and the density, we find that the equilibrium distribution is determined by the

integro-differential equation

C ′(ρ) = −β
∫
ρ(r′)u(r− r′)dDr′ − α.(104)

We now introduce the generalized free energy

J [ρ] = S[ρ]− βE[ρ],(105)

associated with the functionals (96) and (98). We are interested by the density ρ(r) which

maximizes the generalized free energy (105) at fixed mass and temperature, i.e.

Max J [ρ] = S[ρ]− βE[ρ] | M [ρ] = M.(106)

Since the temperature is given, we shall associate this maximization problem to a canon-

ical description. Introducing Lagrange multipliers and writing the variational principle in

the form

δJ − αδM = 0,(107)

we find that the critical points of free energy at fixed mass and temperature are given by

C ′(ρ) = −βΦ− α,(108)

as in the microcanonical description.

13. Stability conditions. In the microcanonical situation, we must select maxima of

S[ρ] at fixed mass and energy. The condition that ρ is a maximum of S at fixed mass

and energy is equivalent to the condition that δ2J ≡ δ2S − βδ2E is negative for all

perturbations that conserve mass and energy to first order. This condition can be written

δ2J = −
∫
C ′′(ρ)

(δρ)2

2
dDr− 1

2
β

∫
δρδΦdDr ≤ 0,

∀ δρ | δE = δM = 0.(109)

The condition of stability in the canonical situation requires that ρ is a maximum of J [ρ]

at fixed mass and temperature. This is equivalent to the condition that δ2J is negative

for all perturbations that conserve mass. This can be written

δ2J = −
∫
C ′′(ρ)

(δρ)2

2
dDr− 1

2
β

∫
δρδΦdDr ≤ 0,

∀ δρ | δM = 0.(110)

Using Eq. (103), the functional arising in these stability criteria can be expressed as

δ2J =
1

2
β

{∫
(δρ)2

ρ′(Φ)
dDr−

∫
δρδΦdDr

}
.(111)
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The discussion on the inequivalence of the microcanonical and canonical descriptions is

the same as the one given in Sec. 3.

14. Examples of entropy functionals. The Boltzmann entropy in physical space

SB [ρ] = −
∫
ρ ln ρdDr,(112)

leads to the isothermal distribution

ρ = Ae−βΦ.(113)

The Fermi-Dirac entropy in physical space

SFD[ρ] = −
∫ {

ρ

σ0
ln

ρ

σ0
+

(
1− ρ

σ0

)
ln

(
1− ρ

σ0

)}
dDr,(114)

leads to the Fermi-Dirac distribution

ρ =
σ0

1 + λeβσ0Φ
.(115)

This distribution satisfies the constraint ρ ≤ σ0 which puts an upper bound on the local

density of particles. It usually arises when one considers finite size effects or when one

introduces a lattice model in physical space preventing two particles to occupy the same

site. The isothermal distribution (113) is recovered in the dilute limit ρ� σ0.

The Tsallis entropy

Sq[ρ] = − 1

q − 1

∫
(ρq − ρ)dDr,(116)

where q is a real number, leads to the polytropic distribution

ρ =

[
µ− (q − 1)β

q
Φ

]n
, n =

1

q − 1
.(117)

The isothermal distribution (113) is recovered for q → 1, i.e. n→ +∞.

15. Physical applications. The maximization problems discussed previously can have

various physical applications (not necessarily related to thermodynamics) that we briefly

mention.

(i) Statistical mechanics of point vortices: The variational problems (99) and (106) arise in

the statistical mechanics of 2D point vortices provided that we make the correspondence

ρ ↔ ω between the density and the vorticity and the correspondence Φ ↔ ψ between

the potential and the stream function. In that context, the maximization problem (99)

associated with the Boltzmann entropy (112) determines the statistical equilibrium state

(most probable distribution) of a cloud of point vortices [29, 2].

(ii) Two-dimensional Euler equation: The maximization problem (99) determines non-

linearly dynamically stable stationary solutions of the 2D Euler-Poisson system

∂ω

∂t
+ u · ∇ω = 0,(118)

∆ψ = −ω,(119)
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where u = −z×∇ψ is the velocity field. The 2D Euler equation describes the evolution

of the density distribution of point vortices in the “collisionless” regime (Vlasov regime)

before correlations (collisions) have developed [30]. It also describes the inviscid evolution

of continuous vorticity flows in two-dimensional hydrodynamics. In that context, S[ω]

is called an H-function. Boltzmann and Tsallis functionals are particular H-functions

associated with isothermal and polytropic vortices [3]. Note that the criterion of nonlinear

dynamical stability (109) is more refined that the stability criterion (110) which is itself

more refined than the Arnol’d theorems [31, 32, 3].

(iii) Generalized thermodynamics: The variational principles (99) and (106) determine

the generalized thermodynamical stability of complex systems exhibiting anomalous dif-

fusion in physical space. Anomalous diffusion may have various origins: it may be due

to the existence of traps, of a lattice preventing particles to reach occupied sites, or

any other constraints that are often difficult to formalize. This is what we call “hidden

constraints” [6]. These systems can be described by effective equations resembling gener-

alized Fokker-Planck equations [3]. The variational principles (99) and (106) determine

the linear dynamical stability of stationary solutions of these equations [3].

16. Generalized drift-diffusion equation. We shall introduce formally a relaxation

equation associated with the maximization problem (106). We write this equation in the

form
∂ρ

∂t
= −∇ ·

[
Dρ∇

(
δJ

δρ

)]
,(120)

where δ/δρ denotes the functional derivative. By construction, this equation conserves

mass since the right hand side is the divergence of a current −Jρ. Using the expression

of the free energy (105) with Eqs. (96) and (98), we obtain the generalized drift-diffusion

equation
∂ρ

∂t
= ∇ · {D[ρC ′′(ρ)∇ρ+ βρ∇Φ]}.(121)

Morphologically, this equation can be viewed as a generalized non-local Smoluchowski

equation. It describes the dynamics (in physical space) of a system of Langevin particles

in interaction governed by a generalized class of stochastic processes [3, 5]:

dri
dt

= −ξ∇iU(r1, ..., rN ) +

√
2Dρi

[
C(ρi)

ρi

]′
Ri(t),(122)

where ρi ≡ ρ(ri, t) and Ri(t) is a white noise satisfying 〈Ri(t)〉 = 0 and 〈Ra,i(t)Rb,j(t′)〉 =

δijδabδ(t − t′), where a, b = 1, ..., D refer to the coordinates of space and i, j = 1, ..., N

to the particles. The particles interact via the potential U(r1, ..., rN ) =
∑

i<j u(ri − rj)

and C(ρ) is an arbitrary convex function. When C(ρ) = ρ ln ρ, which is related to the

Boltzmann entropy (112), Eq. (122) reduces to the usual Langevin equations

dri
dt

= −ξ∇iU(r1, ..., rN ) +
√

2DRi(t).(123)

This stochastic process describes a system of Brownian particles in interaction. The term

in front of Ri(t) in Eq. (122) can be interpreted as a multiplicative noise since it depends

on the position r. Note that it depends on r through the density ρ(r, t). Therefore, there is



GENERALIZED KINETIC EQUATIONS 97

a back-reaction from the macrodynamics. In that context, the generalized Smoluchowski

equation (121) can be obtained from the N -body Fokker-Planck equation by using a

Kramers-Moyal expansion and a meanfield approximation [5, 4]. The first term in Eq.

(121) is a generalized diffusion (depending on the density) and the second term is a drift.

The drift coefficient ξ = Dβ satisfies a generalized Einstein relation. Note that D can

depend on r and t without altering the general properties of the equation. We can use

this indetermination to write the generalized drift-diffusion equation in the alternative

form
∂ρ

∂t
= ∇ ·

{
D′
[
∇ρ+

β

C ′′(ρ)
∇Φ

]}
,(124)

which will have the same general properties as Eq. (121). This equation involves an

ordinary diffusion and a nonlinear drift. Equation (124) can be deduced from Eq. (121)

by the substitution D′ = DρC ′′(ρ). One of these two forms will be prefered depending

on the situation contemplated.

The generalized drift-diffusion equation (121) can also be obtained from a variational

principle by maximizing the rate of free energy production J̇ at fixed mass and tem-

perature [3]. Therefore, Eq. (121) satisfies a canonical H-theorem J̇ ≥ 0. An explicit

calculation yields

J̇ =

∫
D

ρ
[ρC ′′(ρ)∇ρ+ βρ∇Φ]2dDr ≥ 0.(125)

If ρ ≥ 0, this inequality is true provided that D > 0. If ρ can take both signs (which

depends on the initial conditions), it is more convenient to consider Eq. (124). In that

case, the inequality J̇ ≥ 0 is true provided that D′ > 0. This shows that J is the Lyapunov

functional associated with the generalized drift-diffusion equation (121).

Now, at equilibrium J̇ = 0, so that according to Eq. (125),

∇C ′(ρ) + β∇Φ = 0.(126)

Integrating, we get

C ′(ρ) = −βΦ− α,(127)

and we recover Eq. (108). Therefore, a stationary solution of Eq. (121) extremizes the free

energy J at fixed mass and temperature. In addition, it is shown in [3] that only maxima

of J at fixed M and T are linearly stable with respect to the generalized Fokker-Planck

equation (121).

Explicating the relation between the potential and the density, the generalized drift-

diffusion equation (124) can be written

∂ρ

∂t
= ∇ ·

{
D

[
∇ρ+

β

C ′′(ρ)
∇
∫
u(r− r′)ρ(r′, t)dDr′

]}
,(128)

with the free energy

J = −
∫
C(ρ)dDr− 1

2
β

∫
ρΦdDr.(129)

This equation generalizes many drift-diffusion equations introduced in the literature (we

refer to [33] for a connexion with mathematical works and for a detailed list of references).

It would be of interest to investigate its properties by remaining as general as possible,
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i.e. without specifying the function C(ρ) and the binary potential of interaction u(r− r′)
explicitly. For example, which conditions must satisfy C(ρ) and u(r − r′) to generate

blow-up solutions? Can we regroup the functionals S[ρ] is “classes of equivalence” with

the heuristic idea that functionals of the same “class” will yield “similar” results? Which

functionals S[ρ] lead to confined solutions with a compact support, such as polytropic dis-

tributions associated with the Tsallis functional [13]? These are interesting mathematical

problems which could be tackled in relation with Eq. (128).

17. Relation to Cahn-Hilliard equations. If we now consider the case of short-range

interactions, it is possible to expand the potential

Φ(r, t) =

∫
u(r′)ρ(r + r′)dDr′(130)

in Taylor series for r′ → 0. Introducing the notations

a =

∫
u(|x|)dDx and b =

1

D

∫
u(|x|)x2dDx ,(131)

we obtain to second order

Φ(r, t) = aρ(r, t) +
b

2
∆ρ(r, t) .(132)

In that limit, the free energy takes the form

J [ρ] =
1

2
βb

∫ {
(∇ρ)2

2
+ V (ρ)

}
dDr ,(133)

where we have set V (ρ) = −(2/bβ)C(ρ) − (a/b)ρ2. This is the usual expression of the

Landau free energy. In general, βb is negative so that we have to minimize the functional

integral. For systems with short-range interactions, the conservative equation (128) be-

comes
∂ρ

∂t
= ∇ ·

{
bξ

2
ρ∇ (∆ρ− V ′(ρ))

}
.(134)

This is the Cahn-Hilliard equation which has been extensively studied in the theory of

phase ordering kinetics. Its stationary solutions describe “domain walls”. We can view

therefore Eq. (128) as a generalization of the Cahn-Hilliard equation to the case of systems

with long-range interactions. Therefore, its general study is of great mathematical and

physical interest.

18. Physical applications. The generalized Fokker-Planck equations discussed pre-

viously and in [3, 6] can have various physical applications (not necessarily related to

thermodynamics) that we briefly mention.

(i) Numerical algorithms: The relaxation equations presented in Secs. 7, 8 and 16, and

in [3, 6] can be used as numerical algorithms to solve the variational problems (6), (13),

(34), (99) and (106). This is of great practical interest because it is in general difficult to

solve the integrodifferential equations (11), (39) and (104) directly and be sure that the

solution is a maximum of S or J . These relaxation equations can thus be used as numer-

ical algorithms to construct thermodynamically stable equilibrium states of Hamiltonian

systems with long-range interactions (see Sec. 6 (i) and 15 (i)) as well as nonlinearly dy-
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namically stable stationary solutions of the Vlasov, Euler-Jeans and 2D Euler equations

(see Secs. 6 (ii), (iii) and 15 (ii)).

(ii) Violent relaxation: The relaxation equations introduced in [34, 23, 3, 6] provide a

small-scale parameterization of the Vlasov-Poisson and 2D Euler-Poisson systems. They

describe the convergence of the flow, on a coarse-grained scale, towards a metaequilibrium

state corresponding to a galaxy in astrophysics or a large-scale vortex (e.g., Jupiter’s

great red spot) in 2D hydrodynamics. The theory of violent relaxation is discussed in,

e.g., [22, 23, 35, 2].

(iii) Statistical mechanics: In the isothermal case, the nonlocal Kramers and Smolu-

chowski equations describe the evolution of the distribution function and density of a gas

of Brownian particles in interaction [20, 4]. They can be seen, therefore, as the canonical

counterpart of the nonlocal Vlasov, Boltzmann and Landau equations describing the evo-

lution of the distribution function of a Hamiltonian system of particles in interaction, for

which a microcanonical description holds [5]. Since statistical ensembles are not equiva-

lent for systems with long-range interactions, it is of conceptual interest to compare the

microcanonical and canonical descriptions to see the analogies and the differences [19].

(iv) Biological colonies: Non-local drift-diffusion equations also occur in biology, in con-

nexion with the chemotactic aggregation of bacterial populations. A model of chemotactic

aggregation has been proposed by Keller & Segel [36]. In some approximation [37], their

equations reduce to the Smoluchowski-Poisson system as for self-gravitating Brownian

particles [19, 20]. This analogy is developed in [4]. In a more general context, the diffu-

sion coefficient or the chemotactic drift can depend on the density. This can take into

account anomalous diffusion or finite size effects preventing unphysical blow-up of the

bacterial concentration. A simple regularization of the Smoluchowski-Poisson system is

provided by the equation

∂ρ

∂t
= ∇ · {D[∇ρ+ βρ(1− ρ/σ)∇Φ]},(135)

which is associated with the Fermi-Dirac entropy (114) in physical space. This equation

respects the constraint ρ ≤ σ at any time and therefore prevents blow-up. By rescaling the

diffusion coefficient D(r, t) appropriately, this equation can be put in the form (72) with

an effective pressure p = T ln(1− ρ/σ). A more general model of chemotaxis is provided

by the drift-diffusion equation (128) which can take into account anomalous diffusion and

finite size effects of various forms. As we have seen, this equation is associated with an

effective thermodynamical formalism. An even more general model is represented by the

non-Markovian equation

∂ρ

∂t
= ∇ ·

{
D

[
∇ρ+

β

C ′′(ρ)
∇
∫ ∫ t

0

u(r− r′, t− t′)ρ(r′, t′)dDr′dt′
]}
.(136)

This equation can take into account delay effects that are relevant in the problem of

chemotaxis (indeed, the equation satisfied by Φ is of the form ε∂tΦ = ∆Φ − λρ − µΦ

[36]). We note that Eq. (136) does not admit a Lyapunov functional (or a free energy) so

that the effective thermodynamical formalism developed previously breaks up. It would

be of interest to see how these ideas can be generalized to that context.
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(iv) Generalized thermodynamics: The relaxation equations presented in Secs. 7, 8 and

16, and in Refs. [3, 6] can be considered as effective kinetic equations which may be

useful to model complex systems. As indicated previously, they can arise when the sys-

tem is subject to microscopic (hidden) constraints that change the form of the transition

probabilities. The consequence is that the accessible microstates are not equiprobable,

resulting in new forms of entropic functionals. An explicit and fundamental example

is played by the Pauli exclusion principle in quantum mechanics which leads to the

Fermi-Dirac entropy instead of the Boltzmann entropy. We have also exhibited a gener-

alized stochastic process (64)-(122) which leads to generalized Fokker-Planck equations

of various forms. These stochastic equations form just a particular example of processes

generating anomalous diffusion and complex phase space structure. More general and

more realistic microscopic processes could also be considered and studied. However, since

the generalized kinetic equations (63), (72) and (121) can be obtained from arguments

of a very wide scope, such as the Maximum Entropy (Free Energy) Production (Dis-

sipation) Principle [3] for example, we believe that they have a relatively fundamental

and universal character and that they will be obtained from a large class of microscopic

processes.

19. Conclusion. In this paper, we have developed a generalized thermodynamical for-

malism and corresponding kinetic theories. We believe that generalized thermodynamics

is relevant for the physics of complex systems when “hidden constraints” are in action

[6]. These microscopic constraints imply that the microstates with given mass and energy

are not equiprobable, contrary to what is usually postulated in thermodynamics. We can

either use the Boltzmann entropy and try to take into account these additional micro-

scopic constraints, or consider only the usual constraints (mass and energy) and change

the form of entropy [6]. This introduces some indetermination that is encapsulated in

the q parameter of Tsallis or more generally in a function C(f). We emphasize that this

indetermination is intrinsic to the problem and not a flaw of our approach. It occurs

because we do not have a complete knowledge of the system’s dynamics. However, we

have suggested [3] that generalized entropies can be regrouped in “classes of equivalence”

and that, for a given system, a class is more appropriate than another. This extends the

attempt of Tsallis and co-workers to try to find the correct value of q corresponding to a

given (complex) system. We argue that, more than a scalar q, a full function C(f) must

be considered in general.

On the other hand, the maximization problems {Max S | E,M fixed} and {Min F =

E − TS | M fixed} can arise in different situations that are not necessarily related to

thermodynamics. For example, the maximization of a H function at fixed mass and

energy determines nonlinearly dynamically stable stationary solutions of the Vlasov-

Poisson system in astrophysics. In that case, this maximization problem is related to

dynamics, not thermodynamics. However, in order to investigate this dynamical problem,

it can be useful to develop a thermodynamical analogy and use a similar vocabulary. We

have given other examples (in fluid mechanics, biology,...) where this thermodynamical

analogy could be developed.
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