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Abstract. The existence of a positive solution to the Dirichlet boundary value problem for the
second order elliptic equation in divergence form

— Y Di(ai;Dju) = f(u,/gg(up)>,

ij=1
in a bounded domain 2 in R"™ with some growth assumptions on the nonlinear terms f and g is

proved. The method based on the Krasnosel’skii Fixed Point Theorem enables us to find many
solutions as well.

1. Introduction. We study the following boundary value problem:

- Z": Di(as (x)D;u) f(u,/ﬂg(up)>,

(1) ij=1
ulan = 0,

and look for its positive solutions. (2 is assumed to be an open, bounded domain in R",
where n > 3, with boundary 02 sufficiently smooth, i.e. belonging to the Hélder space
C'# for ¢ > 0. The coefficients a;; with its first order derivatives are supposed to be
Holder continuous functions (i.e. a;; € C''<), such that the matrix (a;;)}';—, is symmetric
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and uniformly positive definite in (2, i.e. there exists a positive constant A > 0 such that
szzl aij(2)&:&; > Al¢]? for any & € R and z € .

The study of such problems is motivated by numerous physical applications including;:
fully turbulent behaviour of a real flow [3], thermal runaway in Ohmic heating [2] and sys-
tems of particles in thermodynamical equilibrium interacting via gravitational (Coulomb)
potential [11]. The nonlinearities f and ¢ in applications always have a specific form and
the differential operator is —A. In this paper we consider f of at most linear growth with
respect to the first local variable but f can be either sublinear or superlinear with respect
to the second variable.

To our best knowledge, this is a first application of the Cone-Compression (Cone-
Expansion) Theorem to nonradial elliptic boundary value problems. This is possible due
to the presence of the nonlocal term in the nonlinearity f. Otherwise, it seems that the un-
boundedness of the Green function is an obstacle to an application of the aforementioned
theorem.

The method we use is typical for local boundary value problems. We shall formulate
an equivalent fixed point problem and look for its solution in the cone of nonnegative
functions in L?(2). We shall apply the following Cone-Compression and Cone-Expansion
Theorem due to M. Krasnosel’skil [10], in the form taken from [9]:

THEOREM 1. Let P be a cone in a Banach space, Uy and U, two bounded open neigh-
bourhoods of zero such that Uy C Ua, let T : P — P be a compact operator (nonlinear). If

[Tl < llull  for wedUinP,

expansion
IT@)| = [l for uedUsnP, ( )

or vice Versa
IT(@)|| > [lul  for wedUiNP,

(compression)
T < lull  for uwedUsNP,

then the operator T has a fized point in U, \ U;.

If one has several U;’s forming an increasing sequence with the opposite inequalities
on the boundaries of U; and U; 1, then one gets several solutions. If the sequence of
neighbourhoods is infinite, then there are infinitely many solutions. A similar method has
been used in [13], with the nonlinear term of a specific form, to obtain radial solutions in
the space of continuous functions with the supremum norm. For a reference on application
of this method to some local BVP one can see [12].

2. General setting. Suppose that the function f : Ry x Ry — Ry (Ry = [0,00)) is
Lipschitz with respect to the first variable. We look for a classical solution of BVP (1),
ie. uc C?

To prove the existence of solutions to BVP (1), we consider the following integral
equation:

2) i) = [ G(x,mf(u(y), / g(up>)dy,
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in the space X = LP(Q), with p > 1. To simplify notation in the above formula and
throughout this paper, we shall omit the variable of integration in fQ g(uP). Here the
function G is the Green function for BVP (1). The existence, positivity and symmetry
of the Green function G follow from [6], due to assumptions on regularity of 02 and a;;.

Moreover, GG enjoys the following estimates:
IV2G(2,y)| < Cla —y|' ",

for some constant C' > 0 and any z,y € 2. Let P denote the cone in X of all almost
everywhere nonnegative functions and let 7' : P — P be defined by the formula

@) 7)) = [ G(x,y)f<U(y)7 / g(up>)dy.

The operator T can be also written as a composition of a linear integral operator K (called
also the Green operator) and the nonlinear superposition operator N (called Nemytski
operator), which are defined by the formulas:

/Gwy y)dy,

N(w)(@) = f(u<x>, [ o)

The operator N maps LP({) into itself provided function g satisfies the Lipschitz condi-
tion, the function f is Lipschitz continuous with respect to the first variable, and enjoys
the following estimate:

(6) f(u7 )‘) < A()\)’U, + B(A)a u, A€ R—i—a

(5)

where A and B are continuous functions (cf. [1], Thm. 2.2, p. 16). Now, we explicitly
show that K : LP(Q) — W1P(Q), since we need these estimates in the sequel. Therefore
we recall the following version of the well known Young inequality (cf. also [7]), with a
similar proof as for convolutions:

LEMMA 1. Let H : Q x Q@ — R, be symmetric, nonnegative function integmble with

respect to any of its variables and h € LP(Q?), p > 1, and (Fh)( fQ (y)dy.
Then F : LP(Q) — LP(Q) and

(7) 1FR] Lr o) < sup 1 H (z, )|z l|Pll e o)

Proof. Applying the Holder inequality we obtain, for any x € Q,

®) | H(z.y)h(n)dy| < ([ <H<x,y>%h<y>|>dy)p

< (/QH(%y)dyyI/QH(%y)Ih(y)l”dy

Integrating this inequality with respect to = € (2, applying the Fubini theorem, and using
symmetry of H one obtains:
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o | pwéﬂXLwa@YAAHmeM%m
Sitelg </§1H(x,y)dy>pILAH(x,y)dxlh(y)lpdy
<su ([ ear)” [ i

which yields the inequality (7). m

/wawm
Q

We apply the above lemma for ' = K (to establish that K : LP(Q) — W1P(Q)).
Indeed, it suffices to set H(z,y) = C|z — y|>~™ and use the first inequality from (3) to
get that K maps LP((Q) into itself. Moreover, we can set H(z,y) = C|r — y|'™", and use
the second of the estimates (3) to prove the claim.

Now, since the inclusion WP (Q) << LP(Q) is compact by the Rellich-Kondrashov
Theorem if p < n (cf. [8], Thm. 5.8.1, p. 291) and by Morrey estimates if p > n (cf. [8],
Thm. 5.8.3, p. 293), we have thus proved the compactness of the operator K : LP(Q2) —
L?(Q2) and thus of T': LP(Q2) — LP(2).

We look for fixed points of T', since they will prove to be positive solutions of BVP
(1). Notice that, since the Green function for (1) is positive, the operator T maps the

cone P of almost everywhere nonnegative functions from X u LP(Q) into itself.

3. Main results. Now, we are ready to prove the main result.

THEOREM 2. Let the function g : Ry — Ry satisfy the Lipschitz condition and suppose
that there exist two positive constants by and bs such that, for any u > 0,

(10) bhu < g(u) < bau.

Let f : Ri — Ry be Lipschitz continuous and satisfy (6), and there exist two positive
constants c¢1 and co such that for any u > 0,

P ‘1 P C2
(11) f(U,C1> < bg"}/p7 f(u7 02) > bl"}/p7

7= (/Q (/QG(x,y)dy)pdx)%.

Then BVP (1) has a classical positive solution with fQ g(uP) lying between c; and cs.

where

Proof. The constant ~ is, by inequality (7), well defined. Indeed, by estimate (3)
1 1 “n
(12) 3 < 190F sup |Gl sy <190 sup [ Clo =yl -7y,
TEQ zeQ JQ

and the latter is finite since the exponent n — 2 is less than n. Here the |Q| denotes
Lebesgue measure of set (2.

To apply Theorem 1 let us define sets U A {ue LP(Q) : [,9(Jul’) < c1} and
Us £ {ue LP(Q) : [, g(jul?) < ea}.
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Now, we shall prove the boundedness of the set Uy:

(13) <n>/ngnwa/wwzmmw
Q Q

which yields the boundedness of the set Uy, and similarly for Us,.
The sets U; and U, are also open. Indeed, fix v € U; and put € := ¢; — [ g(|u|?). If
L denotes a Lipschitz constant for g, one can find a positive number r such that

Lp(lulP/* + (|lull + )P/ %) <

where © + o = 1. Take v € L? satisfying [|v — u|| < r. We have

[ atory < [ otury+ L [ or = pap

Consider the set Q. := {z : |v(z)| > |u(z)|}. The second integral over 2, can be
estimated by the Mean Value Theorem and the Hélder inequality:

|l = tePt<p [ ol (ol = el < pllol? o~
Q4 Qy
and similarly on Q \ Q. Thus,
[ oty < ex =< Lp(lulP/s + el = ] < e,
Q

which asserts the claim.

Moreover, we shall show that U, C {u € L? : [, g(|ul?) = ¢1}. Take ug = limp o up
(in LP(Q2)) for some sequence uy, € Uy for k € N. Then [, g(Jux|P’) < ¢1 and from Fatou
lemma, and by estimate g(|u|) < ba|u|, we can pass to the limit obtaining [, g(|u[?) < ¢1.
It means that U; C {u € LP : Jog(u?) < c1}, and together with the openness of Uy
finishes the proof.

Now, we are ready to verify conditions of the Krasnosel’skii Theorem 1. Obviously,
0€U;,i=1,2.Let u>0and [,g(u?) =ci. Then

00 Tl = [ ([ Geanrum.aa)

p
Cc1 C1
< G(z,y)d da:s—sfu”Su”p ;
bz’Y”/g(/Q (=:9) y) by Q lealze o

and similarly one gets | T'u||rrq) > c2 for ||ul|rr) = co. Hence, the assertion follows
from the Krasnosel’skil Theorem. If ¢; < co, we use the cone expansion case, otherwise —
the cone compression one.

The last part of the proof is to show that a solution u of the integral equation (2) is, in
fact, a classical solution of BVP (1). We have obtained that u € W!?(Q). By continuous
inclusion of this Sobolev space, [8] Thm. 5.7.7, Thm. 5.7.8, p. 287, we have u € L%(Q)
with some ¢ > p. By a standard bootstrap argument, using Lemma 1 we can get that
the right hand side of equation (1) is in fact in L?(f2) with ¢ > n, whence u € W14(Q).
However, once again, since W4(2) — C%(Q) where o a 1—% ([8], Thm. 5.7.8 , p. 287)
we have u € C%%(12). By the Lipschitz continuity of f with respect to the first variable
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one gets that the right hand side of (1) is C%®, so by the Schauder estimates ([5], Thm.
6.13, p. 106) that u is of class C** and therefore it is a classical solution to (1). m

REMARK 1. Assumption (11) can be satisfied only in the presence of nonlocal nonlinear-
ity, unless f is bounded. Therefore, the case of local nonlinearity f depending only on
is excluded herein.

The following result is a simple corollary:

THEOREM 3. Let f : R2 — R satisfy (6). If there exist positive numbers ¢y < ¢ <
... < cany1 such that
C2;
\P
f(u7 CQZ) bg’yp )
C2i+1
Y
f(u, 021+1) > biAP )
for anyuw >0 andi=0,1,...,N, then BVP (1) has at least N + 1 positive solutions. If
the sequence of c; is infinite, then there exist infinitely many solutions, and they constitute
an unbounded set in LP. The same is valid when the reverse inequalities hold true.

IN

4. Examples. The above results have especially clear form when nonlinearity f is a
product of functions of u and A respectively ). Moreover, let for simplicity g = idr, or
more generally g(u) = u- g1 (u), where g; is Lipschitz and bounded by positive constants
both from below and from above. Suppose that

flu, A) =1U(u) - h(N),
where | : R, — R, is Holder continuous and bounded, infl > 0, h : Ry — R, is

continuous. Conditions (6) and (10) hold, and the operator T' is completely continuous.
The inequalities from the assumption of Theorem 2 have the form:

h(c1) < (vsupl)flc}/p =: rc}/p, h(ea) > (vinfl)flcé/p =: Rcé/p.

The constants ¢; can be found if the following conditions (typical for several results for
similar local BVP’s) are satisfied:

P P
im M:O, lim ) = 00,
A—0T A A—oo A
or reversely
P P
lim ) = 00, lim h() =0.
A—0t A A—oco A

The lower bound for the number of solutions of the problem is given by the number
of cross-sections of the strip R x [r, R] by the graph of the function A — h(A\)A~1/7.
Similar results can be obtained for f(u, A\) = I(u) + h(\) with the above properties of

land h:
Ar /P
h(c1) < IT —supl, h(c2) > 27 —inf 1.

The lower bound for the number of solutions is the number of cross-sections of the strip
R, x [infl,supi] by the graph of the function \ — h(\) — AV/P /.
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