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Abstract. We consider a non-local equation with initial and boundary conditions of the form

ρ(u)ut + (1 −
∫ x

0
ρ′(u)ut dy)ux = λf(u)/(

∫ 1

0
f(u) dx)2, which models the temperature when

an electric current flows through a moving material with negligible thermal conductivity and

time-dependent velocity. The potential difference across the material is fixed but the electrical

resistivity f(u) varies significantly with temperature. It is found that for f(u) decreasing with∫∞
0
f(s) ds < ∞, blow-up occurs if λ is too large for a steady state to exist or if the initial

condition is large enough. On the other hand, if f(u) is decreasing with
∫∞

0
f(s) ds = ∞, then

it is proved that u(x, t) is a global-in-time and unbounded solution.

1. Introduction and mathematical model. In this work we study the asymptotic

behaviour and blow-up of solutions for the non-local problem

ρ(u)ut +

(
1−

∫ x

0

ρ′(u)utdy

)
ux =

λf(u)

(
∫ 1

0
f(u)dx)2

, 0 < x < 1, t > 0,(1)

u(0, t) = 0, t > 0,(2)

u(x, 0) = u0(x), 0 < x < 1,(3)

where u = u(x, t); the functions f(u), ρ(u) are positive and decreasing. The initial data

u0(x) is a non-negative bounded function with bounded first derivative.

Mathematical problem (1)-(3) describes a process appearing in food industry. More

precisely, Ohmic heating is a novel commercial process in which an electric current is
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applied to a flowing food stream. The passage of current generates heat, which is used

to sterilise the food; it is thus possible to sterilise particles as fast as liquids containing

particulates up to 1-inch cube. The controlling parameter is the electrical conductivity

of the solid and liquid phases. More background of this process can be found in [1, 2, 3,

7, 8, 9, 10].

The physical process is described by two equations; the first one, expressing the con-

servation of electrical charge, is the elliptic equation

∇ · (σ∇ϕ) = 0,(4)

where ϕ is the electrical potential and σ the electrical conductivity of the food. The heat

flow is described by the parabolic equation

ρc

[
∂T

∂t
+ ~v · ∇T

]
= ∇ · (k∇T ) + σ|∇ϕ|2,(5)

where k and c stand for the thermal conductivity and the specific heat of the food

respectively, see [7]. The term σ|∇ϕ|2 in (5) represents Ohmic heating. It is noted that

c and k are almost constant over the range of expected operating conditions and that

for all the materials considered, they are very close to the values of water. Hence for

the purposes of modelling, these parameters are taken to be constants. The electrical

conductivity σ, on the other hand, can vary substantially, depending on the type of food

material and its temperature, and this variation provides an important coupling between

the current flow and heat flow in the system. If it is also assumed that the density ρ and

the velocity ~v of the food vary significantly with temperature T, then one has to take the

change of mass of the food into account as well, so we additionally have the equation

∂ρ

∂t
+∇ · (ρ~v) = 0,(6)

expressing the conservation of mass. System (4)-(6) can be simplified assuming the fol-

lowing:

(i) the heating of the food is rapid, so the heat diffusion both in the direction of flow

and normal to it, can be neglected (0 < k � 1);

(ii) the food enters the heater with temperature T0 independent of its position across

the channel;

(iii) end effects for the problem can be neglected so that the potential ϕ = 0 and

|~v| = ρ = 1 at the inlet of the heater x = 0 and φ = V at the far (downstream) end

x = L.

Here V is known if the potential difference across the device is specified (but has to be

determined if the process is controlled in some other way); x is the distance along the

channel, that is, in the direction of ~v. The channel has parallel sides.

It is convenient to scale the problem so that the length and the specific heat become 1.

The problem, taking also into account that the potential ϕ and temperature T vary only

with distance x and time t (it is a consequence of (ii)), can be written as

∂

∂x

(
σ
∂ϕ

∂x

)
= 0, 0 < x < 1, t > 0,(7)
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ρ
∂T

∂t
+ ρ v

∂T

∂x
= σ

(
∂ϕ

∂x

)2

, 0 < x < 1, t > 0,(8)

∂ρ

∂t
+
∂(ρv)

∂x
= 0, 0 < x < 1, t > 0.(9)

Integrating (7) we get

σ
∂ϕ

∂x
= I(t) implying V = I

∫ 1

0

dx

σ
,

where I = I(t) is the electrical current density (along the channel). Hence (8) takes the

form

ρ
∂T

∂t
+ ρv

∂T

∂x
=
I2

σ
=
V 2

σ

(∫ 1

0

dx

σ

)−2

.

Integrating (9) with respect to x and substituting in the previous relation we get the

non-local equation

ρ(T )
∂T

∂t
+

(
1−

∫ x

0

ρ′(T )
∂T

∂t
dy

)
∂T

∂x
=

λf(T )

(
∫ 1

0
f(T )dx)2

, 0 < x < 1, t > 0,

where λ = V 2 and f = 1/σ is the electrical resistivity of the food. It is convenient to

change the temperature variable so it becomes 0 at the inlet x = 0. Also note that with

0 < k � 1 (no diffusion) the problem for (dimensionless) temperature u = u(x, t) is

strictly advective and so any boundary condition at x = 1 can be dropped arriving at

problem (1)-(3).

Depending upon the substance undergoing the heating, the electrical resistivity f(u)

might be an increasing, a decreasing, or a non-monotonic function of temperature. For

most food products conductivity increases with temperature so f(u) is decreasing. It

should be noted that if one were to consider an alternative processing technique, one in

which there was a flow in a channel whose walls were the electrodes and across which

a prescribed current flowed, a very similar model would apply. This model would differ,

however, in that conductivity would replace resistivity for f . It therefore makes sense

to consider both decreasing and increasing functions; however in this work we deal only

with the decreasing case.

If the heater forms part of a circuit, so that it can be connected in series with a constant

resistance, and a fixed EMF is applied across the two ends of the circuit, the scaled

non-local equation is replaced by

ρ(u)ut +

(
1−

∫ x

0

ρ′(u)utdy

)
ux =

f(u)

(a+ b
∫ 1

0
f(u)dx)2

, 0 < x < 1, t > 0.(10)

A similar model, but with constant velocity, was considered in [6]. There, both prob-

lems, with f(u) a decreasing or an increasing function were discussed. For decreasing f ,

it was proved, using comparison techniques, that if either λ or u0(x) is large enough then

blow-up for u (thermal-runaway, food burning) occurs across the channel. It was also

proved that thermal runaway still occurs, but in a small region (single-point blow-up),

for increasing f(u) growing fast enough and for sufficiently large initial data u0(x) with

a sharp maximum.
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2. Existence and uniqueness. Since (1) is a first-order differential equation we can

prove existence of a solution to problem (1)-(3) through the characteristic curves theory.

In fact, the characteristics are given as solutions of the following system of ordinary

differential equations:
dt

dτ
= ρ(u),(11)

dx

dτ
= 1−

∫ x

0

ρ′(u)utdy,(12)

du

dτ
=

λ f(u)

(
∫ 1

0
f(u) dx)2

,(13)

(τ varies along the characteristics). As a result, the behaviour of this problem is crucial.

Although discontinuities of u0 or a mismatch between u0 and the boundary condition

give rise to irregular behaviour of u, these are simply propagated along the characteristics

and allow the existence of a (local) weak solution. So, in the following we will generally

be thinking of u0 being continuous (and normally, but not always, differentiable) with

u0(0) = 0.

Now if f is a Lipschitz continuous function and ρ ∈ C1((0,∞)), then Picard iteration

arguments imply the existence of a solution to (11)-(13); also nonexistence can only

come about through blow-up with u becoming infinite after some finite time t∗, see

[6]. Especially, (11) and (13) together with Picard iteration arguments imply, since ρ ∈
C1((0,∞)), that ut is bounded as far as u is bounded. Using the same arguments it is

proved that ux becomes unbounded only when u becomes unbounded.

Although (1)-(3) is a hyperbolic problem, in the case where f is a decreasing function,

more information can be gained proving a comparison result; this will be used in the

following section. In fact, if f is a decreasing and Lipschitz continuous function, then

0 ≤ f(β)− f(α) ≤ K(α − β), where β ≤ α ≤ M, M > sup(0,1) u0(x) for some positive

constant K ≡ K(M). Then a lower solution u and a solution u to problem (1)-(3) satisfy

the inequality dv/dτ ≤ λf(0)/f 2(M) on a characteristic curve as long as they lie under

M . So u ≤M and u ≤M while

τ ≤ (M − sup u0)f2(M)

λf(0)
.

Considering now v0 = u, {vn} for n ≥ 1 can be defined iteratively by

dvn
dτ

+
λK

f2(M)
vn =

λf(vn−1)

(
∫ 1

0
f(vn−1)dx)2

+
λK

f2(M)
vn−1,(14)

with vn = u0 at τ = 0 and vn = 0 for s = 0.

Problem (14) has a unique solution since it is linear and more precisely vn ≤ M for

τ ≤ T ≡ (M − sup u0)f2(M)/λ(f(0) +KM) ≤ T1; note also that

dv1

dτ
+

λK

f2(M)
v1 =

λf(v0)

(
∫ 1

0
f(v0)dx)2

+
λK

f2(M)
v0 ≥

dv0

dτ
+

λK

f2(M)
v0,

since v0 = u is a lower solution to equation (13) and v1 ≥ v0 for τ = 0, s = 0; thus

v1 ≥ v0 for 0 ≤ τ ≤ T1 (0 ≤ s ≤ 1) and some T1 > 0.
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Moreover,

dv1

dτ
− λf(v1)

(
∫ 1

0
f(v1)dx)2

=
λf(v1)

∫ 1

0
(f(v1) + f(v0))dx

∫ 1

0
(f(v1)− f(v0))dx

(
∫ 1

0
f(v1)dx)2(

∫ 1

0
f(v0)dx)2

+
λ(f(v0)− f(v1))

(
∫ 1

0
f(v0)dx)2

+
λK

f2(M)
(v0 − v1)

≤ λf(v1)
∫ 1

0
(f(v1) + f(v0))dx

∫ 1

0
(f(v1)− f(v0))dx

(
∫ 1

0
f(v1)dx)2(

∫ 1

0
f(v0)dx)2

+λK(v0 − v1)

(
1

f(M)2
− 1

(
∫ 1

0
f(v0)dx)2

)
≤ 0,

provided that f is Lipschitz continuous and decreasing. It follows, inductively, that u =

v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ . . . ≤ M and so vn → u ≥ u for some solution u ≤ M and

0 ≤ τ ≤ T . The uniqueness of the solution for τ ∈ [0, T ] is proved similarly. Supposing

there exist two solutions u1, u2 in [0, T ] then 0 ≤ u1, u2 ≤ M and using the Lipschitz

continuity of f we get
∣∣∣∣
d

dτ
(u1 − u2)

∣∣∣∣ ≤
λf(u1)

∫ 1

0
(f(u1) + f(u2))dx

∫ 1

0
|f(u1)− f(u2)|dx

(
∫ 1

0
f(u1)dx)2(

∫ 1

0
f(u2)dx)2

(15)

+
λ|f(u1)− f(u2)|

(
∫ 1

0
f(u2)dx)2

≤ Λ|u1 − u2|,

where Λ = (2λf2(0)+λf2(M))K/f4(M). Since for 0 ≤ τ ≤ T we have |u1−u2| ≤M due

to (15) we get |u1 − u2| ≤ ΛM T and inductively we obtain |u1− u2| ≤M(ΛT )n/n!→ 0

as n→∞ resulting in u1 ≡ u2.

Using the same arguments but now starting at τ = T we deduce that u ≥ u as long

as they both exist. The proof that u ≤ u, if u is an upper solution to (1)-(3), is similar.

3. General decreasing f

3.1. Steady-state problem. The steady-state problem to (1)-(3) is

w′ = µf(w), 0 < x < 1, w(0) = 0,(16)

with µ = λ/(
∫ 1

0
f(w)dx)2 referred to as the local parameter while λ as the non-local one.

Equation (16) can be written

dw

f(w)
= µ dx, 0 < x < 1,

from which by integration over (0, 1) we obtain

µ = µ(M) =

∫ M

0

ds

f(s)
, M = sup

x
w(x) = w(1).(17)

The latter implies that µ′(M) = 1/f(M) > 0 leading to the response diagram ap-

pearing in Fig. 1. Also by integration of (16) over (0, 1) we get λ = M 2/µ and so

λ = λ(M) = M2/
∫M

0
ds/f(s). Since limM→∞ λ(M) = 2 limM→∞Mf(M), we distin-

guish two cases:
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µ0

Μ=w(1)

Fig. 1. The local response diagram to (16), where M(µ) = w(1;µ) = w(1).

0

0

0 0

M M M

M

λ

λ

λ

λ

(a) (b) or

(c)

*

*

λ=2c 2c λ* λ

Fig. 2. Possible non-local response diagrams to (16). (a) Mf(M) → ∞ as M → ∞,

(b) Mf(M)→ c, 0 < c <∞ as M →∞, (c) Mf(M)→ 0 as M →∞.

(i)
∫∞

0
f(s)ds <∞, then Mf(M) ≤ 2

∫M
M/2

f(s) ds→ 0 as M →∞, and so there exists

a λ∗ such that for 0 < λ < λ∗ problem (16) has at least two steady-state solutions

while for λ > λ∗ there is no steady-state solution, see Fig. 2(c).

(ii)
∫∞

0
f(s)ds = ∞, if limM→∞Mf(M) exists then two things might happen. Either

Mf(M)→ c, 0 < c <∞ as M →∞ and so the spectrum of (16) is bounded (Fig.

2(b)), or Mf(M) → ∞ as M → ∞ and (16) has at least one steady state for any

λ > 0 (λ∗ =∞ , see Fig. 2(a)).

Moreover, if µ(M) =
∫M

0
ds/f(s) > M/2f(M) for M > 0, then

λ′(M) =
M

µ(M)

[
2µ(M)− M

f(M)

]
> 0,

thus there is a unique steady state to each 0 < λ < λ∗. From the above analysis we

get the possible non-local response diagrams of Fig. 2. Each diagram may contain more

turning points than shown (so that for some λ there are more solutions).

3.2. Stability and blow-up. In this subsection we study the stability of steady states

and the blow-up of solutions to (1)-(3), using the comparison result proved in Section

2. For this reason we consider comparison functions of the form v(x, t) = w(x;µ(t)), so
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vx = µf(v), and since µx =
∫ w

0
ds/f(s) we get vt = µ̇(t)xf(v) with v(0, t) = 0. Thus

F(v) := ρ(v)vt +

(
1−

∫ x

0

ρ′(v)vtdy

)
vx −

λf(v)

(
∫ 1

0
f(v)dx)2

= µ̇(t)x f(v)ρ(v) +

(
1−

∫ x

0

ρ′(v)µ̇(t)y f(v)dy

)
µ(t)f(v)− λf(v)

(
∫ 1

0
f(v)dx)2

= f(v)

[
µ̇(t)xρ(v) + µ(t)− µ̇(t)

∫ x

0

ρ′(v)µ(t)f(v)y dy − λ/
(∫ 1

0

f(v)dx

)2]

= f(v)

[
µ̇(t)xρ(v) + µ(t)− µ̇(t)

∫ v

0

yρ′(s)ds− λ/
(∫ 1

0

f(v)dx

)2]
.

However
∫ 1

0
f(v)dx = (1/µ(t))

∫ 1

0
vxdx = M(t)/µ(t), where M(t) = supx v(x, t) = v(1, t),

and choosing

µ̇(t) = µ̇ = h(µ(t)) ≡ 1

ρ(0)

(
λµ2

M2(µ)
− µ

)
, t > 0,(18)

we obtain

F(v) = f(v)

[
1

ρ(0)

(
λµ2

M2(µ)
− µ

)(
ρ(v)x−

∫ v

0

yρ′(s)ds

)
+ µ− λµ2

M2(µ)

]
.

If now λ > M2(µ)/µ, using the fact that ρ(s) is a positive decreasing function, we

get F(v) ≤ 0 for 0 < x < 1. Thus in this case v(x, t) is an increasing-in-time (vt =

µ̇(t)xf(v) > 0) lower solution to (1)-(3), provided that v(x, 0) = w(x;µ(0)) ≤ u0(x).

Also for λ < M2(µ)/µ and v(x, 0) = w(x;µ(0)) ≥ u0(x) we obtain that v(x, t) is a

decreasing-in-time upper solution to (1)-(3).

We start with the case that a unique steady state w exists (Fig. 2(a) (for λ > 0), or

Fig. 2(b)-first case (0 < λ < 2c)). Then to each 0 < λ < λ∗ (λ∗ =∞ when
∫∞

0
f(s)ds =

∞) there exists µ > 0 such that λ = λ(µ) := µ(
∫ 1

0
f(w)dx)2 and the function λ(µ)

is increasing. For the case u0(x) ≤ w(x) we can choose 0 < µ(t) < µ, so λ = λ(µ) >

λ(µ(t)) = M2(t)/µ(t), satisfying the equation (18). Then µ(t) satisfies the transcendental

equation
∫ µ(t)

µ(0)

ds

h(s)
= t, t > 0, where h(s) =

1

ρ(0)

(
λs2

M2(s)
− s
)
.(19)

Equation (19) has a unique solution in [µ(0), µ), for any µ(0) ≥ 0, since in this case

G : [µ(0), µ) → [0,∞) with G(ξ) =
∫ ξ
µ(0)

ds/h(s) is a C1-diffeomorphism, [5]. Thus (18)

has a unique solution µ(t) and since wµ = x f(w) ≥ 0 we can choose µ(0) ≥ 0 such that

w(x;µ(0)) ≤ u0(x). Hence v(x, t) = w(x;µ(t)) is an increasing-in-time lower solution to

(1)-(3), so v(x, t) ≤ u(x, t) ≤ w(x) for x ∈ [0, 1] and t > 0. Moreover µ(t) → µ− as

t → ∞ (otherwise there would be another steady state) and so v(·, t) → w(·) as t → ∞
uniformly in x resulting in u(·, t)→ w(·) as t→∞ uniformly in x.

When u0(x) ≥ w(x), it is possible to choose µ̄(t) > µ (so λ < λ(µ̄(t))) to satisfy

(18) and construct a decreasing-in-time upper solution z(x, t) to (1)-(3), provided that

z(x, 0) = w(x; µ̄(0)) ≥ u0(x) (the latter is possible since u0(x), u′0(x) are bounded and

wµ̄ > 0). Thus we obtain w(x) ≤ u(x, t) ≤ z(x, t) and finally u(·, t) → w(·) as t → ∞
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uniformly in x, since also µ̄(t) → µ+ as t → ∞. Hence the unique steady state w(x) is

globally asymptotically stable and u(x, t) is a global-in-time bounded solution.

We continue now our study with the case where (16) has two steady states w1 =

w(x;µ1) and w2 = w(x;µ2) (Fig. 2(b)-second case, or Fig. 2(c)). Then for each λ∗ <
λ < λ∗ (λ∗ = 0 in Fig. 2(c) and λ∗ = 2 c in Fig. 2(b)—second case) there exist µ1 and

µ2 such that λ = λ(µ1) = λ(µ2) and the function λ(µ) is increasing for 0 < µ < µ∗

and decreasing for µ > µ∗ (µ∗: λ′(µ∗) = 0). For 0 < u0(x) < w1(x), on choosing

0 < µ(t) < µ1 < µ∗ to satisfy (18), we get as above a lower solution v(x, t) = w(x;µ(t))

with v(·, t) → w1(·) as t → ∞ uniformly in x. Whereas for w1(x) < u0(x) < w2(x), on

choosing µ1 < µ̄(t) < µ∗, we construct an upper solution z(x, t) = w(x; µ̄(t)) such that

z(·, t)→ w1(·) as t→∞ uniformly in x. Hence for λ∗ < λ < λ∗ the minimal steady state

w1 is asymptotically stable with a region of attraction [0, w2], while for 0 < λ < λ∗, w1

is globally asymptotically stable. This implies that u(x, t) is a global-in-time bounded

solution.

If we consider u0(x) > w2(x) and choose µ(t) > µ2 satisfying (18) then an unbounded

lower solution v(x, t) = w(x;µ(t)) can be constructed. More precisely µ(t) → ∞ as

t → T ∗ ≤ ∞ (otherwise there would be a third steady state which is a contradiction).

Hence ‖u(·, t)‖∞ →∞ as t→ t∗ ≤ T ∗ ≤ ∞, which means that u(x, t) is unbounded. The

latter implies that the maximal steady state w2 is unstable.

Moreover, it is easily seen that w∗(x) = w(x;λ∗) is unstable. More precisely w∗ is

stable from below (0 < u0(x) < w∗(x)) and unstable from above (u0(x) > w∗(x)). If for

each λ∗ < λ < λ∗ more than two steady states exist, then using similar arguments as

above it is proved that the minimal steady state is stable, the greater one unstable and

so on.

We also note that problem (1)-(3) has unbounded solutions for λ > λ∗. In this case

λ > λ(µ) = M2/µ for µ > 0 and so we can construct a lower solution of the form

w(x;µ(t)). But for λ > λ∗ there is no steady state implying that µ(t)→∞ as t→ T ∗ ≤
∞, hence u(x, t) becomes unbounded at t∗ ≤ T ∗ ≤ ∞, i.e. ‖u(·, t)‖∞ →∞ as t→ t∗−.

The behaviour of unbounded solutions to (1)-(3) depends upon the decreasing rate of

f(s). More precisely we have:

Proposition 1. If
∫∞

0
f(s)ds < ∞ and ρ(s) ≥ γ > 0 for s > 0 then the unbounded

solutions to (1)-(3) blow up globally in finite time, i.e. u(x, t)→∞ as t→ t∗− <∞ for

any x ∈ (0, 1] and ux(0, t)→∞ as t→ t∗ − .

Proof. As we have noted above, the unbounded solutions to problem (1)-(3) exist either

for λ > λ∗ or for u0(x) sufficiently large and λ ≤ λ∗. In both cases we can construct

a lower solution of the form v(x, t) = w(x; ν(t)) with ν(t) satisfying (18). Now since

M(0) = 0, applying Hardy’s inequality, [4], we get
∫ ν

0
(M(σ)/σ)2dσ < 4

∫ ν
0

(M ′(σ))2dσ,

where ν = ν(t). Also using that M ′(ν) = f(M(ν)) the latter gives

∫ ν

0

(
M(σ)

σ

)2

dσ < 4

∫ ν

0

(M ′(σ))2dσ = 4

∫ M(ν)

0

f(s)ds < 4

∫ ∞

0

f(s)ds <∞.(20)
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Recalling now that ν(t) satisfies (18) we obtain

t = ρ(0)

∫ ν(t)

0

M2(σ)

σ2(λ−M2(σ)/σ)
dσ for any t > 0,(21)

and taking into account that M 2(µ)/µ = M2(µ)/
∫M

0
ds/f(s) → 0 as µ → ∞, since∫∞

0
f(s) <∞, we get

∫ ∞

β

M2(σ)

σ2(λ−M2(σ)/σ)
dσ ∼ 1

λ

∫ ∞

β

(
M(σ)

σ

)2

dσ for β � 1.(22)

Finally, combining (20), (21) and (22) we get ν(t)→∞ as t→ T ∗−, where

T ∗ = ρ(0)

∫ ∞

0

M2(σ)

σ2(λ−M2(σ)/σ)
dσ <∞.

Hence u(x, t) blows up (in finite time), i.e. ‖u(·, t)‖∞ →∞ as t→ t∗− ≤ T ∗ <∞.

To prove global blow-up, we first note that N(t) = max[0,1]u(·, t) satisfies

dN

dt
=

λf(N)

ρ(N)(
∫ 1

0
f(u)dx)2

≤ λf(0)

γ(
∫ 1

0
f(u)dx)2

= h(t),

and since u blows up we take N(t) − N(0) ≤
∫ t

0
h(s)ds → ∞ as t → t∗ − . The latter

implies h(t)→∞ as t→ t∗− and so
∫ 1

0
f(u)dx→ 0 as t→ t∗−, giving that u(x, t)→∞

as t→ t∗− for any x ∈ (0, 1] and ux(0, t) ≥ wx(0, ν(t)) = ν(t) f(0)→∞ as t→ t∗ − .
A complementary result to Proposition 1 is the following:

Proposition 2. If
∫∞

0
f(s)ds = ∞ and ρ(s) ≥ γ > 0 for s > 0 then any unbounded

solution u(x, t) to (1)-(3) diverges globally, i.e. u(x, t)→∞ as t→∞ for any x ∈ (0, 1]

and ux(0, t)→∞ as t→∞.
Proof. We consider the function z(x, t) = v(t) > 0 such that

dv

dt
=

λ

γf(v)
for any 0 < x < 1.(23)

Then

F(z) := ρ(z)zt +

(
1−

∫ x

0

ρ′(z)ztdy

)
zx −

λf(z)

(
∫ 1

0
f(z)dx)2

(24)

= ρ(v)
dv

dt
− λf(v)

(
∫ 1

0
f(v)dx)2

≥ λ

f(v)
− λ

f(v)
= 0,

and choosing v(0) such that u0(x) ≤ v(0) we see that z(x, t) is an upper solution to (1)-

(3). Also (23) implies
∫ v(t)

v(0)
f(s)ds = λ

γ t, leading, due to the hypothesis
∫∞

0
f(s) ds =∞,

to v(t) → ∞ as t → ∞. Hence, z(x, t) is a global-in-time unbounded upper solution

to (1)-(3). This implies that u(x, t) diverges, i.e. ‖u(·, t)‖∞ → ∞ as t → ∞. Using

similar arguments as in Proposition 1, it is proved that
∫ 1

0
f(u)dx → 0 as t → ∞. Thus

u(x, t)→∞, for any x ∈ (0, 1] and ux(0, t)→∞ as t→∞. This completes the proof of

the proposition.
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4. Discussion. In this work, the behaviour of the solutions to the non-local equation

ρ(u)ut+(1−
∫ x

0
ρ′(u)utdy)ux = λf(u)/(

∫ 1

0
f(u)dx)2, associated with boundary and initial

conditions, is studied in the case where f(s), ρ(s) are positive and decreasing functions.

Using comparison methods, we study the stability of the corresponding steady states and

investigate under which circumstances, the solution u(x, t) is global in time or blow up

in finite time. More precisely, it is found that the unbounded solutions of the problem

which exist either for λ > λ∗ or for λ ≤ λ∗ and sufficiently large initial data, blow up if∫∞
0
f(s) ds <∞, while exist for any time if

∫∞
0
f(s) ds =∞.

The above analysis can be applied, without any changes, in the case of an increasing

bounded function ρ(s) (ρ′(s) > 0, 0 < ρ(s) ≤ K for s ≥ 0).

The mathematical problem has a physical meaning only in the one-dimensional space.
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