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Abstract. This article discusses a prey-predator system with cross-diffusion. We obtain multiple

positive steady-state solutions of this system. More precisely, we prove that the set of positive

steady-states possibly contains an S or ⊃-shaped branch with respect to a bifurcation parameter

in the large cross-diffusion case. Next we give some criteria on the stability of these positive

steady-states. Furthermore, we find the Hopf bifurcation point on the steady-state solution

branch in a certain case. Our method of analysis uses the idea developed by Du and Lou [6] and

is based on the bifurcation theory and the Lyapunov-Schmidt reduction technique.

1. Introduction. In this article, we are concerned with the following Lotka-Volterra

prey-predator model with cross-diffusion:

(P)





ut = ∆u+ u(a− u− cv) in Ω× (0,∞),

σvt = ∆[(1 + βu)v] + v(b+ du− v) in Ω× (0,∞),

u = v = 0 on ∂Ω× (0,∞),

u( · , 0) = u0 ≥ 0, v( ·, 0) = v0 ≥ 0 in Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω; σ, a, b, c, d are

positive constants and β ≥ 0 is the cross-diffusion coefficient. In (P), unknown functions u

and v represent the population densities of prey and predator species, respectively, which

are interacting and migrating in the same habitat Ω. In a certain kind of prey-predator
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relationships, a great number of prey species form a huge group to protect themselves

from the attack of predator. So we assume that the population pressure due to the high

density of prey induces the diffusion of the form β∆(uv) in the second equation. The

boundary condition means that the habitat Ω is surrounded by a hostile environment.

See also the monograph of Okubo and Levin [23] for the biological background. It should

be noted that the local solvability of (P) has been established by Amann [1], where a

wide class of quasilinear parabolic systems is discussed. According to his result, (P) has

a unique local solution (u, v) provided (u0, v0) ∈ W 1,p
0 (Ω) × W 1,p

0 (Ω) for p > N , and

moreover, u ≥ 0, v ≥ 0 for all (x, t) ∈ Ω × [0, T ), where T is the maximal existence

time of (u, v). Recently, Kuiper and Le [9] have found the global attractor for a class of

triangular cross diffusion systems involving (P).

System (P) originates from the competition population model with cross-diffusion pro-

posed by Shigesada, Kawasaki and Teramoto [26]. Since their pioneer work, many math-

ematicians have discussed such cross-diffusion systems (primary on competition models)

from various view-points, e.g., steady-state problems ([7, 15, 16, 17, 19, 20, 21, 22, 25])

and the global existence of time-dependent solutions ([3, 4, 9, 12, 13, 18, 27]). Neverthe-

less their all works, concerning cross-diffusion systems, many problems still remain open

now. In particular, it is very difficult to know the detailed structure of the steady-state so-

lution set (e.g., the number, the stability or the shape of steady-states) to cross-diffusion

systems such as (P).

Our aim in this article is to obtain the global bifurcation structure of positive steady-

state solutions to (P) in a special case when β is sufficiently large. Regarding a as a

bifurcation parameter, we set

S := {(u, v, a) : (u, v) is a positive steady-state solution of (P)}.
Assuming that β is large and some coefficient conditions, we show that S contains an S

or ⊃-shaped curve with respect to the bifurcation parameter a. Then (P) admits two or

three positive steady-state solutions if a belongs to suitable ranges. This result implies

a great contrast to the linear diffusion case (β = 0), where the uniqueness of positive

steady-states is obtained by López-Gómez and Pardo [14] if the spatial dimension is one.

Our method of analysis uses the idea developed by Du and Lou [6] and is based on the

bifurcation theory and the Lyapunov-Schmidt reduction procedure. If β is large and both

of b−λ1 and λ1−d/β are small positives, this reduction enables us to find a relationship

to a suitable limiting problem. Further, we can get the solution set with an explicit

expression of the limiting problem. Making use of the perturbation theory developed in

[6], we will depict an S or ⊃-shaped curve of S near the limiting solution set.

In Section 2 we will discuss such multiple existence of steady-state solutions. In Section

3, we will give some criteria on the stability of the positive steady-states. Furthermore, we

will find the Hopf bifurcation point on the S or ⊃-shaped solution set if σ is sufficiently

large.

Throughout the article, the usual norms of the spaces Lp(Ω) for p ∈ [1,∞) and C(Ω)

are defined by

‖u‖p :=

(∫

Ω

|u(x)|p dx
)1/p

and ‖u‖∞ := max
x∈Ω
|u(x)|.
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In particular, we simply write ‖u‖ instead of ‖u‖2. Furthermore, we will denote by Φ a

unique positive solution of

−∆Φ = λ1Φ in Ω, Φ = 0 on ∂Ω, ‖Φ‖ = 1,

where λ1 is the least eigenvalue of −∆ with the homogeneous Dirichlet boundary condi-

tion on ∂Ω.

2. Multiple existence of positive steady-state solutions.

2.1. Main result. It is well known that the problem

∆u+ u(a− u) = 0 in Ω, u = 0 on ∂Ω

has a unique positive solution θa if a > λ1; moreover, a ∈ [λ1,∞)→ θa ∈ C(Ω) is contin-

uous and strictly increasing function. It is possible to show that (P) has two semitrivial

steady-state solutions

(u, v) = (θa, 0) for a > λ1 and (u, v) = (0, θb) for b > λ1

in addition to the trivial solution (u, v) = (0, 0).

Our result asserts that S contains a bounded S or ⊃-shaped branch, which connects

the above two semitrivial solutions, in a certain case:

Theorem 2.1. Assume βb > βλ1 > d. For any c > 0, there exist a large number M and

an open set

O = O(c) ⊂ {(β, b, d) : β ≥M, 0 < λ1 − d/β, b− λ1 ≤M−1}
such that if (β, b, d) ∈ O, then S contains a bounded smooth curve

Γ = {(u(r), v(r), a(r)) ∈ C1(Ω)× C1(Ω)× (λ1,∞), r ∈ (0, C)}
which possesses the following properties:

(i) (u(0), v(0)) = (0, θb), a(0) > λ1, a′(0) > 0 ;

(ii) (u(C), v(C)) = (θa(C), 0), a(C) > λ1 ;

(iii) a(r) attains a strict local maximum in (0, C). Additionally, there exists an open set

O′ ⊂ O such that, if (β, b, d) ∈ O′, then a(r) attains a strict local minimum in

(0, C).

It is noted that we can find an unbounded S-shaped branch of S, under another

coefficient assumption [11, Theorem 1.2].

2.2. Sketch of the proof of Theorem 2.1. In (P), we employ the following change of

variables:

a = λ1 + εa1, b = λ1 + εb1, d/β = λ1 − ετ, β = γ/ε, u = εw, (1 + βu)v = εz. (2.1)

Here a1, b1, τ are positive constants. Furthermore, ε is a small positive constant, thus γ is

also a positive constant. In what follows, we will mainly discuss the case when β is large

and both of b − λ1 and λ1 − d/β are small positives. We note that a1 plays a role of a
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bifurcation parameter. By (2.1), a pair of new unknown functions (w, z) satisfies

(PP)





wt = ∆w + λ1w + εf(w, z, a1) in Ω× (0,∞),

σ

[
− γz

(1 + γw)2
wt +

zt
1 + γw

]
= ∆z + λ1z + εg(w, z) in Ω× (0,∞),

w = z = 0 on ∂Ω× (0,∞),

w( · , 0) = u0/ε, z( ·, 0) = (1 + βu0)v0/ε in Ω,

where 



f(w, z, a1) := w

(
a1 − w −

cz

1 + γw

)
,

g(w, z) :=
z

1 + γw

(
b1 − τγw −

z

1 + γw

)
.

(2.2)

Here we note that positivity of solutions of (P) assures that of solutions of (PP). The

steady-state problem associated with (PP) is reduced to the following semilinear elliptic

equations: 



∆w + λ1w + εf(w, z, a1) = 0 in Ω,

∆z + λ1z + εg(w, z) = 0 in Ω,

w = z = 0 on ∂Ω.

(2.3)

By virtue of (2.1), it is easy to see that (2.3) has two semitrivial solutions

(w, z) = (ε−1θλ1+εa1
, 0), (w, z) = (0, ε−1θλ1+εb1)

in addition to the trivial solution. For the Lyapunov-Schmidt reduction, we will give a

similar framework to that of Du and Lou [6]. For p > N , we define two Banach spaces
{
X := [W 2,p(Ω) ∩W 1,p

0 (Ω)]× [W 2,p(Ω) ∩W 1,p
0 (Ω)],

Y := Lp(Ω)× Lp(Ω).

We note that X ⊂ C1(Ω)×C1(Ω) by the Sobolev embedding theorem. Define mappings

H : X → Y and B : X ×R→ Y by
{
H(w, z) := (∆w + λ1w,∆z + λ1z),

B(w, z, a1) := (f(w, z, a1), g(w, z)).
(2.4)

Then (2.3) is equivalent to the equation

H(w, z) + εB(w, z, a1) = 0. (2.5)

Let X1 and Y1 be the L2-orthogonal complements of span {(Φ, 0), (0, Φ)} in X and Y ,

respectively. Let P : X → X1 and Q : Y → Y1 represent L2-orthogonal projections. Thus

a pair of unknown functions (w, z) ∈ X is decomposed as

(w, z) = (r, s)Φ+ u, u = P (w, z).

Since H((r, s)Φ) = 0 and (I −Q)H(X1) = 0, (2.5) is consequently reduced to

QH(u) + εQB((r, s)Φ+ u, a1) = 0 (2.6)

and

(I −Q)B((r, s)Φ+ u, a1) = 0.
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The Lyapunov-Schmidt reduction procedure leads us to the next lemma:

Lemma 2.2. For any C > 0, there exist a neighborhood N0 of the set

{(w, z, a1, ε) = (rΦ, sΦ, a1, 0) ∈ X ×R2 : |r|, |s|, |a1| ≤ C}
and a positive constant ε0 such that all solutions of (2.6) in N0 are given by

{((r, s)Φ+ εU(r, s, a1, ε), a1, ε) : |r|, |s|, |a1| ≤ C + ε0, |ε| ≤ ε0}.
with a smooth X1-valued function U . Then

(w, z, a1, ε) = ((r, s)Φ+ εU(r, s, a1, ε), a1, ε)

becomes a solution of (2.5), or equivalently (2.3), in N0 if and only if

F ε(r, s, a1)Φ := (I −Q)B((r, s)Φ+ εU (r, s, a1, ε), a1) = 0.

See [11] for the proof of Lemma 2.2. Since (I − Q)(u, v) = (
∫

Ω
uΦdx,

∫
Ω
vΦdx)Φ, it

follows from (2.2) and (2.4) that

F 0(r, s, a1) =

(∫

Ω

f(rΦ, sΦ, a1)Φ,

∫

Ω

g(rΦ, sΦ)Φ

)

=

t



r

(
a1 − r‖Φ‖33 − cs

∫

Ω

Φ3

1 + γrΦ

)

s

{
b1 − (b1 + τ)γr

∫

Ω

Φ3

1 + γrΦ
− s

∫

Ω

Φ3

(1 + γrΦ)2

}


 .

(2.7)

Thus KerF 0 is the union of the following four sets:

L0 = {(0, 0, a1) : a1 ∈ R},
L1 = {(a1/‖φ1‖33, 0, a1) : a1 ∈ R},
L2 = {(0, b1/‖φ1‖33, a1) : a1 ∈ R},
Lp = {(r, ϕ(γr), ψ(r)) : r ∈ R},

where 



ϕ(r) =

[
b1 − (b1 + τ)r

∫

Ω

Φ3

1 + r Φ

](∫

Ω

Φ3

(1 + r Φ)2

)−1

,

ψ(r) = r‖Φ‖33 + cϕ(γr)

∫

Ω

Φ3

1 + γrΦ
.

(2.8)

We note that Lp ∩R+
3

means the limiting set of positive solutions of (2.3) as ε → 0.

Indeed the following proposition holds true:

Proposition 2.3. For a sufficiently large A1 > 0, there exist ε0 > 0 and a family of

smooth curves

{(r(ξ, ε), s(ξ, ε), a1(ξ, ε)) ∈ R3
+ : (ξ, ε) ∈ (0, Cε)× (0, ε0)}

such that for each fixed ε ∈ (0, ε0], all positive solutions of (2.3) with a1 ∈ (0, A1] can be

parametrized as

Γ ε = {(w(ξ, ε), z(ξ, ε), a1(ξ, ε)) = ((r, s)Φ+ εU(r, s, a1, ε), a1) :

(r, s, a1) = (r(ξ, ε), s(ξ, ε), a1(ξ, ε)) for ξ ∈ (0, Cε)}
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and (r(ξ, 0), s(ξ, 0), a1(ξ, 0)) = (ξ, ϕ(γξ), ψ(ξ)), r(0, ε) = 0. Here Cε > 0 depends contin-

uously on ε ∈ [0, ε0]. Furthermore,

w(Cε, ε) > 0 in Ω and z(Cε, ε) ≡ 0.

The above proposition implies that if ε > 0 is sufficiently small, then Γ ε forms a pos-

itive solution branch near the curve {(rΦ, ϕ(γr)Φ, ψ(r)) : 0 < r < C}. So it is important

to study the profile of Lp. By virtue of (2.8),

(0, ϕ(0), ψ(0)) = (0, b1/‖Φ‖33, cb1) ∈ L2.

It is easy to find a positive constant r0 = r0(τ/b1) such that
{
ϕ(r) > 0 for r ∈ [0, r0),

ϕ(r) < 0 for r ∈ (r0,∞).

Thus it follows that

(r0/γ, ϕ(r0), ψ(r0/γ)) = (r0/γ, 0, r0‖Φ‖33/γ) ∈ L1.

We note that Cε stated in Proposition 2.3 satisfies C0 = r0/γ. Additionally the next

lemma gives profiles of ψ(r) in the interval of {r > 0 : ϕ(γr) > 0} when τ is close to 0

and γ is sufficiently large.

Lemma 2.4. There exist positive constants τ̃ = τ̃(c, b1) and γ̃ = γ̃(c, b1) such that if

(τ, γ) ∈ (0, τ̃ ] × [γ̃,∞), then ψ′(0) > 0 and ψ(r) achieves a strict local maximum in

(0, r0/γ). Furthermore, there exists a continuous function γ̂(τ) in (0, τ̃ ] satisfying

γ̃ < γ̂(τ) for all τ ∈ (0, τ̃ ] and lim
τ↓0

γ̂(τ) =∞

and that, if γ ∈ [γ̃, γ̂(τ)) for τ ∈ (0, τ̃ ], then ψ(r) attains a strict local minimum in

(0, r0/γ).

From Proposition 2.3 and Lemma 2.4, one can see the following proposition.

Proposition 2.5. Suppose that (τ, γ) ∈ (0, τ̃ ]× [γ̃,∞) and that ε > 0 is small enough.

Then the positive solution set of (2.3) contains a bounded smooth curve

Γ ε = {(w(ξ), z(ξ), a1(ξ)) ∈ X ×R : ξ ∈ (0, Cε)},
which possesses the following properties:

(i) (w(0), z(0)) = (0, ε−1θλ1+εb1), a1(0) > 0, a′1(0) > 0 ;

(ii) (w(Cε), z(Cε)) = (ε−1θλ1+εa1∗ , 0), a1∗ := a1(Cε) > 0 ;

(iii) a1(ξ) attains a strict local maximum in (0, Cε). In particular, if γ ∈ [γ̃, γ̂(τ)) for

τ ∈ (0, τ̃ ], then a1(ξ) attains a strict local minimum in (0, Cε).

With use of (2.1), Theorem 2.1 immediately follows from Proposition 2.5. Actually,

for small ε > 0, open sets stated in Theorem 2.1 are expressed as

O = {(β, b, d) = (γ/ε, λ1 + εb1, (λ1 + ετ)γ/ε) : (τ, γ) ∈ (0, τ̃)× (γ̃,∞)} ,
O′ = {(β, b, d) = (γ/ε, λ1 + εb1, (λ1 + ετ)γ/ε) : (τ, γ) ∈ (0, τ̃)× (γ̃, γ̂(τ))} .

We refer to [11] for the complete proofs.
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3. Stability analysis

3.1. Main results. In this section, we will discuss the stability of steady-state solutions

on Γ obtained in Theorem 2.1. Before stating our stability results, we need to divide Γ

at every turning point with respect to a. In case (β, b, d) ∈ O, let

0 < r1 < r2 < · · · < rk−1 < C

be all strict local maximum or minimum points of a(r). Since a′(0) > 0 (see Theorem

2.1), r2j−1 (j = 1, 2, . . . , [k/2]) are strict local maximum points, and r2j (j = 1, 2, . . . , [(k−
1)/2]) are strict local minimum points. For each 1 ≤ i ≤ k, we set

Γi := {(u(r), v(r), a(r)) ∈ Γ : r ∈ (ri−1, ri)},
where r0 := 0 and rk := C.

We are ready to state stability results. In case when σ is sufficiently small, we can

deduce that the stability of steady-states on Γ changes only at the turning points, and

moreover, we can know whether each solution on Γi is asymptotically stable or not:

Theorem 3.1. For almost every (β, b, d) ∈ O, there exists a small positive constant δ

such that if σ ≤ δ, then all steady-state solutions on Γ2j−1 (j = 1, 2, . . . , [(k + 1)/2]) are

asymptotically stable in the topology of X, while all steady-state solutions on Γ2j (j =

1, 2, . . . , [k/2]) are unstable.

In the above case, we remark that (u(0), v(0)) = (0, θb) and (u(C), v(C)) = (θa(C), 0)

by Theorem 2.1. So Theorem 3.1 implies that stable positive steady-states bifurcate from

the semitrivial solution (0, θb), the stability on Γ changes at every turning point with

respect to a, and moreover Γ connects the other semitrivial solution (θa(C), 0). On the

other hand, when σ becomes large enough, we can find the Hopf bifurcation point on Γ1;

so that, time-periodic solutions of (P) appear from the point:

Theorem 3.2. For any (β, b, d) ∈ O, there exists a large positive D such that if σ ≥ D,

then the Hopf bifurcation occurs at some point (u(r∗), v(r∗), a(r∗)) ∈ Γ1. In this case,

there exists a periodic solution of (P) if a lies in a neighborhood of a(r∗) with a > a(r∗).

3.2. Sketch of the proofs of Theorems 3.1 and 3.2. By the regularity of (2.1), the sta-

bility of a steady-state (u∗, v∗) of (P) coincides with that of the steady-state (w∗, z∗) =

(u∗/ε, (1 + βu∗)z∗/ε) of (PP). So we will concentrate on the stability analysis for the

steady-states on Γ ε given in Proposition 2.5. By Proposition 2.3, all positive steady-states

of (PP) with a1 ∈ (0, A1) are parametrized as

Γ ε = {(w(ξ, ε), z(ξ, ε), a1(ξ, ε)) : ξ ∈ (0, Cε))}
when ε > 0 is sufficiently small. For each (w(ξ, ε), z(ξ, ε), a1(ξ, ε)) ∈ Γ ε, we define a linear

operator L(ξ, ε) : X → Y by

L(ξ, ε)

(
h

k

)
:= −H

(
h

k

)
− εB(w,z)(w(ξ, ε), z(ξ, ε), a1(ξ, ε))

(
h

k

)
,

where H, B are mappings defined by (2.4) and B(w,z) denotes the Fréchet derivative of
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B with respect to (w, z). Furthermore, in view of the left hand side of (PP), we set

J(ξ, ε) :=




1 0

− σγz(ξ, ε)

(1 + γw(ξ, ε))2

σ

1 + γw(ξ, ε)


 .

Then the linearized eigenvalue problem associated with (w(ξ, ε), z(ξ, ε)) is given by

L(ξ, ε)

(
h

k

)
= µJ(ξ, ε)

(
h

k

)
. (3.1)

In this subsection, we study the linearized stability of steady-states on Γ ε by the spectral

analysis for (3.1). Put

ρ(ξ, ε) := {µ ∈ C : (3.1) has no solution except for h = k = 0}.
We begin with the following lemma for proofs.

Lemma 3.3. Suppose that ε > 0 is sufficiently small. Then there exist positive constants

κ1, ω independent of (ξ, ε) such that −ρ(ξ, ε) ⊃ {z ∈ C : |z| ≥ κ1 and |arg z| ≤ π/2+ω}.
On the other hand, all eigenvalues {µi(ξ, ε)}∞i=1 (counting multiplicity) of (3.1) satisfy

lim
ε↓0

µ1(ξ, ε) = lim
ε↓0

µ2(ξ, ε) = 0 (3.2)

and

Reµi(ξ, ε) > κ2 for all i ≥ 3 and ξ ∈ (0, Cε)

for some positive constant κ2 independent of (ξ, ε).

Proof. It follows from Proposition 2.3 that for any fixed ξ ∈ (0, Cε)

lim
ε↓0

(w(ξ, ε), z(ξ, ε), a1(ξ, ε)) = (ξΦ, ϕ(γξ)Φ, ψ(ξ)) in C1(Ω)× C1(Ω)×R.

Thus letting ε ↓ 0 in (3.1), we have




−∆h− λ1h = µh in Ω,

−∆k − λ1k = σµ

[
− γϕ(γξ)Φ

(1 + γξΦ)2
h+

k

1 + γξΦ

]
in Ω,

h = k = 0 on ∂Ω.

(3.3)

Clearly, µ = 0 is a double eigenvalue of (3.3). If h 6≡ 0, then each eigenvalue of (3.3) is

real and nonnegative by the first equation. If h ≡ 0, we are led to the same result by the

second equation. Consequently we see all eigenvalues of (3.3) are real and nonnegative.

From this fact, we can obtain all assertions of Lemma 3.3 with the aid of the perturbation

theory by T. Kato [8, Chapter 8].

We note that all eigenvalues {µi(ξ, ε)} form a symmetric set with respect to the real

axis in the complex space C. Then µ1(ξ, ε) and µ2(ξ, ε) (with (3.2)) satisfy the following

properties (i) or (ii);

(i) both of µ1(ξ, ε) and µ2(ξ, ε) are real numbers;

(ii) µ1(ξ, ε) is a complex conjugate of µ2(ξ, ε).

In what follows, we assume that µ1(ξ, ε) ≤ µ2(ξ, ε) in case (i), and Imµ1(ξ, ε) ≥ Imµ2(ξ, ε)

in case (ii).
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Definition 3.1 (Linearized stability). A steady-state (w(ξ, ε), z(ξ, ε)) of (PP) is called

linearly stable if Reµ1(ξ, ε) > 0. If Reµ1(ξ, ε) < 0, then it is called linearly unstable.

We define matrices K(r) and M(r) by

K(r) =




1 0

−σγϕ(γr)

∫

Ω

Φ3

(1 + γrΦ)2
σ

∫

Ω

Φ2

1 + γrΦ


 ,

M(r) = −K(r)−1F 0
(r,s)(r, ϕ(γr), ψ(r))

(3.4)

for the mapping F 0 defined by (2.7). To determine the sign of Reµ1(ξ, ε), the following

lemma plays an important role.

Lemma 3.4. Let ν1(r) and ν2(r) be eigenvalues of M(r) and satisfy Re ν1(r) ≤ Re ν2(r),

Im ν1(r) ≥ Im ν2(r). Then for any r ∈ (0, C0),

lim
(ξ,ε)→(r,0)

µi(ξ, ε)

ε
= νi(r) for i = 1, 2. (3.5)

Lemma 3.4 can be proved by taking L2-inner product of (3.1) with Φ and letting

ε→ 0. See [10] for details.

Lemma 3.5. Suppose that ε > 0 is sufficiently small. Suppose further that ξ ∈ (0, Cε).

Thus all zeros of µ1(ξ, ε) coincide with all zeros of ∂ξa1(ξ, ε).

The above lemma asserts that the degeneracy of steady-states on Γ ε is equivalent to

the criticality of a1(ξ, ε) with respect to ξ. The proof of Lemma 3.5 applies the pertur-

bation theory for the Fredholm operator developed by Du and Lou [6, Theorem 3.13 and

Appendix].

Since ψ is analytic, ψ′ possesses at most a finite number of zeros in (0, C0). Further-

more, by (2.8), any zero of ψ′ must be a strictly critical point of ψ for almost every

(τ, γ) ∈ (0, τ̃ ] × [γ̃,∞). For such (τ, γ) ∈ (0, τ̃ ] × [γ̃,∞) and sufficiently small ε > 0, all

zeros of ∂ξa1(ξ, ε) are denoted by

0 < ξ1(ε) < ξ2(ε) < · · · < ξk−1(ε) < Cε.

That is,

(wi, zi, a
i
1) := (w(ξi(ε), ε), z(ξi(ε), ε), a1(ξi(ε), ε)) ∈ Γ ε (i = 1, 2, . . . , k − 1)

are all turning points on Γ ε with respect to a1. Here we remark that limε↓0 a1( ·, ε) = ψ

in C2([0, C0]) by Proposition 2.3 (see also the proof of [11, Lemma 5.3]). Additionally,

for each 1 ≤ i ≤ k we set

Γ εi := {((w(ξ, ε), z(ξ, ε), a1(ξ, ε)) : ξ ∈ (ξi−1(ε), ξi(ε))},
where ξ0(ε) := 0 and ξk(ε) = Cε. This implies

⋃k
i=1 Γ

ε
i = Γ ε \⋃k−1

i=1 {(wi, zi, ai1)}.
Lemma 3.6. For almost every (τ, γ) ∈ (0, τ̃ ] × [γ̃,∞), there exist small positive con-

stants δ, ε0 such that if σ ≤ δ and ε ≤ ε0, then all steady-state solutions on Γ ε2j−1 (j =

1, 2, . . . , [(k + 1)/2]) are linearly stable, while all steady-state solutions on Γ ε2j (j =

1, 2, . . . , [k/2]) are linearly unstable.
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Proof. Taking the trace of M(r), one can see

ν1(r) + ν2(r) =
ϕ(γr)

σ

[ ∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

− σcγr
∫

Ω

Φ4

(1 + γrΦ)2

]
(3.6)

+r‖Φ‖33 + cγrϕ(γr)

∫

Ω

Φ3

1 + γrΦ

∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

.

We set y1(r) :=
∫

Ω
rΦ4/(1 + rΦ)2. Since y1(0) = 0 and y1(r) = O(r−1) (r →∞), y1(r̂) =

supr>0 y1(r) for some r̂ > 0. Then by (3.6), we obtain

ν1(r) + ν2(r) ≥ ϕ(γr)

σ

[ ∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

− σcy1(γr)

]
+ r‖Φ‖33

>
ϕ(γr)

σ

[ ∫

Ω

Φ3

(1 + γC0Φ)2
− σcy1(r̂)

]
+ r‖Φ‖33

for all r ∈ [0, C0]. Therefore, it follows from ϕ(γr) > 0 (r ∈ [0, C0)) that, if

σ <
1

2cy1(r̂)

∫

Ω

Φ3

(1 + γC0Φ)2
,

then ν1(r) + ν2(r) > 0 for all r ∈ [0, C0]. Thus we can see by Lemma 3.4 that for

sufficiently small ε > 0,

µ1(ξ, ε) + µ2(ξ, ε) > 0 for all ξ ∈ [0, Cε]. (3.7)

Hence (3.7) also implies Reµ2(ξ, ε) > 0 for all ξ ∈ [0, Cε]. On the other hand, in view of

(3.4), (2.7) and (2.8), direct calculations enable us to obtain

ν1(r)ν2(r) = detM(r) =
rϕ(γr)ψ′(r)

σ

∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

. (3.8)

So sign ν1(r)ν2(r) = signψ′(r) for all r ∈ (0, C0). Let r0 ∈ (0, C0) be any fixed point.

If ψ′(r0) > 0, then Lemma 3.4 implies µ1(ξ, ε)µ2(ξ, ε) > 0 if (ξ, ε) is sufficiently near

(r0, 0). Further, together with (3.7), we obtain Reµ1(ξ, ε) > 0. Similarly if ψ′(r0) < 0

and (ξ, ε) is close to (r0, 0), then Reµ1(ξ, ε) < 0. Additionally it follows from Lemma 3.5

that µ1(ξ, ε) = 0 if and only if ξ = ξi(ε) for some 1 ≤ i ≤ k − 1 provided that ε > 0 is

sufficiently small. Since Reµ2(ξ, ε) > 0 for all ξ ∈ [0, Cε], consequently Reµ1(ξ, ε) = 0

holds if and only if ξ = ξi(ε) for some 1 ≤ i ≤ k − 1. We now remark ψ′(0) > 0 if

(τ, γ) ∈ (0, τ̃ ]× [γ̃,∞) (see [11, Lemma 4.1]). Therefore we obtain
{

Reµ1(ξ, ε) > 0 if (w(ξ, ε), z(ξ, ε), a1(ξ, ε)) ∈ Γ ε2j−1,

Reµ1(ξ, ε) < 0 if (w(ξ, ε), z(ξ, ε), a1(ξ, ε)) ∈ Γ ε2j .
Thus the proof of Lemma 3.6 is complete.

By virtue of (2.1), we can derive the complete proof of Theorem 2.1 from Lemma 3.6.

It should be noted that we use the linearized stability theory developed by Potier-Ferry

[24] in the derivation. See [10] for details.

Proposition 3.7. For any (τ, γ) ∈ (0, τ̃ ]× [γ̃,∞), there exist a large D > 0 and a small

ε0 > 0 such that if σ ≥ D and ε ≤ ε0, then the Hopf bifurcation occurs at a certain point

on Γ ε1 .
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Proof. It suffices to find small positive numbers ξ∗ and ε such that µ1(ξ∗, ε), µ2(ξ∗, ε)
form a pure imaginary pair and satisfy ∂ξReµi(ξ

∗, ε) < 0 for i = 1, 2. We refer to Amann

[2] for the abstract Hopf bifurcation theorem for strongly coupled parabolic equations.

Take (τ, γ) ∈ (0, τ̃ ] × [γ̃,∞). Let ν1(r) and ν2(r) be eigenvalues of M(r) defined by

(3.4). We first remark that by (3.8) and ψ′(0) > 0,

ν1(r)ν2(r) > 0 for all r ∈ (0, r1) (3.9)

with some r1 > 0. If we set

y2(r) :=

∫

Ω

Φ4

(1 + γrΦ)2
−
∫

Ω

Φ3

1 + γrΦ

∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

− ‖Φ‖33
cγϕ(γr)

then (3.6) is rewritten as

ν1(r) + ν2(r) =
ϕ(γr)

σ

[∫

Ω

Φ3

(1 + γrΦ)2

(∫

Ω

Φ2

1 + γrΦ

)−1

− σcγry2(r)

]
.

Thus direct calculations imply

ν1(0) + ν2(0) =
1

σ
, ν′1(0) + ν ′2(0) =

1

σ

(
C̃ − σcγy2(0)

)
(3.10)

for some constant C̃ independent of σ. By Schwarz’ inequality and ‖Φ‖ = 1, we see

‖Φ‖44 > ‖Φ‖63. Thus it turns out that y2(0) = ‖Φ‖44−‖Φ‖63−‖Φ‖33(cb1γ)−1 > 0 if γ is large

enough. It follows from (3.10) that if σ is sufficiently large, we can find a small positive

number r0 ∈ (0, r1) such that
{
ν1(r) + ν2(r) > 0 in (0, r0),

ν1(r0) + ν2(r0) = 0 and ν ′1(r0) + ν′2(r0) < 0.
(3.11)

We can find a certain (ξ∗, ε) near (r0, 0), such that eigenvalues µ1(ξ∗, ε), µ2(ξ∗, ε) are a

pure imaginary pair and satisfy ∂ξReµi(ξ
∗, ε) < 0 (i = 1, 2). In this part of the proof, we

make use of Lemma 3.4 and Lyapunov-Schmidt reduction technique (see [10]). Therefore

the Hopf bifurcation occurs at (w(ξ∗, ε), z(ξ∗, ε), a1(ξ∗, ε)), which belongs to Γ ε1 because

ξ∗ is sufficiently small.

By (2.1), Proposition 3.7 immediately yields Theorem 3.2.
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[14] J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the

predator-prey model with diffusion, Differential Integral Equations 6 (1993), 1025–1031.

[15] Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equa-

tions 131 (1996), 79–131.

[16] Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential

Equations 154 (1999), 157–190.

[17] Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition

with cross-diffusion, Discrete Contin. Dynam. Systems 10 (2004), 435-458.

[18] Y. Lou, W.-M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete

Contin. Dynam. Systems 4 (1998), 193–203.

[19] M. Mimura, Stationary pattern of some density-dependent diffusion system with competi-

tive interaction-diffusion equations, Hiroshima Math. J. 11 (1981), 621–635.

[20] M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equa-

tions, J. Theor. Biol. 9 (1980), 49–64.

[21] M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two com-

peting species models with density-dependent diffusion, Hiroshima Math. J. 14 (1984),

425–449.

[22] K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-

diffusion, Adv. Differential Equations 6 (1996), 1099-1122.

[23] A. Okubo and L. A. Levin, Diffusion and Ecological Problems: Modern Perspective, 2nd

ed., Interdisciplinary Appl. Math. 14, Springer, New York, 2001.

[24] M. Potier-Ferry, The linearization principle for the stability of solutions of quasilinear

parabolic equations-I, Arch. Rational Mech. Anal. 77 (1981), 301–320.

[25] K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear

self-cross diffusions, Discrete Contin. Dynam. Systems 9 (2003), 1049–1061.

[26] N. Shigesada, K.Kawasaki and E. Teramoto, Spatial segregation of interacting species, J.

Theor. Biol. 79 (1979), 83–99.

[27] A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,

Nonlinear Analysis T.M.A. 21 (1993), 531–556.


