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Abstract. The non-local Gel’fand problem, ∆v + λev/
∫

Ω
evdx = 0 with Dirichlet boundary

condition, is studied on an n-dimensional bounded domain Ω. If it is star-shaped, then we have

an upper bound of λ for the existence of the solution. We also have infinitely many bendings in

λ of the connected component of the solution set in λ, v if Ω is a ball and 3 ≤ n ≤ 9.

1. Introduction. The purpose of the present paper is to study the Gel’fand problem

with non-local term, 


−∆v = λ

ev∫
Ω
evdx

in Ω,

v = 0 on ∂Ω,
(1)

where λ is a positive constant and Ω is a bounded domain in Rn with smooth boundary

∂Ω. Actually, the usual Gel’fand problem, in the theories of thermonic emission ([12]),

isothermal gas sphere ([9]), and gas combustion ([3]), is formulated as the nonlinear

eigenvalue problem {−∆v = σev in Ω,

v = 0 on ∂Ω,
(2)

with a constant σ > 0.

Problems (1) and (2) are equivalent through the relation

σ = λ/

∫

Ω

evdx,

and hence some features of the solution set

C = {(λ, v) | v = v(x) is a classical solution to (1) for λ > 0}
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resemble those of the solution set for (2), denoted by S. For example, if Ω is a ball with

n ≥ 3, then S is a one-dimensional open manifold with the endpoints in (σ, v) = (0, 0)

and (σ, v) = (2(n− 2), 2 log(1/ |x|)), respectively, the latter being a weak solution to (2).

This structure is kept by C, just replacing the endpoints as (λ, v) = (0, 0) and

(λ, v(x)) =

(
2ωn, 2 log

1

|x|

)
,(3)

where ωn denotes the (n − 1) dimensional volume of the surface of the unit ball in Rn.

Thus, C is still a one-dimensional open manifold. However, we know much more on S
in this case, such as, infinitely many bendings with respect to σ around σ = 2(n − 2)

with the radial Morse indices increasing by one for 3 ≤ n ≤ 9, no bending in contrast for

n ≥ 10, and so forth ([12], [14], [23]), and it is not obvious that those structures are kept

by (1). This is actually the case, as one of the results obtained in this paper assures.

In the case of n = 2, we have several results on (1). In fact, it describes the equilibrium

state of the mean field of many point vortices of the perfect fluid in Onsager’s formulation

([7], [8], [17]). Mathematically, there are quantized blowup mechanisms for the family of

solutions ([21], [2]), uniqueness of the solution in 0 < λ < 8π for a simply connected

domain ([28]), and calculation of the total degree for λ 6∈ 8πN ([10]). Relative to this

case is the mean field equation on Riemannian surfaces, and it has the origin in self-dual

gauge theories, in geometry, and in mathematical biology ([32], [34], [1], [27]).

Recently, it is recognized that the equilibrium state of self-interacting particles is

formulated as a non-local elliptic eigenvalue problem, and this is the reason why we here

study the higher dimensional case of (1). We refer to [5], [29] as a typical example of

such a theory, where the mean field of many self-gravitating particles is coupled with the

temperature. If the temperature is put to be a constant, then it is reduced to (1). We also

mention that the equilibrium of a simplified Keller-Segel system [16] for the chemotactic

aggregation of cellular slime molds is similarly reduced to (1).

In fact, that system is given, for instance, by




εut = ∇ · (∇u− u∇v) in Ω× (0, T )

τvt = ∆v + u in Ω× (0, T )
∂u

∂ν
− u∂v

∂ν
= v = 0 on ∂Ω× (0, T )

u|t=0 = u0(x) ≥ 0 in Ω

v|t=0 = v0(x) in Ω,

(4)

where Ω is a bounded domain with smooth boundary ∂Ω, τ , ε are positive constants,

and ν is the outer unit normal vector respectively. Among many important profiles of the

solution, we have u = u(x, t) ≥ 0 and

ε
d

dt

∫

Ω

udx =

∫

Ω

∇ · (∇u− u∇v)dx = 0,

which implies the total mass conservation, ‖u(·, t)‖1 = ‖u0‖1. Here and henceforth, ‖ · ‖p
denotes the standard Lp norm. There is also a Lyapunov function in this system, which

is nothing but the free energy physically, so that we have

ε
d

dt
W (u, v) + τε ‖vt‖22 +

∫

Ω

u |∇ (log u− v)|2 dx = 0(5)
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for

W (u, v) =

∫

Ω

(
u(log u− 1)− uv +

1

2
|∇v|2

)
dx.

This means that the ω-limit set of the global in time solution is contained in the set

of stationary solutions, with the L1 norm of u = u(x) prescribed by

‖u‖1 = λ(6)

for λ = ‖u0‖1. This status is actually realized by (1), as we have

log u− v = log σ

from (5) with u, v independent of t, where the unknown constant σ > 0 is prescribed as

σ = λ/

∫

Ω

evdx

from (6).

To state the result, we take the section of C cut by λ > 0:

Cλ =
{
v ∈ C2(Ω) ∩ C(Ω) | v = v(x) solves (1)

}
.

The first theorem is concerned with the star-shaped domain, so that x · ν > 0 holds for

each x ∈ ∂Ω.

Theorem 1. If Ω is star-shaped, then there exists a positive number λ such that Cλ is

nonempty for λ < λ and empty for λ > λ. Moreover, C0 is unbounded in the λ, v plane,

and ] Cλ = 1 for 0 < λ� 1, where C0 stands for the connected component of C satisfying

(0, 0) ∈ C0.

The second theorem concerns the ball case, where a similar result for (2) is given.

Theorem 2. If Ω is the unit ball B = {x ∈ Rn | |x| < 1} and 3 ≤ n ≤ 9, then C bends

infinitely many times. On the other hand, no bending occurs in the case of n ≥ 10.

As noted before, in the ball case C is a one-dimensional open manifold parametrized

as

C = {(λ(s), v(·, s)) | 0 < s < +∞}
with the endpoints (0, 0) and the weak solution (3). Namely,

lim
s↓0

(λ(s), v(·, s)) = (0, 0)

and

lim
s↑+∞

(λ(s), v(·, s)) =

(
2ωn, 2 log

1

|x|

)
(7)

in R×C(B) and R×W 2,p(B) for p ∈ [1, n/2), respectively, where ωn denotes the (n−1)

dimensional volume of the unit ball in Rn. The above theorem says that if 3 ≤ n ≤ 9,

then there is a sequence 0 < s1 < s2 < · · · < sk < · · · such that s ∈ [s2k−1, s2k] 7→ λ(s)

and s ∈ [s2k, s2k+1] 7→ λ(s) decreasing and increasing, respectively, and

λ(s2) < λ(s4) < · · · < λ(s2k) < λ(s2k+2) < · · · < 2ωn

< · · · < λ(s2k+1) < λ(s2k−1) < · · · < λ(s3) < λ(s1).
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In particular, there are infinitely many solutions to (1) for λ = 2ωn. If n ≥ 10, on the

other hand, s ∈ [0,∞) 7→ λ(s) is increasing, and each λ ∈ (0, 2ωn) yields a unique solution

to (1).

We also have the following property in this case. Namely, given (λ, v) ∈ C, the lin-

earized eigenvalue problem is described as



−∆φ− λ ev∫

Ω
evdx

φ+ λ

∫
Ω
evφdx

(
∫

Ω
evdx)2

ev = µφ in Ω,

φ = 0 on ∂Ω.

(8)

Then, the Morse index i = i(λ, v) and the radial Morse index iR = iR(λ, v) denote the

number of negative eigenvalues and of radially symmetric eigenfunctions, respectively.

Theorem 3. If Ω is a ball, then always i = iR, and this index increases by one at each

bending point.

The above theorem says that if 3 ≤ n ≤ 9, then i = iR = k holds on the arc TkTk+1

of C, where Tk = (λ(sk), v(sk)) for k = 0, 1, · · · with s0 = 0. If n ≥ 10, then on the other

hand, always i = iR = 0.

For the annulus domain

A = {x ∈ Rn | a < |x| < 1}
with a ∈ (0, 1), we have some results for (2). From them, we see that the total set of

radially symmetric solutions to (1), denoted by Cr, forms a one-dimensional open manifold

with the trivial solution (λ, v) = (0, 0) as an endpoint, taking the entire blowup at the

other endpoint ([22], [23]). Thus, it is parametrized as Cr = {(λ(s), v(·, s)) | 0 < s < +∞}
such that lims↓0 (λ(s), v(s)) = (0, 0) in R × C(A), while lims↑+∞ v(x, s) = +∞ for each

x ∈ A. Furthermore, Cr bifurcates non-radially symmetric solutions infinitely many times.

For this case, we also know that the number of bendings with respect to σ of S, the total

set of solutions (σ, v) to (2), tends to infinity as a ↓ 0. However, not much is known for

(1) in this case, and even the behavior of λ(s) as s→ +∞ is open.

This paper is composed of four sections. In §2, we treat the star-shaped domain and

prove Theorem 1. Next, we study the linearized spectrum concerning (1). This is different

from that of (2), and §3 is devoted to its description. Section 4 is concerned with the ball

case and Theorems 2 and 3 are proven there.

2. Star-shaped domain. Throughout the present section, Ω denotes the general star-

shaped domain with respect to the origin in Rn, n ≥ 3, with the smooth boundary ∂Ω,

and ν stands for the outer unit normal vector.

Proof of Theorem 1. It is proven in McGough [19] that the star-shaped Ω has σ̃ > 0 such

that the solution v = v(x) to (2) is unique for 0 < σ < σ̃. However, any solution v = v(x)

to (1) solves (2) with

σ =
λ∫

Ω
evdx

≤ λ

|Ω|
because of its positivity, where |Ω| denotes the volume of Ω. Therefore, the solution to

(1) is unique for 0 < λ < λ̃ = σ̃|Ω|, and the last part of the theorem is proven.
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The first part is already shown in [4], but we shall provide the proof for completeness.

Actually, we make use of the Pohozaev identity [24] valid for (2)

nσ

∫

Ω

(ev − 1)dx+
2− n

2
σ

∫

Ω

evvdx =
1

2

∫

∂Ω

(
∂v

∂ν

)2

ds.

If v = v(x) is a solution to (1), then the above equality is valid with σ = λ/
∫

Ω
evdx, and

hence it follows that
1

2

∫

∂Ω

(
∂v

∂ν

)2

(x · ν)ds ≤ nλ.

On the other hand, we have

λ =

∫

Ω

(−∆v)dx =

∫

∂Ω

(
−∂v
∂ν

)
ds,

and therefore we obtain

λ2 ≤
∫

∂Ω

(
∂v

∂ν

)2

(x · ν)ds ·
∫

∂Ω

ds

x · ν ≤ 2nλ

∫

∂Ω

ds

x · ν .

This gives the upper bound of λ.

Unboundedness of the component C0 follows from the standard degree argument sim-

ilarly to [26], using the existence of the upper bound λ and the fact µ1(λ, v) > 0 for

(λ, v) ∈ C, where C is some one dimensional manifold contained in C starting from

(λ, v) = (0, 0).

3. Spectral property. The main difficulty to (1), in contrast with (2), is the lack

of comparison principle. For example, existence of the minimal solution is not assured

for given λ. Also, linearized stability changes the meaning, as the linearized eigenvalue

problem is realized as (8).

However, the first eigenvalue, denoted by µ1(λ, v), is positive around the trivial solu-

tion (λ, v) = (0, 0) similarly to (2). Therefore, it generates a branch in C. This branch con-

tinues as far as µ1(λ, v) > 0, and because we have an upper bound of λ for Cλ 6= ∅ to hold

if Ω is star-shaped, only two possibilities arise then. That is, there is a one-dimensional

manifold contained in C starting from (λ, v) = (0, 0) denoted by

C = {(λ(s), v(·, s)) | 0 < s < s0},
and either lims→s0(λ(s), v(·, s)) = (λ∗, v∗) ∈ C exists in R× C(Ω) with

µ1(λ∗, v∗) = 0,

or else lim sups→s0 ‖v(·, s)‖∞ = +∞.

For simplicity, we say that C is closed and open in the former and the latter cases,

respectively. Those alternatives hold as far as there is an upper bound of λ for the

existence of the solution to (1). Even if this not the case, the connected component C0

mentioned in Theorem 1 contains this C.
An analogous situation occurs for (2) ([11], [6]). It is known that the branch of minimal

solutions is closed for 3 ≤ n ≤ 9 and bends at σ = σ, the upper bound of σ for the

existence of the solution. Even in the general case, we have uniqueness of the weak

solution at σ = σ. Unfortunately, we do not know whether those structures hold for C.
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In fact, linearized operator around (λ, v) ∈ C, the left-hand side of (8), is realized as a

self-adjoint operator associated with the bilinear form

A(φ, φ) =

∫

Ω

(|∇φ|2 − uφ2)dx+
1

λ

(∫

Ω

uφ dx

)2

(9)

defined for φ ∈ H1
0 (Ω), where u = λev/

∫
Ω
evdx. Therefore, if

S = {(σ, vσ) | 0 < σ < σ}
denotes the set of minimal solutions to (2) assured by [11] and

λ(σ) = σ

∫

Ω

evσdx,

then {(λ(σ), vσ) | 0 < σ < σ} ⊂ C because of the last term of the right-hand side of (9).

Letting the self-adjoint operator defined above to be A, we now describe its spectral

properties. In fact, we have

A(φ, φ) =

∫

Ω

|∇φ|2dx−
∫

Ω

u

(
φ− 1

λ

∫

Ω

uφ dx

)2

dx

and now introduce the eigenvalue problem of finding φ ∈ H1
0 (Ω) such that

(∇φ,∇ψ) = ν(Hφ,Hψ)u for any ψ ∈ H1
0 (Ω),(10)

where

Hφ = φ− 1

λ

∫

Ω

φu dx,

(. , . ) stands for the standard L2 inner product, and

(φ, ψ)u =

∫

Ω

φψu dx.

Because b(φ, ψ) = (Hφ,Hψ)u provides an inner product in X = L2(Ω)/R, problem (9)

gives a complete orthogonal system in V = H1
0 (Ω) and X, the former provided with the

Dirichlet norm. If {νk}∞k=1 denote its eigenvalues with 0 < ν1 ≤ ν2 ≤ · · ·, then νk > 1,

νk = 1, νk < 1 are equivalent to µk > 0, µk = 0, µk < 0, where µ1 ≤ µ2 ≤ · · · denote

the eigenvalues of A. This notation is compatible with µ1 = µ1(λ, v), and henceforth we

sometimes write µk(λ, v) for this µk.

Writing φ̂ = Hφ ∈ H1
c (Ω) in (10), we have

(∇φ̂,∇ψ̂) = ν(φ̂, ψ̂)u for any ψ̂ ∈ H1
c (Ω),(11)

where H1
c (Ω) = H1

0 (Ω) ⊕ R. This eigenvalue problem provides a complete orthogonal

system to V̂ = H1
c (Ω) and X̂ = L2(Ω), the latter provided with the norm b(·, ·)1/2.

However, the Dirichlet norm is degenerate in rank one on V̂ , and actually the eigenvalues

to (11) are given by {νk}∞k=0 with ν0 = 0. Thus, the first eigenfunction to (11) is a

constant. To come back to (10) from (11) for ν > 0, we just put φ = φ̂− φ̂|∂Ω. In fact, in

this case we have (φ̂, 1)u = 0 and then (10) follows. On the other hand, problem (11) is

realized as
−∆φ̂ = νuφ̂ in Ω,

φ̂ = constant on ∂Ω,∫
∂Ω

∂φ̂
∂ν ds = 0,

(12)
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where ds denotes the surface element of ∂Ω. In this way, we get the following theorem.

Equivalent facts are obtained by [33], [28], independently, and a unified description is

given in [31].

Theorem 4. Given (λ, v) ∈ C, the conditions µ1(λ, v) > 0, µ1(λ, v) = 0, µ1(λ, v) < 0 are

equivalent to ν1 > 1, ν1 = 1, ν1 < 1, respectively, where ν1 denotes the second eigenvalue

of (12) characterized by

ν1 = inf

{
‖∇ψ‖22 | ψ ∈ H1

c (Ω),

∫

Ω

ψudx = 0,

∫

Ω

ψ2u dx = 1

}

for u = λev/
∫

Ω
evdx.

Generally, the second eigenfunction to (11) denoted by φ̂1 has two nodal domains.

However, φ1 = φ̂1− φ̂1|∂Ω may have constant sign. If this is the case, then we can repeat

the argument of [11]. Namely, we get the following.

Proposition 1. If (λ∗, v∗) ∈ C satisfies µ2(λ∗, v∗) > µ1(λ∗, v∗) = 0, with µ1(λ∗, v∗) = 0

admitting the eigenfunction φ∗ > 0, then C is locally a one-dimensional manifold around

it, parametrized as
C∗ = {(λ(s), v(s)) | |s| < δ}

with (λ(0), v(0)) = (λ∗, v∗). Furthermore, C∗ bends to the left with respect to λ at (λ∗, v∗),

so that λ(s) < λ∗ for 0 < |s| < δ and the mappings s ∈ (−δ, 0] 7→ λ(s) and s ∈ [0, δ) 7→
λ(s) are increasing and decreasing, respectively. Finally, µ1(λ(s), v(s)) changes sign at

s = 0, say, ±µ1 (λ(s), v(s)) > 0 according as −δ < ±s < 0.

Proof. Given (λ∗, v∗) ∈ C with µ1(λ∗, v∗) = 0, let the linearized operator, the left-hand

side of (8) with (λ, v) = (λ∗, v∗) be A∗. Then, from the assumption we have Ker(A∗) =

〈φ∗〉 with φ∗ = φ∗(x) ∈ H1
0 (Ω) \ {0} positive in Ω. Now, we take the nonlinear operator

Φ(s, σ, w) = ∆(v∗ + sφ∗ + w) + (λ∗ + σ)
ev
∗+sφ∗+w

∫
Ω
ev∗+sφ∗+wdx

,

defined for s ∈ R, σ ∈ R, and w ∈ Y , where

Y =

{
w ∈ C2(Ω) | w|∂Ω = 0,

∫

Ω

wφ∗dx = 0

}
.

It is obvious that Φ(0, 0, 0) = 0, and the linearized operator

Φσ,w(0, 0, 0) =

(
ev
∗
/
∫

Ω
ev
∗
dx

−A∗
)

:

R

×
Y

→ C(Ω)

is an isomorphism by φ∗ > 0. Because a classical solution to (1) near (λ∗, v∗) is identified

with a zero of Φ, the implicit function theorem then guarantees a C2-family {(λ(s), v(s)) |
|s| < s0} of classical solutions satisfying (λ(0), v(0)) = (λ∗, v∗), where s0 > 0. It also

follows from the standard perturbation theory (Theorems VI.5.10 and VII.1.14 of [15])

that the linearized operator around this (λ(s), v(s)) has the simple eigenvalue µ(s) and

the eigenfunction φ(s) with C2 dependence in s such that (µ(0), φ(0)) = (0, φ∗) so that

(8) is valid for
(λ, v, µ, φ) = (λ(s), v(s), µ(s), φ(s))

with |s| < s0.
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Differentiating with respect to s, we have from (1)

∆v̇ + λ̇
ev∫

Ω
evdx

+ λ
ev∫

Ω
evdx

v̇ − λ
∫

Ω
ev v̇dx

(
∫

Ω
evdx)2

ev = 0 in Ω,

v̇ = 0 on ∂Ω.

(13)

Then, subtracting (8) from (13) with s = 0, multiplied by v̇ and φ∗, respectively, we get

λ̇(0)

∫
Ω
ev
∗
φ∗dx∫

Ω
ev∗dx

= 0,

and hence λ̇(0) = 0 holds true. This implies v̇(0) ∈ Ker A∗ by (13), and we can assume

v̇(0) = φ∗

without loss of generality, because (λ̇(0), v̇(0)) does not vanish by the implicit function

theorem.

Differentiating (13) once more and putting s = 0, we have

∆v̈ + λ̈
ev∫

Ω
evdx

+ λ
evφ∗2∫
Ω
evdx

+ λ
ev v̈∫

Ω
evdx

− 2λ

∫
Ω
evφ∗dx

(∫
Ω
evdx

)2 evφ∗(14)

−λ
∫

Ω
evφ∗2dx

(∫
Ω
evdx

)2 ev − λ
∫

Ω
ev v̈dx

(∫
Ω
evdx

)2 ev + 2λ

(∫
Ω
evφ∗dx

)2
(∫

Ω
evdx

)3 ev = 0 in Ω

with v̈ = 0 on ∂Ω. Then, integrating (14) multiplied by φ∗, we obtain

λ̈(0)

∫
Ω
ev
∗
φ∗dx∫

Ω
ev∗dx

= λ∗
{

3

∫
Ω
ev
∗
φ∗dx

∫
Ω
ev
∗
φ∗2dx

(
∫

Ω
ev∗dx)2

− 2
(
∫

Ω
ev
∗
φ∗dx)3

(
∫

Ω
ev∗dx)3

−
∫

Ω
ev
∗
φ∗3dx∫

Ω
ev∗dx

}
.

Letting ev
∗
dx∫

Ω
ev∗dx

= dµ, we have

¨λ(0)

λ∗

∫

Ω

φ∗dµ = 3

∫

Ω

φ∗dµ
∫

Ω

φ∗2dµ− 2(

∫

Ω

φ∗dµ)3 −
∫

Ω

φ∗3dµ

= 3

∫

Ω

φ∗dµ ·
{∫

Ω

φ∗2dµ−
(∫

Ω

φ∗dµ

)2}
+

(∫

Ω

φ∗dµ

)3

−
∫

Ω

φ∗3dµ ≤ 0

with the equality only when φ∗ is a constant. This is impossible, and we get λ̈(0) < 0.

To complete the proof, we differentiate (8) and obtain

∆φ̇+ λ
evφ∗2∫
Ω
evdx

− λ
∫

Ω
evφ∗dx

(
∫

Ω
evdx)2

evφ∗ + λ
evφ̇∫

Ω
evdx

− λ
∫

Ω
evφ∗2dx

(
∫

Ω
evdx)2

ev

−λ
∫

Ω
evφ̇dx

(
∫

Ω
evdx)2

ev + 2λ
(
∫

Ω
evφ∗dx)2

(
∫

Ω
evdx)3

ev − λ
∫

Ω
evφ∗dx

(
∫

Ω
evdx)2

evφ∗ = −µ̇φ∗

in Ω with φ̇ = 0 on ∂Ω by putting s = 0. Then, from the Fredholm alternative we have

−µ̇(0)
‖φ∗‖22
λ∗

=

∫

Ω

φ∗3dµ− 3

∫

Ω

φ∗dµ ·
∫

Ω

φ∗2dµ+ 2

(∫

Ω

φ∗dµ

)3

,

similarly. The proof is complete.
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For (2), S, the branch of minimal solutions is bounded in R × C(Ω) in the case of

3 ≤ n ≤ 9 ([11]). However, such a result is not known for C, because of the last term

of the right-hand side of (9) and the non-local term of (1). On the other hand, if there

is a weak or classical solution to (2) at the other endpoint then (σ, v) = (0, 0) for the

general star-shaped domain ([20]). This result is valid for C because the non-local term

of (1) is controlled by ∫

Ω

evdx =
λ

σ
,

where 0 < σ � 1 admits a unique classical solution v = v(x) to (2). In the proof of

Proposition 1, the transversality condition∫

Ω

ev
∗
φ∗dx 6= 0(15)

plays a role. In terms of φ̂∗, the second eigenfunction of (12) for

u = λev
∗
/

∫

Ω

ev
∗
dx,

this means that φ̂ 6= 0 on ∂Ω. Namely, the transversality condition (15) is violated at

(λ, v) = (λ∗, v∗) if and only if this φ̂∗ has two nodal domains, with closures not contained

in Ω, and φ̂∗ = 0 on ∂Ω. In other words, the second eigenfunction to

−∆φ = νuφ in Ω, φ = 0 on ∂Ω

satisfies ∫

∂Ω

∂φ

∂ν
ds = 0.

4. Ball case. In this section, we assume Ω = B, where B = {x ∈ Rn | |x| < 1}. First,

we give the following.

Proof of Theorem 2. First, any solution to (1) is radially symmetric ([13]), so that we

have

v = v(r) for r = |x|.(16)

In other words, (2) induces

(rn−1v′)′ + σrn−1ev = 0 for r > 0,

v(0) = A, v′(0) = 0,(17)

for σ = λ/
∫

Ω
evdx in this case, and then the standard Emden transformation

v(r) = w(t)− 2t+A, r =

{
2(n− 2)

σeA

} 1
2

et,(18)

reduces problem (17) to the autonomous ordinary differential equation

ẅ + (n− 2)ẇ + 2(n− 2)(ew − 1) = 0,

lim
t→−∞

(w(t)− 2t) = lim
t→−∞

e−t(ẇ(t)− 2) = 0.(19)

The unique solution to this problem exists globally in time, and the orbit O={(w(t), ẇ(t))|
t ∈ R} starts at t = −∞ along and below the line ẇ = 2 with w = −∞, and approaches
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the origin (0, 0) as t→ +∞. If 3 ≤ n ≤ 9, it spirals clockwise in {(w, ẇ) | ẇ < 2}, crosses

infinitely many times the ẇ- and w- axes alternately, while for n ≥ 10 it stays forever in

{(w, ẇ) | w < 0, ẇ < 2}.
Conversely, given (w(τ), ẇ(τ)) ∈ O, we can take v = v(r) through the reverse trans-

formation, which satisfies (2) if v(1) = 0, or equivalently,

w(τ)− 2τ +A = 0(20)

and {
2(n− 2)

σeA

}1/2

eτ = 1.

Thus, σ is also recovered by w(τ) as

σ = 2(n− 2)e2τ−A = 2(n− 2)ew(τ).(21)

From this well-known situation ([14], [22], [30]), the total set S of the solutions (σ, v) to

(2) is homeomorphic to O, through the relation (18) with the constants A, σ determined

by (20), (21), respectively. This means also that C is homeomorphic to O.

In fact, we have from (18) and (20) that

v(r) = w(t)− 2t+ (2τ − w(τ))(22)

= w(τ + log r)− 2(τ + log r) + 2τ − w(τ)

= w(log r + τ)− w(τ)− 2 log r

and hence relation (7) holds true. Thus, the theorem is a direct consequence of the

following identity:

λ = ωn(2− ẇ(τ)).(23)

To prove this, we again make use of (22). In fact, we have

vr(1) = ẇ(τ)− 2

and hence (23) follows from

λ =

∫

B

(−∆v)dx = −ωnvr(1).

The proof is complete.

Now, we give the following.

Proof of Theorem 3. Every solution to (1) is radially symmetric as in (16), and therefore,

the eigenvalue problem (8) is reduced to the case of

φk = ψk(r)ek(ω)

of separation of variables, where ω = x/r and {ek}∞k=1 stands for the set of eigenfunctions

of the Laplace-Beltrami operator on ∂B, denoted by Λ. In the case of k ≥ 2, we have∫

B

evφkdx = 0,

and hence it follows that


−ψkrr −

n− 1

r
ψkr +

νk
r2
ψk − λ ev∫

B
evdx

ψk = µkψ
k (0 < r < 1)

ψkr (0) = ψk(1) = 0
(24)
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for µ = µk, where νk denotes the eigenvalue of Λ corresponding to ek labeled as ν1 = 0 <

ν2 ≤ ν3 ≤ · · ·.
Problem (24) is of the same form obtained for (2) under the same process of lineariza-

tion and separation of variables. Therefore, we have µ < 0 in this case by the argument

of [18]. In fact, we have for 0 ≤ r0 < r1 ≤ 1 that

[ψkr vrr
n−1 − ψkvrrrn−1]r=r1r=r0 +

∫ r=r1

r=r0

n− 1− νk
r2

ψkvrr
n−1dr = −µk

∫ r=r1

r=r0

ψkvrr
n−1dr.

We take r0 = 0 and the first zero of ψk as r1. Then, we have µk > 0 for k > 1 because

νk ≥ n− 1 holds in this case. Thus, we have i(λ, v) = iR(λ, v) for (λ, v) ∈ C.
Now, we turn to the movement of the radial Morse index, iR(λ, v). We note that C is

homeomorphic to O by Theorem 2. Each point of O is given as (w(τ), ẇ(τ)) and hence

C is parametrized by τ ∈ R, as (v(·, τ), λ(τ)) ∈ C is realized as

v(r, τ) = w(log r + τ)− w(τ)− 2 log r(25)

and

λ(τ) = ωn(2− ẇ(τ)).(26)

To make the description simple, henceforth the set of eigenvalues of the linearized operator

around (λ(τ), v(τ)) ∈ C corresponding to radially symmetric eigenfunctions is denoted by

σr(τ) = {µrk(τ)}∞k=1. Any of them is simple and µr1(s) < µr2(s) < · · ·. Then, the standard

bifurcation theorem from the critical point of odd multiplicity [25], [26] guarantees that

if 0 ∈ σr(τ) occurs for (λ(τ), v(τ)) not at the turning point of C, then it is a bifurcation

point for the problem

−vrr −
n− 1

r
vr = λ

ev

ωn
∫ 1

0
evrn−1dr

(0 < r < 1)

with

vr(0) = v(1) = 0,

or equivalently for (1). This is impossible from the geometric feature of C given in Theorem

2. Thus, we have 0 6∈ σr(τ) unless (λ(τ), v(τ)) is at the turning point of C. On the other

hand, µr1(τ) > 0 for τ � −1, and therefore, iR(λ, v) = 0 for any (λ, v) ∈ C in the case of

n ≥ 10.

On the contrary, any turning point takes 0 in σr(s) by the implicit function theorem,

and we have actually infinitely many bending points in the other case of 3 ≤ n ≤ 9,

denoted by Tk = (λ(τk), v(τk)) ∈ C for τ1 < τ2 < · · ·. This means that each k takes ` such

that µr`(τk) = 0. Under those notations, we see that the assertion follows if

µ̇r` |τ=τk < 0(27)

is proven for any k = 1, 2, · · ·, where µ̇ stands for dµ/dτ . Now, we shall show that (27) is

actually true.

First, we have

0 = λ̇(τk) = −ωnẅ(τk).(28)
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because Tk is the turning point of C. Next, we have from (2)




∆v̇ + λ̇
ev∫

B
evdx

+ λ
ev v̇∫
B
evdx

− λ
∫
B
ev v̇dx

(
∫
B
evdx)2

ev = 0 in B,

v̇τ = 0 on ∂B,

(29)

and hence it follows that



∆v̇k + λk
evk v̇k∫
B
evkdx

− λk
∫
B
evk v̇kdx

(
∫
B
evkdx)2

evk = 0 in B,

v̇k = 0 on ∂B,

(30)

for vk = v(·, τk). We have

v̇(r, τ) = ẇ(log r + τ)− ẇ(τ) 6≡ 0,

and therefore, v̇k is an eigenfunction to (8) corresponding to µ = µr`(τk) = 0. Then,

the standard perturbation theory guarantees the existence of φ = φ(·, τ) and µ = µ(τ)

satisfying (8), φ(·, τk) = v̇k, and µ(τk) = µr`(τk) = 0.

We differentiate (29) and this with respect to τ , and then put τ = τk. Then, by means

of λ̇(τk) = µ(τk) = 0, we obtain

∆v̈ + λ̈
ev∫

B
evdx

+ λ
ev v̇2

∫
B
evdx

+ λ
ev v̈∫
B
evdx

(31)

−λ
∫
B
ev v̇dx

(
∫
B
evdx)2

ev v̇ − λ
∫
B
ev v̈dx

(
∫
B
evdx)2

ev − λ
∫
B
ev v̇2dx

(
∫
B
evdx)2

ev

−λ
∫
B
ev v̇dx

(
∫
B
evdx)2

ev v̇ + 2λ
(
∫
B
ev v̇dx)2

(
∫
B
evdx)3

ev = 0

in B with

v̈ = 0 on ∂B

and

∆φ̇+ λ
ev v̇φ∫
B
evdx

− λ
∫
B
ev v̇dx

(
∫
B
evdx)2

evφ+ λ
evφ̇∫
B
evdx

− λ
∫
B
ev v̇φdx

(
∫
B
evdx)2

ev(32)

−λ
∫
B
evφ̇dx

(
∫
B
evdx)2

ev + 2λ
(
∫
B
ev v̇dx)(

∫
B
evφdx)

(
∫
B
evdx)3

ev − λ
∫
B
evφdx

(
∫
B
evdx)2

ev v̇

= −µ̇φ
in B with

φ̇ = 0 on ∂B

respectively, where λ = λ(τk), λ̇ = λ̇(τk), µ̇ = µ̇(τk), λ̈ = λ̈(τk), v = v(·, τk), v̇ = v̇(·, τk),

v̈ = v̈(·, τk), φ = φ(·, τk), and φ̇ = φ̇(·, τk). Multiplying those equalities by v̇ = φ, we have

λ̈

∫
B
ev v̇dx∫

B
evdx

+ λ

∫
B
ev v̇3dx∫
B
evdx

+ 2λ
(
∫
B
ev v̇dx)3

(
∫
B
evdx)3

− 3λ
(
∫
B
ev v̇dx)(

∫
B
ev v̇2dx)

(
∫
B
evdx)2

= 0,

and

λ

∫
B
ev v̇3dx∫
B
evdx

+ 2λ
(
∫
B
ev v̇dx)3

(
∫
B
evdx)3

− 3λ
(
∫
B
ev v̇dx)(

∫
B
ev v̇2dx)

(
∫
B
evdx)2

= −µ̇
∫

B

v̇2dx.
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Therefore, it follows that

λ̈

∫
B
ev v̇dx∫

B
evdx

= µ̇

∫

B

v̇2dx.(33)

Here, we have from (26), (28), and (21) that

λ̈ = 2(n− 2)ωne
wẇ = ωnσ̇,

where w = w(τk), ẇ = ẇ(τk), and σ̇ = σ̇(τk). Then, using

σ =
λ∫

B
evdx

we get

σ̇ = −λ
∫
B
ev v̇dx

(
∫
B
evdx)2

again by λ̇ = λ̇(τk) = 0, and hence we obtain

−ωnλ
(
∫
B
ev v̇dx)2

(
∫
B
evdx)3

= µ̇

∫

B

v̇2dx

from (33). Thus, (27) is proven by

d

dτ

∫

B

evdx =

∫

B

ev v̇dx 6= 0 at τ = τk.(34)

However, this is equivalent to σ̇ 6= 0 there, because
∫

B

evdx =
λ

σ

and (28). Using (21), we get

σ̇ = 2(n− 2)ewẇ

at τ = τk, and the desired relation σ̇(τk) 6= 0 is proven by ẇ(τk) 6= 0. This relation

actually holds because ẅ(τk) = 0 and w = w(t) satisfies the autonomous system (19).
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NON-LOCAL GEL’FAND PROBLEM 235

[29] T. Suzuki, Energy transport problem for self-gravitating particles, Taiwanese J. Math., to

appear.

[30] T. Suzuki, Semilinear Elliptic Equations, Gakkōtosho, Tokyo, 1994.
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