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1. Introduction. We consider the non-local initial boundary value problem

(1a) ut(x, t) + ux(x, t) = λ
f(u(x, t))

(
∫ 1

0
f(u(x, t)) dx)2

, 0 < x < 1, t > 0,

(1b) u(0, t) = 0 , t > 0,

(1c) u(x, 0) = u0(x) ≥ 0, 0 < x < 1,

where λ > 0. The function u(x, t) represents the dimensionless temperature when an

electric current flows through a conductor (e.g. food) with temperature dependent on

electrical resistivity f(u) > 0, subject to a fixed potential difference V > 0. The (dimen-

sionless) resistivity f(u) may be either an increasing or a decreasing function of temper-

ature depending strongly on the type of the material (food). Problem (1) models one

of the main methods for sterilizing food. The sterilization can take place by electrically

heating the food rapidly.

Here λ is a dimensionless parameter and can be identified, amongst other things,

with the square (being actually proportional) of the applied potential difference V. In the

case where f(u) is a sufficiently rapidly decreasing function of temperature, there exists

a critical value of the potential difference V, say V ∗, such that for V > V ∗ (equivalently
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Fig. 1. Possible response diagrams for equilibrium solutions: (a) Mf(M) unbounded; (b)

Mf(M) → c, 0 < c < ∞,as M → ∞; (c) Mf(M) → 0, as M → ∞. Each diagram may

contain more turning points than shown (so that for some λ there are more solutions).

λ > λ∗) a thermal runaway (blow-up of the temperature u or burning of the food) takes

place, see [6, 7, 8].

In the following we assume f to satisfy

(2a) f(s) > 0, f ′(s) < 0, s ≥ 0 and

(2b)

∫ ∞

0

f(s) ds <∞,

for instance either f(s) = e−s or f(s) = (1 + s)−p, p > 1, satisfy (2).

For the initial data it is required that u0(x), u′0(x) be bounded, u0(x) ≥ 0 in [0, 1]

(this is a consequence of the fact that for any initial data the solution u becomes non-

negative over (0, 1] for some time t and so, with an appropriate redefinition of t, the last

requirement can always be assumed, [6, 8]), and in some cases u0(x) → 0+ properly as

x→ 0+.

The solution u(x, t) also blows up for large enough initial data even if 0 < λ ≤ λ∗,
[6, 7, 8]; in this case, an analogous estimate of blow-up time, as for λ > λ∗, will be given

in a future paper.

The steady problem corresponding to (1) is

(3) w′ = µf(w) = λ
f(w)

(
∫ 1

0
f(w) dx)2

, 0 < x < 1, w(0) = 0,

where w = w(x) = w(x;λ) (see [1, 2, 6, 7, 8]). The parameter µ is referred to as

a local parameter while λ as a non-local one and the relation between them is µ =

λ/(
∫ 1

0
f(w)dx)2.

In the present work, our purpose is to find some estimates of the blow-up time t∗,
with respect to the parameter λ (more precisely, with respect to the difference λ − λ∗)
when λ > λ∗, and fixed initial data u0(x).
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In Figure 1, (c) or (b) with 2c < λ∗, there may be either only one or more than one

turning point (λ∗, M∗) depending on f . One can find other forms of non-local diagrams

in [6, 7, 8]; their shapes depend strongly on boundary conditions and the function f .

Under the assumptions (2), problem (3) has at least one classical (regular) steady

solution w∗ = w(x;λ∗), (more than one w∗ may exist). In the following, we assume that

w∗ is unique, i.e. Figure 1(c), and that the pair (w,w) at λ < λ∗ (λ close to λ∗) has the

property: w = w1 is stable while w = w2 is unstable, (since in our proofs we require only

the existence of at least one w∗ at λ∗ and that w(x) < w(x) for x in (0, 1] where w is the

next steady solution greater than w(x)) at λ < λ∗).
We also emphasize that for λ > λ∗ and for all x ∈ (0, 1] we have:

(4a) F (u) =
f(u)

(
∫ 1

0
f(u)dx)2

→∞ as t→ t∗− <∞,

(4b) u(x, t;λ)→∞ as t→ t∗− <∞,
the latter means that u(x, t;λ) blows up globally, see [6, 7, 8].

We organize this work as follows: in Section 2 we apply comparison techniques and find

upper and lower bounds for t∗, when f satisfies (2). In Section 3, we use an asymptotic

expansion and again obtain an estimate of t∗ but for f(s) = e−s. Also we numerically

compute the blow-up time t∗ using an up-wind scheme and verifying the previous esti-

mate.

2. Comparison methods: upper and lower bounds of t∗ for λ > λ∗. If the function

f satisfies (2a), one can prove (see appendix in [8]) that a maximum principle holds for

(1) (here is where we need f to be decreasing). Then we may, in the usual way, define

upper and lower solutions of (1): an upper (lower) solution u (u) is defined as a function

which satisfies (1) if we substitute ≥ (≤) for =, see [6, 7, 8, 9, 10]. In the following work,

we use ideas and techniques similar to [3].

2.1. An upper bound for t∗. We now wish to find an upper bound for the blow-up time

t∗. For simplicity, we assume that 0 ≤ u0 < w∗. Firstly, we write (3) in a slightly different

way,

w′ = µf(w) =
λf(w)

(
∫ 1

0
f(w) dx)2

= λF (w), 0 < x < 1, w(0) = 0,(5)

where F (·) = f(·)/(
∫ 1

0
f(·)dx)2 and λ is a positive parameter (eigenvalue). Then, the

related linearized eigenvalue problem of (5) for a function φ = φ(x;λ) ∈ R (actually φ is

assumed to be a real function) is:

(6) φ′ − λ δF (w;φ) = −ρ(w, λ)φ, 0 < x < 1, φ(0) = φ0 = 0,

where δF (w;φ) is the first variation (or Gâteaux derivative) of F at w in the direction

of φ, (F (w;φ) := F (w + εφ) = J(ε) and δF (w;φ) = J ′(0) = limε→0
F (w+εφ)−F (w)

ε ).

As regards the first variation δF (w;φ) we have

δF (w;φ) =
f ′(w)φ

(
∫ 1

0
f(w) dx)2

− 2f(w)
∫ 1

0
f ′(w)φ dx

(
∫ 1

0
f(w) dx)3

.
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In the following, in order to simplify the expressions, we use the notation:

Iν k(w, φ) :=

∫ 1

0

f (ν)(w(x))φk(x) dx,

and Iν(w) := Iν 0(w, φ), ν, k = 0, 1, 2, 3, . . . , f (ν)(w) = dν

dwν f(w), thus

δF (w;φ) =
f ′(w)φ

I2
0 (w)

− 2f(w)I11(w, φ)

I3
0 (w)

.

Now we can have the following lemma concerning the eigenpair of problem (6).

Lemma 1. Problem (6) has the eigenpair (ρ, φ) where φ(x) > 0 in (0, 1] and its spectrum

is a continuum of eigenvalues in R, generated by ρ = ρ(w, λ) for every λ ∈ (0, λ∗]. The

function ρ(w, λ) is continuous with respect to λ.

Proof. If φ(x) is a real function then equation (6) implies that ρ ∈ R. Now equation (6)

can be written in a different way

φ′ + (g(x) + ρ)φ = qh(x),

where q = −I11(w, φ) is a number, h(x) = λ 2f(w)
I3
0 (w)

> 0 and g(x) = −λ f
′(w)
I2
0 (w)

. Also,

problem (6) has the following integral representation:

φ(x) = q

[
exp

(
−
∫ x

0

g(z) dz − ρ x
)] ∫ x

0

h(s)

[
exp

(∫ s

0

g(z) dz + ρ s

)]
ds.

The above form of φ implies that if a nontrivial φ satisfying (6) exists, then it is positive

(φ actually does not change sign in (0, 1) and can be taken as positive).

Now we can normalize φ so that q = 1. Therefore, there exists a function φ ∈ R
satisfying (6) and the following equation:

1 = −I11(w, φ) =

∫ 1

0

−f ′(w)φ(x)dx , where φ(x) = φ(x; ρ) .

This can be written as

1 =

∫ 1

0

−f ′(w)

[ ∫ x

0

h(x− s) exp[−ρs−G(x) +G(x− s)
]
ds ]dx

for G(s) =
∫ s

0
g(z) dz. Therefore

1 =

∫ 1

0

exp(−ρs)
[ ∫ 1

s

(−f ′(w)h(x− s) exp [−G(x) +G(x− s)])dx
]
ds or

(7) 1 =

∫ 1

0

Y (s) exp(−ρs) ds,

where Y (s) = Y (s;w) > 0 for −f ′(w)h(x − s) exp [−G(x) +G(x− s)] > 0 and 0 < s <

x < 1, (the eigenvalue ρ is a real number). Now for Y (s) > 1 we have only one real

solution ρ > 0 which satisfies equation (7). Also for Y (s) < 1 we have only one real

solution ρ < 0 and for Y (s) = 1 we have only the trivial solution ρ = 0. The eigenvalues

ρ = ρ(w, λ) ∈ C((0, λ∗];R) since the function w(x, λ), g(x) = g(x;λ) and Y (s) = Y (s;λ)

are continuous functions with respect to λ ∈ (0, λ∗]. This proves the lemma.
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It is known that the spectrum to problem (5) can be either an interval closed from the

right, or an open one. Here, we consider the case where the spectrum to problem (5) is an

interval closed from the right and that there exists a unique turning point (λ∗, ‖w∗‖∞)

with ‖w∗‖∞ = w∗(1) = M∗ <∞, see Figure 1(c); at λ < λ∗ two steady states correspond

w1, w2 with w1 < w2, while at λ = λ∗ correspond w1 = w2 = w∗. We need the following:

Lemma 2. Let w1, w2 with w1 < w2 be the solutions of (5) at λ < λ∗, then ρ1 =

ρ(w1, λ) ≤ 0, ρ2 = ρ(w2, λ) ≥ 0 and ρ∗ = ρ(w∗, λ∗) = 0 where ρ represents the eigenval-

ues of problem (6).

Proof. We assume u(x, t) = w(x) + ε φ(x) eρt + O(ε2), with φ(x) > 0, for x ∈ (0, 1] and

for some ε ∈ R. Then we find, to the first order of ε, that φ and ρ must satisfy problem

(6). We also know that w1 is asymptotically stable, w2 is unstable and w∗ is stable from

below and unstable from above, see [8]. This implies at least that ρ1 ≤ 0, ρ2 ≥ 0 and

ρ∗ = 0.

Because of Lemmas 1 and 2, problem (6) at λ = λ∗, with φ∗(x) > 0, becomes

(8) φ∗′ − λ∗ δF (w∗;φ∗) = 0, 0 < x < 1 , φ∗(0) = φ∗0 = 0.

Now, in order to find an upper bound for t∗, we take the difference

v = v(x, t) = v(x, t;λ) = u(x, t;λ)− w∗(x) = u− w∗.(9)

Since w∗ is bounded, v blows up at the same time as u does and in the same manner, i.e.

globally. Hence t∗ = t∗(u) = t∗(v) (t∗(u) is the blow-up time for u) and v(x, t) → ∞ as

t→ t∗− for all x ∈ (0, 1]. In the following, we find an A-problem (see below (15)), where

A = A(t) blows up and is such that: A(t) ≤ c ‖v(·, t)‖∞ where c = 1/ supx φ
∗(x) as long

as v(x, t) ≥ ψ(x, t) = A(t)φ∗(x). The latter relation and (9) imply t∗(u) = t∗(v) ≤ T ∗ =

T ∗(A), for some T ∗, thus we find an upper bound T ∗ for t∗(u).

Therefore, we obtain

vt = ut = −vx + (λ− λ∗)F (u) + λ∗ (F (u)− F (w∗)) .(10)

By writing J(ε) = F (w∗ + εv), 0 ≤ ε ≤ 1, whence J(0) = F (w∗) and J(1) = F (u),

Taylor’s formula gives F (u)− F (w∗) = J(1)− J(0) = J ′(0) + J′′(ξ)
2 , for some ξ = ξ(t) ∈

(0, 1), where J ′(0) = δF (w∗; v) =
[
d
dεJ(ε)

]
ε=0

. Also

δ2F (z; v) =
f ′′(z)v2

I2
0 (z)

− 4vf ′(z)I1 1(z, v)

I3
0 (z)

− 2f(z)I2 2(z, v)

I3
0 (z)

+
6f(z)I2

1 1(z, v)

I4
0 (z)

,

where z = w∗ + ξv and δ2F (z; v) = J ′′(ξ) is the second Gâteaux derivative. Thus, from

equation (10) and setting v = u−w∗ = θv̂, for 0 < θ = λ−λ∗ � 1, we get the problem:

(11a) θv̂t + θv̂x = θF (u) + λ∗θ δF (w∗; v̂) +
λ∗

2
J ′′(ξ), 0 < x < 1, t > t1,

(11b) v̂(0, t) = 0, t > t1,

(11c) θv̂(x, t1) = u(x, t1)− w∗(x) ≥ 0, 0 < x < 1.
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This is simplified to

v̂t + v̂x = F (u) + λ∗ δF (w∗; v̂) +
λ∗

2
θĴ ′′(ξ), 0 < x < 1, t > t1,

where J(ξ) = θ2 Ĵ(ξ) = θ2 δ2F (z; v̂). Now we find a lower solution ψ for v̂-problem (11).

Therefore, we require ψ = ψ(x, t) to satisfy

(12) ψt + ψx ≤ F (u) + λ∗ δF (w∗;ψ) +
λ∗

2
θ δ2F (z;ψ).

Setting ψ(x, t) = A(t)φ∗(x) and Ȧ(t) = d
dtA(t) we obtain

(13) Ȧ(t)φ∗ +A(t)φ∗′ − λ∗A(t) δF (w∗;φ∗) ≤ F (u) +
λ∗

2
θ δ2F (z;ψ).

Using φ∗-problem (8), relation (4) (there exists β such that βA(t)φ∗ ≤ F (u) → ∞ for t

close to t∗), and equation (13), it is enough to consider

(14) Ȧ(t)φ∗ ≤ βA(t)φ∗ +
λ∗

2
θ δ2F (z;ψ) ≤ F (u) +

λ∗

2
θ δ2F (z;ψ).

Similarly, for 0 < θ � 1, i.e. λ close to λ∗, we can find β1 > 0 so that we get

(15) Ȧ(t)φ∗ ≤ β1A(t)φ∗ ≤ βA(t)φ∗ +
λ∗

2
θA2(t) δ2F (z;φ∗), t > τ1 .

Taking c small enough so that θ ≤ c
A(t) (for some fixed θ we choose c and c1, see

below, so that θ ≤ c
A(t) where c is about the time that u is smaller than order one

i.e. u(x, t) is bounded, A(τ)φ∗θ + w∗ ≤ u(x, τ) and 0 < t∗ − τ � 1), thus we have that

A(t) ≤ c1 e
β1t ≤ c

θ with c1 = A(τ1) e−β1τ1 and this holds for time t = τ = 1
β1

ln( c
θ c1

).

Now we can obtain an upper estimate T ∗u for t∗(u) which is T ∗u = τ + t∗1 > t∗(u) = t∗,
where t∗1 � τ is the blow-up time of the problem (1) for t > τ and u(x, τ) = w∗+cφ∗ ≥ 0,

0 < x < 1.

2.2. A lower bound for t∗. We take u0(x) such that u0(x) < w∗(x) for 0 < x < 1 and

u0(0) = w∗(0) = 0. Let u∗ = u∗(x, t) = u(x, t;λ∗) be the solution to (1) with u∗0 = u0.

In the following we use a similar concept to those in [3, 4]. Therefore we set u =

u∗ + u1 ≤ u∗ + ψ1 = w∗ − û + ψ1 ≤ w∗ − ψ + ψ1 < w∗ < ∞, where û is given by

û = w∗ − u∗ > 0 and satisfies (16), u1 solves (23) (see below), ψ1 is an upper solution to

the u1-problem and ψ is a lower solution to the û-problem, i.e. ψ1 ≥ u1 and ψ ≤ û. The

û-problem is defined by

ût = −ûx − λ∗ (F (u∗)− F (w∗)) , 0 < x < 1, 0 < t < T,(16a)

(16b) û(0, t) = w∗(0)− u∗(0, t) = 0, 0 < t < T,

(16c) û(x, 0) = û0(x) = w∗(x)− u∗0(x), 0 < x < 1,

with û0 > 0, hence û > 0, for 0 < x < 1, 0 < t < T < t∗ and for some T > 0. We write

J(ε) = F (w∗ − εû), 0 ≤ ε ≤ 1 and examine the difference,

F (u∗)− F (w∗) = J(1)− J(0) = J ′(0) +
J ′′(ξ)

2
, 0 < ξ < 1,
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where J ′(0) = δF (w∗;−û) = −δF (w∗; û) = −( f
′(w∗)û
I2
0 (w∗) −

2f(w∗) I11(w∗,û)
I3
0 (w∗) ) and

J ′′(ξ) = δ2 F (z;−û) = δ2 F (z; û) =
f ′′(z)û2

I2
0 (z)

− 4ûf ′(z)I1 1(z, û)

I3
0 (z)

(17)

−2f(z)I2 2(z, û)

I3
0 (z)

+
6f(z)I2

1 1(z, û)

I4
0 (z)

,

with 0 < z = w∗ − ξû < w∗ <∞, for some ξ = ξ(t) ∈ (0, 1).

Thus, equation (16a) and (17) give:

L(û) := ût + ûx − λ∗δF (w∗; û) +
λ∗

2
δ2 F (z; û) = 0.(18)

Now we introduce the function ψ = ψ(x, t) = cφ∗(x)
t+t0

+ u2(x)
(t+t0)2 , where c, t0 (positive

constants), u2 = u2(x) ≥ 0 are to be determined and φ∗ = φ∗(x) satisfies problem (8). For

u∗ = w∗−ψ−r = w∗− cφ∗(x)
t+t0

− u2(x)
(t+t0)2 −r ≥ 0, where r = r(x, t) = u3(x)

(t+t0)3 + u4(x)
(t+t0)4 + . . . ,

(r ∈ R), since u∗ → w∗− or (ψ + r)→ 0+ as t→∞ (u∗0(x) < w∗(x)), actually u∗ < w∗

and ψ + r > 0 for all t ≥ 0, [8]. Thus, by using Taylor’s expansion for the term F (u∗),
the equation u∗t + u∗x = λ∗F (u∗) becomes

cφ∗

(t+ t0)2
+ w∗′ − cφ∗′

t+ t0
− u′2

(t+ t0)2
+ · · · = λ∗F (w∗ − cφ∗

t+ t0
− u2

(t+ t0)2
+ . . . ) =

λ∗F (w∗)− λ∗ c

t+ t0
δF (w∗; φ∗)− λ∗

(t+ t0)2

[
δF (w∗; u2)− c2

2
δ2F (w∗; φ∗)

]
+ . . . .

Equating terms of the same order with respect to powers of 1
t+t0

, taking into account the

φ∗-problem, we have

(cφ∗ − u′2) =
λ∗

2
c2δ2F (w∗; φ∗)− λ∗δF (w∗; u2).

Then we choose c so that c
∫ 1

0
φ∗dx = c2 λ∗

2 |
∫ 1

0
δ2F (w∗; φ∗) dx |, which implies that c =

2/λ∗|
∫ 1

0
δ2F (w∗; φ∗) dx | > 0, since c = 0 is rejected and provided that

∫ 1

0
φ∗ dx = 1 (we

should c > 0 otherwise u∗ > w∗ for some t > 0).

Finally u2 needs to be estimated by the inequality

u′2 ≤ λ∗δF (w∗; u2) + cφ∗ − λ∗

2
c2δ2F (z; φ∗),(19)

where 0 < z = w∗ − ξû < w∗, for some ξ = ξ(t) ∈ (0, 1).

This implies that we need

u′2(x) ≤ c1u2(x) + c2q +m1,

where m1 = c infx φ
∗(x) +m0 = m0, m0 = λ∗

2 c2 infxN(x), (δ2F (z; φ∗) ≥ N(x),

0 < z(x, t) < w∗(x) < ∞), c1 = infx{λ∗ f ′(w∗)/I2
0 (w∗)}, c2 = supx{−2f(w∗)/I3

0 (w∗)}
and q =

∫ 1

0
f ′(w∗)u2 dx = I11(w∗, u2) < 0, hence

u2 ≤
c2q +m1

c1
(ec1x − 1)
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for u2(0) = 0, which is satisfied if

q =
c2q +m1

c1

∫ 1

0

f ′(w∗)(ec1x − 1)dx.

Therefore q = m1m2

c1−c2m2
, for m2 =

∫ 1

0
f ′(w∗)(ec1x − 1) dx, can be estimated.

Substituting now ψ, which is estimated, for û in (18) (actually in the expression for

L(û)) and taking into account (8) and (19), we obtain (for the operator L see (18))

L(ψ) =
c

t+ t0
(φ∗′ − λ∗δ F (w∗;φ∗))

+
1

(t+ t0)2

(
u′2 − λ∗δF (w∗; u2)− c φ∗ +

λ∗

2
c2 δ2F (z; φ∗)

)
+O

(
1

(t+ t0)3

)
≤ 0.

The last inequality holds since, on choosing t0 � 1, the term of order 1
(t+t0)2 dominates

the term of order 1
(t+t0)3 (this is due to the u∗-problem and to the fact that u∗ → w∗−

or (ψ + r)→ 0+ as t→∞ ψ + r > 0 for all t > 0). Also the first bracket is zero and the

second one negative, see (19).

Requiring ψ(x, 0) ≤ û0, on choosing t0 � 1, finally we get that ψ is a lower solution

to the û-problem and thus ψ ≤ û.

We now write u = u∗ + u1 ≤ w∗ and find an upper solution to the u1-problem. The

equation for u1 is

u1t = −u1x + (λ− λ∗)F (w∗) + λ (F (u)− F (w∗))(20)

− λ∗ (F (u∗)− F (w∗)) , 0 < x < 1, t > 0.

We again examine the difference λ (F (u)− F (w∗)) and write v = u−w∗, (−w∗ < v < 0),

J1(ε) = F (w∗ + εv), 0 ≤ ε ≤ 1, we have:

λ(F (u)− F (w∗)) = λ(J1(1)− J1(0))(21)

= λ

(
f ′(w∗)v
I2
0 (w∗)

− 2f(w∗)I11(w∗; v)

I3
0 (w∗)

)
+
λ

2
J ′′1 (ξ1)

= λ∗δ F (w∗; v) + (λ− λ∗) δ F (w∗; v) +
λ

2
δ2 F (z; v)

= λ∗ δ F (w∗; v) +Q(w∗, z, v).

Also by setting u∗ = w∗ − û and J2(ε) = F (w∗ − εû), 0 ≤ ε ≤ 1 the quantity λ∗(F (u∗)−
F (w∗)) is written:

−λ∗ (F (u∗)− F (w∗)) = −λ∗(J2(1)− J2(0))(22)

= λ∗
(
f ′(w∗)û
I2
0 (w∗)

− 2f(w∗)I11(w∗, û)

I3
0 (w∗)

)
− λ∗

2
J ′′2 (ξ2)

= λ∗ δ F (w∗; û)− λ∗

2
δ2 F (ζ; û),

with

J ′′2 (ξ2) = δ2 F (ζ; û) =

1

I4
0 (ζ)

[I2
0 (ζ)û2f ′′(ζ)−4ûf ′(ζ)I11(ζ, û)I0(ζ).− 2f(ζ)I0(ζ)I22(ζ, û)+6f(ζ) I0(ζ)I2

11(ζ, û)
]
,

where ζ = w∗ − ξ2û, ξ2 = ξ2(t) ∈ (0, 1).
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The u1-problem (20) with relations (21), (22) now becomes

u1t = −u1x + (λ− λ∗)F (w∗) + λ∗δ F (w∗; v) +Q(w∗, z, v)(23a)

+ λ∗δ F (w∗; û)− λ∗

2
δ2 F (ζ; û), 0 < x < 1, t > 0,

(23b) u1(0, t) = 0, t > 0,

(23c) u1(x, 0) = u0(x)− u∗0(x) = 0, 0 < x < 1,

where 0 < z < w∗, 0 < ζ < w∗, 0 < û < w∗, u < u1 < w∗ as far as u < w∗, so that

Q(w∗, z, v), J ′′2 (ξ2) are bounded from above and below. Hence, for a fixed λ > λ∗, there

exists a constant B such that:

u1t ≤ −u1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)v
I2
0 (w∗)

− 2f(w∗)I11(w∗, v)

I3
0 (w∗)

]
(24)

+ λ∗
[
f ′(w∗)û
I2
0 (w∗)

− 2f(w∗)I11(w∗, û)

I3
0 (w∗)

]
+ (λ− λ∗)B.

Due to the fact that u1 = u − u∗ = u − w∗ + w∗ − u∗ = v + û, the previous relation

becomes:

u1t ≤ −u1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)u1

I2
0 (w∗)

− 2f(w∗)I11(w∗, u1)

I3
0 (w∗)

]
+ (λ− λ∗)B.

Now we introduce ψ1(x, t) = [(λ − λ∗)Λ(t + t0)]φ∗(x), where Λ is a constant which

is determined, so that ψ1 can be an upper solution to the u1-problem. Here φ∗ again

satisfies problem (8).

By substituting −ψ1 for u1 in the right hand side of the above relation, we get

−ψ1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)ψ1

I2
0 (w∗)

− 2f(w∗)I11(w∗, ψ1)

I3
0 (w∗)

]
+ (λ− λ∗)B

= (λ− λ∗)F (w∗) + (λ− λ∗)B ≤ (λ− λ∗) Λφ∗ =
∂ψ1

∂t
,

F (w∗(x)) +B ≤ Λφ∗(x), or sup
x
F (w∗(x)) +B ≤ Λφ∗(x).

Since supx F (w∗(x)) = f(0)
f2(w∗(1)) , it is enough to take

f(0)

f2(w∗(1))
+B = Γ ≤ Λφ∗(x) or 0 < Γ ≤ Λ inf

x∈[γ, 1]
φ∗(x) = Λ Θ,

for some γ ∈ (0, 1).

Choosing Λ = max
{

w∗(γ)
(λ−λ∗) t0 φ∗(γ) ,

Γ
Θ

}
for some γ > 0 (such a γ exists since φ∗(0) =

0 and φ∗(x) > 0 in (0, 1]), then, ψ1 is a “restricted” upper solution (an appropriate

differential inequality in a part of the interval) for the u1-problem in the interval [γ, 1],

[5]. Here, it must be noted that u blows up globally, see relation (4b), this means that

u(x, t) is bounded for (x, t) ∈ [0, γ]× [0, T ] for some T < t∗. In other words, u is bounded

in [γ, 1] × [0, T ] (actually here we require u < w∗, see below) and hence a lower bound

for t∗ can be found working in the restricted interval [γ, 1].
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Hence, u ≤ w∗ as far ψ − ψ1 ≥ 0, thus we have

u = u1 + u∗ = w∗ − cφ∗

t+ t0
− u2

(t+ t0)2
+ (λ− λ∗)Λ (t+ t0)φ∗.

The right-hand side of the above relation is no greater than w∗, as long as ψ ≥ ψ1 or

cφ∗

(t+ t0)
+

u2

(t+ t0)2
≥ (λ− λ∗) Λφ∗ (t+ t0), x ∈ [γ, 1].

Hence, u ≤ w∗ as far as ψ −ψ1 ≥ 0; it is enough that u ≤ w∗ for any x ∈ [γ, 1], for some

γ > 0, due to the fact that u blows up globally.

Therefore, for simplicity, it is enough to choose

cφ∗

t+ t0
≥ (λ− λ∗) Λφ∗ (t+ t0), x ∈ [γ, 1],

so that c ≥ (λ− λ∗)Λ(t+ t0)2.

Thus we get

t ≤ c1/2 Λ−1/2 (λ− λ∗)−1/2 − t0,
which for λ sufficiently close to λ∗ (λ > λ∗), the above relation gives

t . c1/2 Λ−1/2 (λ− λ∗)−1/2 = tl(λ− λ∗)−1/2.

Hence, as long as u = u(x, t) < w∗ at t = tl(λ−λ∗)−1/2, we deduce that t∗ > tl(λ−λ∗)−1/2

and tl(λ− λ∗)−1/2 is a lower bound for t∗ with tl = c1/2Λ−1/2.

3. Asymptotic and numerical estimates of t∗

3.1. Asymptotic estimate for small λ−λ∗ > 0. We now examine the special case f(s) =

e−s. Motivated by Section 2 we wish to find an estimate for the blow-up time t∗ to

problem (1) as an asymptotic series of η = θ1/2 = (λ − λ∗)1/2 � 1, η > 0. We again

assume that u0(x) < w∗(x) for 0 < x ≤ 1, with u0(0) = w∗(0) = 0.

Following similar concepts to [3, 4], as well as motivated by numerical calculations,

we consider three intervals of time, say I, II, and III. In I and III t varies by O(1) as

θ = (λ−λ∗)→ 0 and we expand u ∼ u∗+ θv1 + θ2v2 + . . . as θ → 0+, where u∗ satisfies

problem (1) at λ = λ∗.
In interval II, we expand u ∼ w∗ + ηv1 + η2v2 + . . . as η → 0, and making a change

of time scale t = τ/η, equation (1) gives:

η2v1τ + η3v2τ + · · ·+ w∗x + ηv1x + η2v2x + · · · = λR(η) as η → 0,

where

F (u) ∼ R̂(x, t; η) := R(η) =
e−(w∗+ηv1+η2v2+... )

(
∫ 1

0
e−(w∗+ηv1+η2v2+... ))2dx

as η → 0.

We require an expansion for R(η) as follows:

R(η) = R(0) + ηR′(0) +
η2

2
R′′(0) + . . . .

We equate the terms of zero order (O(1) or O(η0)) and get

(25) w∗′ = λ∗R(0), 0 < x < 1, w∗(0) = 0,
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where R(0) = e−w
∗
/(
∫ 1

0
e−w

∗
dx)2. Problem (25) is actually equivalent to problem (3).

By looking now at the terms of O(η) we have

(26) v1x(x, τ) = λ∗R′(0), 0 < x < 1, τ > 0, v1(0, τ) = 0, τ > 0 ,

where R′(0) = δ F (w∗; v1) = − e−w
∗
v1

(
∫ 1
0
e−w∗ dx)2 +

2e−w
∗ ∫ 1

0
e−w

∗
v1 dx

(
∫ 1
0
e−w∗ dx)3 .

Problem (26) has the form of problem (8), thus we can write

(27) v1(x, τ) = a(τ)φ∗(x),

where now we normalize φ∗ according to
∫ 1

0
φ∗2(x) dx = 1 and we denote the normalized

φ∗ again by φ∗. Looking next at the O(η2) terms we have

v1τ + v2x = R(0) +
λ∗

2
R′′(0),

which becomes

v1τ + v2x =
e−w

∗

S2
0(φ∗)

+
2λ∗e−w

∗
v1 S1(v2)

S3
0(φ∗)

+
2λ∗e−w

∗
S1(v2)

S3
0(φ∗)

(28)

− λ∗e−w
∗
S2(v2)

S3
0(φ∗)

+
3λ∗e−w

∗
S2

1(v2)

S4
0(φ∗)

,

where now we denote Iν k(w∗, v) = (−1)νSk(v) with Sk(v) =
∫ 1

0
e−w

∗
vkdx, k = 0, 1, 2, 3,

and Sk(φ∗) = Sk.

Multiplying (28) by φ∗, integrating over [0, 1], using (27) and normalizing φ∗, we

obtain

ȧ(τ) =

∫ 1

0

(
−φ∗′ − λ∗e−w

∗
φ∗

S2
0

+
2λ∗e−w

∗
S1

S3
0

)
v2 dx+

S1

S2
0

+(29)

λ∗
a2(τ)

2S4
0

(S3 S
2
0 − 6S1 S2 S0 + 6S3

1).

Since the quantity inside the integral is zero (the linearized problem), and setting

S = S3 S
2
0 − 6S1 S2 S0 + 6S3

1 , equation (29) can be written as

ȧ(τ) =
S1

S2
0

+ λ∗
S

2S4
0

a2(τ), τ > 0, a(τ)→ −∞ as τ → 0,(30)

(this choice of the initial condition as τ → 0+ gives constant of integration −π/2).

Returning to the time variable t, problem (30) becomes

A(t) =

(
B

K

)−1/2

tan

[
t(λ− λ∗)1/2(BK)1/2 − π

2

]
,

where K = λ∗S/2S4
0 , B = S1/S

2
0 .

Because u = w∗ + ηv1 + . . . and v1(x, t) = A(t)φ∗(x), it is obvious that u ceases to

exist at time

t∗ ∼ tb = tu(λ− λ∗)− 1
2

where tu = π(4BK)−1/2 and tb is the blow-up time of a(τ) = a(t(λ− λ∗)1/2) = A(t).
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3.2. Numerical estimates. We solve problem (1) by using a two-step up-wind scheme.

For the linear terms we apply the usual form of the scheme:

vn+1
j = unj − r(unj − unj−1) + λF (unj ),

where unj is the temperature at the nth time level and at the jth space grid, r = δt/δ x

and the non-local term F (unj ) is evaluated at the nth time step. For this term we have

F (unj ) =
f(unj )

(
∫ 1

0
f(unj ) dx)2

.

The integral in the denominator is evaluated by Simpson’s rule. In the next step we

evaluate w

wn+1
j = unj − r(vn+1

j − vn+1
j−1 ) + λF (vn+1

j ).
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Fig. 2. Numerical solution to problem (1). We plot maxx(u(x, t)) = u(1, t) = M(t), for x in [0, 1]

against time for δx = 0.033, δt = 0.002 (the upper curve, (c), corresponds to λ = 1.1476 > λ∗ =

0.6476, the intermediate, (b), to λ = λ∗ and the lower one, (a), to λ = 0.1476 < λ∗). Also the

dash-dotted axis corresponds to the asymptotic estimate of the blow-up time t∗ ∼ 1.3367 for

λ = 1.1476. To obtain this estimate we numerically calculate w∗ by an iteration scheme and

then we solve the equation for φ∗ using the appropriate normalization.
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Fig. 3. Numerical solution to problem (1) for λ = 0.5476 < λ∗.
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Finally, u at the (n+ 1)th time step is approximated by

un+1
j =

1

2
(vn+1
j + wn+1

j ).

In Figure 2 we use this scheme to solve the problem numerically for f(u) = e−u and

taking u(x, 0) = 0. We see that for λ < λ∗ the solution u tends to a steady state, for

λ = λ∗ the behaviour is similar, and for λ > λ∗ the solution blows up (the decay is faster

for λ < λ∗ than it is for λ = λ∗). More precisely, in Figure 2 the maximum of solutions

is plotted against time.

In Figure 3, we plot the numerical solution of u for λ = 0.5476.

4. Discussion. In the present work, we estimate the blow-up time t∗ of the solution to

problem (1). In this mathematical model, the blow-up time represents the time when the

food is burnt. Similar estimates are also known for local (the reaction diffusion problem)

as well as for non-local (the Ohmic heating problem) problems [3, 4]. Here the results are

obtained for the case where there exists a steady-state solution w∗ = w(x;λ∗) at λ = λ∗,
for 0 < λ − λ∗ � 1 and nonnegative initial data. The methods applied are comparison

and asymptotic techniques, as well as numerical computations.

Our main estimates, for given λ, λ∗ and 0 < λ − λ∗ � 1, are: upper bound ε +

c1 ln [c2 (λ− λ∗)−1]; lower bound c3(λ− λ∗)−1/2; asymptotic estimate t∗ ∼ c4(λ− λ∗)− 1
2

as λ→ λ∗+; some numerical results are also presented.

A more substantial work will appear elsewhere, where in addition the case of 0 < λ <

λ∗ and initial data greater than the greatest steady-state solution will be studied.
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