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Abstract. We investigate the existence of solutions for the Dirichlet problem including the gen-
eralized balance of a membrane equation. We present a duality theory and variational principle
for this problem. As one of the consequences of the duality we obtain some numerical results
which give a measure of a duality gap between the primal and dual functional for approximate
solutions.

1. Introduction. Let us consider functions G and H satisfying the following assump-
tions:

Q: ¢ is even and ¢q > 2;

Q: Q is a bounded domain of R™ having a piecewise locally Lipschitz boundary;

H1: H:Q x R" — R is a Carathéodory function, H(y, -) is convex and Gateaux differ-
entiable for a.e. y €

H2: there exist constants b;,by > 0 and functions ki, ko € L7(Q), R) such that for
ae.ycQandall z€ R

=l

2

b
;ﬂz\q +hay) < H(y,2) < A+ Ra(v);

H3: div(H,.(y,0)) =0 for a.e. y € Q;

G1: there exist 21,29 € Wy'?(, R) N L®(Q, R) such that 0 < zo(y) < 2i(y) for a.e.
y € Q, div(H,(-,Vzo(-)) € L>®(Q, R) and
(1) —Ga(y, 21(y)) = div(H:(y, Vzo(y)) a.e. in

G2: G(y,-) is convex and belongs to C*(I,R) for a.e. y € Q, G(-,z) is measurable

on Q for all z € I with I being a certain closed neighborhood of the interval
I = [0,esssup,cq 21(y)] for a.e. y €
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252 A. ORPEL

G3: G, is nonnegative in f for a.e. y €
G4: [, G.(y,0)dy #0, [,G(y,0)dy > 0 and [, G(y,esssup,cq 21(y))dy < oc.

We shall investigate the following class of elliptic problems which generalize the bal-
ance of a membrane equation:

— div(H.(y, Va(y))) = Ga(y, 2(y)) for ae.y € Q,
x e Wyl (Q,R),
where H,(y,z) = [d;‘:lH(y,z),..., - H(y,z)] for z = [21,...,2,] € R" and G,(y,z) =

%G(y, x) for z € R, y € Q, ¢ > 2. By a (weak) solution of this problem we understand
an element z € W&’q(Q R) such that for all p € C§°(£2, R)

Jo Ha(y, V() Ve(y)dy = [, Gu(y, 2(y)p(y)dy for ae.y € Q,
x € Wy, R) and div(H, (-, Vx(-))) € LY (Q, R).

(2)

The aim of this paper is to show that under the above assumptions, (2) possesses solutions
from a known pre-specified interval of the positive axis. The question of existence of
solutions to (2) is justified by the fact that a lot of mathematical models of physical and
technical phenomena involve nonlinear elliptic problems. In this paper we shall present
methods based on the variational calculus, which is of significant importance in many
disciplines of science and the starting point for various approximate numerical schemes
such as Ritz, finite difference, and finite element methods. There are a number of papers
studying the elliptic partial differential equations in the divergence form, see, among
others, [1], [2], [6], [7], or [8]. In our case, G is not smooth enough to apply [7] (G should
be of class C'(Q x R, R)) or [8], where the existence result follows from the existence of
a solution of an associated symmetrized semilinear problem for G, (y,-) continuous on R
and satisfying, among others, the estimation

(3) G.(y,z) < a{—bz(—x) f2(y)} for all z <0

for nondecreasing 6, € C(R4, R4 ), nonnegative fo € LP(Q, R;), max{n/q,1} < p < oo,
02(0) > 0. Here we do not impose either continuity of G, in = on the whole line or
conditions similar to (3).

Analogous problems in variational form were treated by means of the sub-, superso-
lution arguments, for example in [3], [4], [5], [9], [10], [11]. A. Baalal and N. B. Rhouma
in [1] also apply variational methods and the comparison principle for sub- and superso-
lutions, proved in the first part of their paper, to obtain the existence of a weak solution
for the second order quasilinear elliptic equation of the form

(4) L(u)(y) = — div(A(y, u(y), Vu(y))) + By, u(y), Vu(y)) = 0

for Q C R" being a bounded domain with smooth boundary and A(z,u, Vu) = {A*(z, u,
Vu)tizi.n, AL B : R x R x R — R. These results do not cover situations described
in this paper. This is due to the fact that the authors consider the case when A?, B are
Carathéodory functions satisfying the following conditions: for all ¢ € R, £, ¢ € R?

P1 [A(y, (&) < ko(y) + bo(y)IC[P~! +algP~,
2 (A(ya Cag) - A(ya Cafl))(g - 5/) > Oa if 5 7é ga/
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P3 A(y,(,£)& = al¢]P — do(y)[C]P — e(y),

P4 |B(y.¢. 9| < k(y) + b(y)[¢|* + cl¢]",

with positive constants: a,c, o, 0 < r < (p’%),, p = z%’ p* = ddTpp, and ko € L¥ by €
Lp%l,k € L%, where (p*) < g < (pis NE), dg,e,be LTZV, 0 < € < 1. Here, the function
B(y,u, Vu) = —G4(y, u) is not smooth enough. Moreover we omit growth conditions, so
(P4) does not necessarily hold in our case. It is worth noting that all properties of G

concern the interval I. In the vast existing literature devoted to similar problems, authors

usually impose smoothness, convexity or growth conditions on R. It turns out that weaker
assumptions made on G are still sufficient to deduce the existence of a countable set of
positive solutions for (2). Since we shall propose an approach to solvability of our problem
based on variational methods, including a dual least action principle, we treat (2) as the
Euler-Lagrange equation for the functional

(5) J(z) = / (H(y, Va(y)) - Gly,2(y))}dy

defined on a certain subset X (given later) of W, (2, R). This restriction is associated
with the fact that in the general case described by our hypotheses, J is not necessarily
bounded on W, %(€, R). We shall consider the set X on which J:X — R is bounded below.
Since our assumptions are not strong enough, we will not use methods like mountain
pass lemma (see e.g. [12], [14], [15]), Morse theory and its generalization or the saddle
points to investigate critical points of J. More precisely, we cannot use the mountain
pass theorem, for example, because G is not sufficiently smooth and it does not satisfy
any growth conditions; we also omit additional relations similar to the following: there
exists p > 0 such that 0 < uG(y,z) < G, (y, z) outside the ball with radius » > 0. In
consequence, J does not satisfy, in general, the (PS)-condition.

This paper is organized as follows: first we introduce the set X of arguments of
the action functional J and prove some important properties of X. In Section 2 we
develop a duality theory, which is based on the idea of using the Fenchel conjugate of
functions G and H to define the dual functional. The duality relates the infimum on
X of the energy functional associated with our problem, to the infimum of the dual
functional on a corresponding set X?. The links between minimizers of both functionals
give a variational principle and, in consequence, their relation to the boundary value
problem. As another consequence of the duality we obtain a numerical version of the
variational principle, which gives a measure of the duality gap between the primal and
dual functional for approximate solutions to (2). These numerical results are used in the
proof of the following existence theorem:

THEOREM. There exists xo such that 0 < xo < z1 a.e. on (), and

{ —div(H:(y, Vao(y))) = Ga(y,20(y)) for a.e. y €,
zo € W' (, R) and div(H, (-, Vao(-))) € L®(, R).

Section 5 is devoted to the existence of a countable set of solutions to (2). Our approach
allows us to get information on the least number of solutions by applying the above
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theorem repeatedly for a sequence of disjoint sets X; described by a sequence of intervals,
on which G satisfies conditions analogous to (G1)-(G4).

Now we shall construct the set of arguments of J as follows:
X = {z e Wy Q,R), 0<z(y) < 2z(y) ae. on Q and div(H.(y, Vz(y))) € L=, R)}.
To prove an auxiliary lemma concerning properties of X we use some results due to
A. Baalal and N. B. Rhouma, so we cite the relevant definitions and theorem from [1].
DEFINITION 1. We say that z is a solution of (6) with the boundary value g € w'r 09),
1<p<oo,if

r € WY (Q,R), B(-,x,Vz) € L(p*)/(Q,R), r=gE€ Wi s 7 (0Q),

6
© /QA(-,x(y)»Vw(y))W(y)der/QB(y,x(yLVw(y))so(y)dy=0

for all ¢ € Wy (Q, R).
DEFINITION 2. We say that = is an upper supersolution of (6) with the boundary value
g€W1 P (0), 1 <p<oo,if
x e WY(Q,R), B(-,x,Vz)e LW (QR), x>geW' 7(0Q),
| Al Vel Vewids + | Bly.at). Va)elds > 0

Q

for all ¢ € W, (Q, R) such that ¢ > 0.
Similarly, a lower subsolution is characterized by the reverse signs in the above defi-
nition.

THEOREM 1. Suppose that (6) admits a bounded lower subsolution u and a bounded upper
supersolution v such that u < v. Then there ezists a solution w of (6) such thatu < w < wv
a.e. on ).

Now we shall prove

LEMMA 1. X # () and X has the following property: for every x € X, there exists T € X
such that

(D) —div(H.(y, VZ(y)) = Gu(y,2(y)) for a.e. y € Q.

Proof. Let us note that 2o € X, which is due to (G1), so X # (. Fix € X. By (G2)
and (G1) we have G,(-,z(-)) € L>®(Q, R). Let us consider (6) with p = ¢, g = 0,
Ay, ¢, €) = H:(y,€) and B(y,(,§) = —Ga(y, x(y)):

1) { —div(H.(y, VI(y) = Ca(y, 2(y)) forae.y e,

z e WP (L R).

Since div(H.(y,0)) = 0 and G;(y,z(y)) < 0 a.e. on €2, u = 0 is a bounded lower subso-
lution of (7). On the other hand, for all nonnegative ¢ € W, (%, R),

lém@N%@Wﬂwwi/%@w@W@@

Q
—/div[ 2y, Vzo(y y)dy — /G (y, z1(y))p(y)dy > 0.
Q
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So zg is a bounded upper supersolution of (7). Therefore Theorem 1 yields the existence
of a solution T to (7) such that 0 < Z < 2 a.e. on Q and further 0 < T < z; a.e. on .
Summarizing: T € W, %(Q, R),0 < T < z; a.e. on Q, and — div(H. (-, VZ(-))) € L™(Q, R).
Thus Z € X and, in consequence, X has the property (D). =

2. Duality result. In this section we shall develop the duality, which describes the
relations between the critical value of J and the infimum of the dual functional Jp :
X% — R defined as follows:

(®) Tp(p) = / (—H*(y,p(y)) + G*(y, — div p(y)) } dy,

with G*(y, ) and H*(y,-) (y € Q) denoting the Fenchel conjugate of é(y, -) and H(y, "),
respectively, where ~
~ _ [G(y,xz) ifzelandyecq,
CTY(y’x){oo if ¢ IandyeQ,
and )
X%:={pe LY (0, R"); there exists z € X such that

p(y) = H,(y,Va(y)) for a.e. y € Q}.
Lemma 1 leads to the observation that for each z € X there exists ¥ € X satisfying (D).
Taking p(-) = H.(-, VZ(-)) € LY (Q, R") we infer that p € X?. Finally, we can formulate
the following

REMARK 1. For every = € X, there exists p € X¢ satisfying
—divp(y) = Gx(y,z(y)) for a.e. y € L.

Now we need a kind of perturbation of J and convexity of functions considered on
a whole space, so that we use the extension G of G to the set {2 x R™ and consider for
each x € X the perturbation J,, : LY(€), R) — R of the functional J given by

J2(9) =L{—H(y7Vx(y))+5(y,g(y)+w(y))}dy~

Due to the fact that G(y, z(y)) = G(y, z(y)) for a.e. y € Q on X, we will not change the
notation for the functional J containing G or G.
For every x € X we define a type of conjugate J7 : X¢ — R of J, as follows:
JF(p)= sup /{< 9(y), divp(y) > =Gy, 9(y) + z(y)) + H(y, Vz(y)) }dy,
geLI(Q,R) JQ
which can be simplified to

9) J#(p) = /Q{G*(y, divp(y)) + H(y, Va(y))— < 2(y),divp(y) >}dy.
LEMMA 2. For allp € X¢
(10) Sgg(—Jf(—p)) = —Jp(p),

and for each x € X

(11) sup (—J#(-p)) = —J(2).
peXd
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Proof. By the definition of X ¢, we infer that for each p € X ¢ there exists Z € X satisfying
the equality p(y) = H,(y, VZ(y)) for a.e. y € Q and further, by the assumptions made
on H

/ H (3, p(y))dy = / (< VE@). ply) > —H(y, VE(y))}dy
Q Q

< sup / (< Valy), ply) > —H(y, Va(y))hdy < /Q H* (4, p(y)) dy.

zeX JQ
Consequently
sup (~J(~p)) = sup / (< Va(y).ply) > —H(y, Va(y)) — G* (v, — divp(y))}dy
xTE S

= —JD

which is our first assertion. To show the other equality fix x € X and use Remark 1,
which gives the existence of p belonging to X¢ and such that —divp(y) = G.(y,z(y))
for a.e. y € Q. Arguments similar to those in the proof of (10) give

sup (=JF (=p)) = sup /{< z(y), —divp(y) > -G (y, — divp(y)) — H(y, Vz(y)) }dy
peXd peXdJQ
=—J(z). =
Let us note that, due to the properties of X and X¢ (Lemma 1 and Remark 1), we

were able to avoid calculation of the conjugate with respect to a nonlinear space. As a
consequence of both assertions given in the previous lemma we get the duality principle:

THEOREM 2.

f J(x)= inf J
mng (33) pleri(d D()

3. Necessary conditions and regularity. Applying the results of the previous section
we shall describe the relation of the minimizers of functionals J and Jp to our boundary
value problem.

THEOREM 3. If T € X satisfies J(T) = inf,cx J(z), then there exists p € X which is a
minimizer of Jp : X — R and

{ —div(p(y)) = G.(y,z(y))

Proof. By Remark 1 there exists 7 € X¢ such that

/ (< T(w), — divB(y) > ~G*(y, — divp(y)) }dy = / Gy, 7)) dy,
Q Q

which gives

a.e. on Q.

(12) JE(=P) + J=(0) = 0.
Using the above assertion and the equalities Jz(0) = —J(Z) and (10) we can derive that
(13) —J(@) = —JZ (=p) < sup(=JF(-p)) = —Jn(P).

zeX
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Finally, Jp(p) < J(T). Now Theorem 2 leads to the conclusion that P is a minimizer of
Jp: X% = R.

To end the proof it is sufficient to show that p(y) = H.(y, VZ(y)) a.e. on . Let us
note that (12) and the equalities Jz(0) = —J(Z) = —Jp(p) yield

JE(=P) = Jp(P) = 0,
and further
T 50 + H (5. 92(0)~ < Valu).5ta) >}y =0,
The above assertion, assumption (H1) and the properties of the subdifferential yield
p(y) = H.(y,VZ(y)) a.e. on Q,
which is our claim. m
Now we establish a kind of the numerical version of the above variational principle.

THEOREM 4. Assume that {x,,}ney C X 18 a minimizing sequence of J : X — R.
Then for each m € N there exists {py ymen C X which is a minimizing sequence of
Jp : X% — R such that

(1)l LH @ pm () + Hy, Vem(y)) = < pm(y), Vem(y) >}y =0
and for allm € N

(15) —divp,(y) = Go(y, zm(y)) a.e. on Q.

Moreover, for each € > 0, there exists mg € N such that for all m > my

(16) 1T (Pm) — I ()| < e.

Proof. First we establish a lower estimate for J : X — R. From the definition of X we
have that 0 < z < z; for all z € X, so the monotonicity of G implies

a7) @)z [ {bqlw(wq+k1<y>—G<y,x<y>>}dy

v

>_ / (Gly, 21(y)) + k1 (y))dy > —oo,
Q

and finally inf,,en J(z,,) =: ¢ > —o0. Thus for a given £ > 0, there exists mg € N such
that for all m > mg

(18) c+e> J(xm).

By arguments similar to those in the proof of Theorem 3 we state that for each m € N
there exists p,, € X9 satisfying (15) and

(19) Ju (0) + JF (=pm) = 0.

Our task is now to show that {p,,}men is a minimizing sequence for Jp : X¢ — R.
Combining (18), the equalities: J,;, (0) = —J (), (19) and (11) we may deduce that for
all m > myg

ct+e> J(xm) = Jffn(_pm> > ig)f((Jf(—pm)) = JD(pm>-
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On the other hand, by Theorem 2 we get Jp(p,) > ¢ for all m € N. Summariz-
ing, inf,c xa Jp(p) = infyen Jp(Pm) = c. From the above reasoning and the fact that
me (=pm) < ¢+ ¢ for all m > mg we obtain (16), and the auxiliary assertion

J¥ (=pm) — Ip(pm) < €,

which gives (14). m

4. The existence results. In the sequel we shall prove the existence of a minimizer of
J belonging to the set X and being a solution of (2).

THEOREM 5. There exists a minimizer xo of J on X such that xo satisfies (2).

Proof. To prove the existence of the minimizer of J on X we shall employ the scheme
presented in [13]. We start our proof with the observation that the set P; = {x € X; @ >
J(x)} is nonempty for sufficiently large @ € R, which follows from the conditions made
on G and H. Choosing a minimizing sequence {z,}men for J from P; and applying
(17) we infer the boundedness of {Vz,,}men with respect to the norm || - ||1q(q rn),
and hence the boundedness of {Z,, };men in Wy?(€2, R). Due to this fact, we may deduce
that (up to a subsequence) {2, },men tends weakly to a certain 2o € W, (%, R). So that

we get @ Ty, Str—o>ngm_,oo 2o in L9(Q), R) and further, pointwise convergence of a certain
subsequence (still denoted by {2, }men). So
(20) 0 < zo(y) < 21(y) < esssup z1(y)

yeN
for a.e. y € Q, and finally xq € L>°(Q, R). By the properties of H(y, "), G(y, ) we obtain
liminf,, e J(2n) > J(x0), so our task is now to show that o € X. On account of (20)
it is sufficient to prove that div (H,(-, Vzo(-))) € L>(€2, R). To this end, let us consider
a minimizing sequence {p,, }men C X<, described in Theorem 4, having properties

(21) —divpm(y) = Gu(y, zm(y))

for a.e. y € Q2 and every m € N, and

(22) lim Q{H (Y, pm(y) + H(y, Vo, (y)— < div pim(y), zm(y) >}dy = 0.

m—00

Using the continuity of G, and (21) we get

(23) lim (—divpm(y)) = lim Gu(y, zm(y)) = Galy zo(y))-

m— 00

Therefore, we obtain the boundedness of {divp,}men in L®(Q, R) and further in
weak

L7 (9, R). Hence there exists z € L9 (€2, R) such that divp,, " m—oo 2.

On the other hand, the boundedness of {Vz,,}men in LI(2, R) and {div p,, }men
in L>(Q, R), growth conditions imposed on H, (22) and the properties of the Fenchel
conjugate imply the boundedness of {p, }men in L7 (9, R™). Thus there exists a subse-
quence still denoted by {p,, }men weakly convergent to some pg in L7 (Q, R™). From the
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above reasoning we derive

/Q <) Vh(w) > dy = Jim_ [ <9, (0). Thiy) > dy

m—00

=— lim < divpm(y), h(y) > dy = —/ < z(y),h(y) > dy

for any h € C3°(€), R), hence the Euler-Lagrange lemma leads to the equality divpo(y) =
2(y) for a.e. y € €. Finally, divp,, weak o divpo. Now taking into account (21) and

assumption (G2) we can derive that

m— 00

(24) 0= lim Q{G*(y, —divpm(y) + Gy, 2m(y))+ < divpm (), Tm(y) >}dy

> /Q {G*(y, — div po(y)) + Gy, 2o(w)+ < divpo(y), zo(y) >}dy.

Thus, by the properties of the Fenchel transform, we have the equality in (24), and,
consequently

(25) —divpo(y) = G (y,zo(y)) for a.e. y € Q.

By the assumptions made on H and (22) we infer

m—0o0

0= lim Q{H*(y,pm(y))+15T(y,Vscm(y))*<pm(y),Vocm(y) >}dy

> /Q (H* (4. p0(4)) + H(y, Vao(y))— < poly), Varo(y) >}dy.

On account of the last relation and arguments similar to those in the proof of (25), we
get

(26) po(y) = H,(y, Vao(y)) for a.e. y € Q.

Summarizing, zo € W,9(Q, R), 0 < z0(y) < z1(y) a.e. on Q and div (H.(-, V() €
L>(Q, R), so 2y € X. Substituting (26) into (25), one can see that x( satisfies (2). m

Now we shall give an example of problem (2) with the right-hand side being not
necessarily convex and smooth (with respect to the second variable) on the whole positive
axis.

EXAMPLE 1. Let us consider the following problem:

2 0%z

(27) - div][Va()[PVa(y)] - g—yj;<y><y2 +18) = S5 ) (0 + 19)
GOk
@ 2(9)(5 + 2(3))

for a.e. y € Q:= {(y1,42) € R0 <y; <2 and 0 < yo < 2} . In this case

+(@(y) +1)°(2 = y1)(2 — y2)

1 1 1
H(y,z) = Z|Z|4 + 523(.@2 +18) + 523(2/1 +18)

and
25 16 1
Glyw) = 2 Infe+5/ = Sl — o] — 2+ 2@+ D2~ )2~ 1a)
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fory € Q,allz € R\{-5,4} and z = (21, 22) € R2. It is clear that H satisfies assumptions
(H1)-(H3). Our task is now to find 0 < zp < z; on 2 such that (G1) holds. Let us
consider

20(y1,y0) = {y2(2 —y1)(2—1y2) for (y1,42) € Qand y; >y
; 11(2—11)(2—y2) for (y1,y2) € Qand y1 <y

and 21 (y1,y2) = 1.120(y1, y2). It is easy to check that zo € Wy *(Q, R), div(H.(-, Vz(-)) €
L>(Q, R) and
*Gz (ya 21 (y)) > le(Hz(y7 VZO(y)) a.e. in Q.

Moreover, G(y, ) is convex and continuously differentiable in [—1,3] and 0 < 21 (y1, y2)
< 2 on ), so we conclude that G satisfies (G1)-(G4). Finally, Theorem 5 leads to
the existence of at least one positive solution z € Wg 4(Q, R) with div(H.(y, Vz(y)) €
L>(Q, R) for (27).

Of course, we can give an example of a problem with nonlinearity being a smooth
function (with respect to the second variable) on R.

ExAMPLE 2. The Dirichlet problem for the equation

2 2
O )+ 18) — 2 )+ 18) = () + (2= )2~ )
Y1 Oy5
for a.e. y € Q := {(y1,92) € R0 < y; < 2and 0 < yy < 2}, possess at least one
positive solution. Indeed, taking zy and z; as above, analysis similar to that in the pre-
vious example gives the existence of at least one positive solution z € WO1 4(Q, R) with

div(H,(y, VZ(y)) € L (£, R) for the last equation.

— div[|Va(y) PV (y)]

5. The existence of a countable set of positive solutions. To show the existence
of a countable set of solutions to our problem, we assume (H1)-(H2) and the conditions
analogous to (G1)-(G4):
G1la: there exist {a;}ien, {@tien € Wy (Q, R), div(H.(-, Va,(-))) € L®(Q, R) such
that forally € Qandalli e Ky C N
0 < ai(y) < a;(y) a.e. in €,
Gm(ya az(y)) Z - le(Hz(ya vaz(y))) a.e. in Q?
G1b: there exist {b; }ien, {bi }ien € Wy 9(Q, R)NL® (2, R), div(H.(-, Vbi(-))) € L=(Q, R)
such that for all y € Q and all i € K:
0 < bi(y) < bi(y) a.e. in €,
Glc: for each i € K
a; < b; < a;jy1 a.e. in

G2a: for each i € K, : G(y,-) is continuously differentiable and convex in a closed
neighborhood I; of the interval I; := [0, ess sup,cq bi(y)] and G(-, ) is measurable
on Q for all z € I;;

G3a: (G, is nonnegative in I; for each i € Ky
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Gda: forall i € K : [, G(y,a:(y))dy > —o0, [, G(y,bi(y))dy < +o0.
Now for each i € K we shall construct the set X; as follows
(28) X, ={x e Wy R), ai(y) < z(y) < b(y) a.e. on Q.
and div(H.(-,Vz(-))) € L™ (Q, R)}.

LEMMA 3. Assume hypotheses (1), (K), (H1)-(H3) and (G1a)-(G4a). For each i €
K,: X;# 0 and X; has the property (D).

Proof. Tt is clear that b; € X, for each i € K. Now we follow the scheme employed in
the proof of Lemma 1. Fix i € K and z € X;. Using (G1la) and (G1b) we infer that
a; is a bounded lower subsolution and b; is a bounded upper supersolution for (7). So
Theorem 1 yields the existence of a solution Z to (7) such that a; < T < b; < b;, and
consequently, T € X;. m

Applying Theorem 5 to the sequence of nonempty sets X; we obtain

THEOREM 6. Suppose that (1), (K), (H1)-(H3) and (G1la)-(G5a) hold. Then for
each i € K, there exists a minimizer x; € X; of J on the set X; which is a solution for
(2). Moreover for all i,j € Ky : x; # x; fori# j.
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