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Abstract. We study the existence of solutions to a nonlinear parabolic equation describing
the temporal evolution of a cloud of self-gravitating particles with a given external potential.
The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and
global-in-time solutions, and also a kind of stability of global solutions.

1. Introduction. Let us consider the Cauchy problem for the equation

1) up = Au+ V- (uVe) + V- (uVP),

coupled with the Poisson equation

(2) V¢ =VE;*u,

where Ey(z) = —((d — 2)oq)7!2|>7¢, d > 3, denotes the fundamental solution of the

Laplacian in R?, and o, is the area of the unit sphere in RY. Moreover, in (1), ® is a
given function.

We supplement system (1)-(2) with the initial condition
(3) u(z,0) = up(z).

The system above describes temporal evolution of the density u(x,t) of a cloud of
self-gravitating particles and the potential ¢(z,t) generated by gravitational interaction
between them. The function ®(x) appearing in the third term on the right-hand side of
(1) represents the given external potential.

The physical (astrophysical) interpretation of the system has a long history and, to
find more details, we refer the reader to the papers [1]-[3] and references therein.
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The paper was inspired by the paper [4] where the system above with no external
potential was considered.

Notations. We denote the Fourier transform of a function v on R? by the symbol 5(¢) =
Jga v(z)e” ¢ dz. The constant C' denotes various inessential constants and may vary
from line to line.

The spaces PMIB, Following [4], we introduce functional Banach spaces relevant to the
study of solutions of the Cauchy problem for the system (1)-(3):

PMe ={v e S’(Rd) 10 € Llloc(Rd), [lv|lpate = esssup [€]4[0(€)] < oo},
£ER?

where a > 0. More properties of these spaces can be found in [4].
Let us define, following [4], the space of vector-valued functions X as follows:

X = Cy([0,T); PMYF), 0 < T < o0,

where C,, denotes (cf. [1]) the space of vector-valued functions which are weakly contin-
uous. The necessity of considering C,, instead of strongly continuous functions is caused
by the fact that the heat semigroup is only weakly continuous on the spaces PM*, since
these spaces are not separable.

By a solution of the system (1)-(3) we understand a function u = u(t) € A fulfilling
the equation

(@ () = " Fite0)+ [ -l (mf, )+ (&a@, 5)+ VB¢, >)) ds

0
foré cR?and 0 <t < T.
Recall that a mild solution of problem (1)-(3) is defined usually as a solution of the
following integral equation:

(5) u(t) = ePug+ / AT - (u(s)V(s)) ds + / t eB=)AY . (u(s)VP(s)) ds,
0 0

where V¢(s) = VE; * u(s), and the integral is understood as the Bochner integral. Such
a meaning of a solution is not suitable for our construction of solutions of the Cauchy
problem. The integrals with respect to s in equations (4) and (5) should be defined
in a weak sense (like, for example, in [4] and [10, Def. 2]). For more explanations, we
refer the reader to [4] and references therein. Nevertheless, a distributional solution of
(1)-(3) which belongs to X3 is the solution of the integral equation (4) (or its equivalent
version (5)), and vice versa. This equivalence can be proved following the computations
for Navier—Stokes equations in [10, Th. 5.2].

The spaces PM?~2 and X, play a special role in our considerations. This comes from
the fact that for d > 3 there exists a stationary solution to the problem with no external
potential. It is called the Chandrasekhar solution and has the form

uc(z) = 2(d — 2)|z| 2
It is easy to check that uc(x) belongs to PM? ™2 (and to Ay if uc is interpreted as a

constant function in ¢). As it was shown in [4], it is expected that uc is a solution with a
kind of critical singularity of initial data in the sense that for small (< cu¢) initial data
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the solution exists, and for an initial condition such that uo(x) > uc there is no solution
to problem (1)-(3).

In this paper we use also the space PM? 7% 3 < 2. A typical example of a function
which belongs to PM9 7 is |z ~~.

The model (1)-(3) can be also considered with the electric interaction instead of the
gravitational one; for a physical motivation see [8], [9]. In this case the equation (2) should
be rewritten as

Vé = —VE, +u.

However, the results for this model are usually “better” than for gravitational one, but
the methods used for construction of solutions here do not allow obtain different results.
Thus the results we can obtain for the electric interactions model are the same (as well
as the proofs) as for the model considered in this paper. R

To simplify the notation, we will denote the quadratic term in (4) or (5) by B(u,u)
or B(u,u) resp., with the bilinear form B defined by

B(u,v) = /0 =AY - (u(s)V(s)) ds,

where ¢(s) is obtained by V¢(s) = VE, * v(s).
Analogously, let us denote the linear term in (4) or (5) by Lu or Lu, respectively, with
L defined by

U = te(t_S)A (u(s s))ds
L / V- (u(s)VE(s)) d

where ® is a given external potential such that V& € PM?~2.

This paper is the first one where such a condition on the function ® is imposed.
A usual condition for the external potential was ® = ¢*Ej, cf. [§8]. Unfortunately, such
a singular form of the function ® implies that the operator L cannot be well-defined.
V® € PMY“ is a condition which allows us to define the operator L properly.

So our problem can be read as

u(t) = e®ug + B(u,u) + Lu.

2. Main tools. The main tool which will be used in the paper is a modification of
a well-known theorem by Banach, that gives the existence and uniqueness of solutions
via a contraction mapping (or successive approximations) argument. We have (cf. [7])

THEOREM 2.1. Let B : X x X — X be a continuous bilinear operator. Assume that there
exists a constant K such that

1B(y, 2)|lx < Kllyllxll2]lx
forall y,z € X. Let L : X — X be a continuous linear operator
I Lyllx <yl x
with the norm satisfying the condition ¢ < 1.
2
i) For a € X such that |jal|x < (14_[? , there ezists a solution © € X to the equation

(6) x=a+ Lz + B(x,x).
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This solution fulfills the estimate
1—4—/(1-0)2—4K]|a|~ J1-t
2K - 2K
Additionally, this solution is unique in the open ball in X centered at zero, of radius é—;f

i1) The solution depends continuously on a in the following way. For ||b|lx <& < (14_[?2

and v being the solution of the equation v = b+ Lv + B(v,v), we have
lu—vlla < 2((1 — ) = 4Ke) "2 [|la — b -
The proof, following the lines of [7, Ch. 16, Lemma 20], is left to the reader.
In the proofs we will often use the following estimate of the integral fot e~ (t=9)IEl* gs.

lllx <

LEMMA 2.2.

t i 2 1 —€7t|€|2 ti-a
(7 /0 e~ (t=9)IEl gg = BGE < ¢! GER for every q € [0,1].

Proof. Since for ¢ = 0 (we put 0° = 1) and ¢ = 1 the proof is obvious, hence we assume
0 <g<1. Puttingg=1— %, it suffices to show the inequality

1 — e tlél? 1\ "%

1§<1> , forevery 1 <p < +4o0.
(tlg?)» p

However, estimating the maximal value of the function f(z) =

this maximal value is reached for z = z,,,,,. Moreover, z,, fulfills the equation e~
1
. Thus

1+pzhas

_,p
1_‘; we have that

P
“mar —

1—=

PZnaz Ly -

f(z )=77§(1—— =q¢!, q€0,1]. m
e ng’b—tllz + Zmax p

Let us recall the formula for the Fourier transform for the function |z|~:
(8) (|;|:‘) = ClE|*~4  for every 0 < a <d,
and the formula for convolution of such functions for 0 < «, 8 < d, such that d < a + :
(9) 2]~ * |2] 77 = Cayp
where (following [4, Lemma 2.1]) C, g is equal to
D)D)

2 2 2

L(§)T(5)r(*=5=2)

with I denoting the usual Gamma function.

[,

(10) Ca,p

b

3. Global and local solutions in the space A3. In this section we prove the existence
of local (in the space A3, 5 < 2) and global (in the space X3) solutions to the problem,
using Theorem 2.1 and suitable estimates of the bilinear form B(:,-) and operator L.

First, let us observe that if uy € PM?™? then e'®uy € PM? for every t > 0, but
in general e'®uy & PM?7 for  # (. Indeed, we have

2~
le“®uollx, = sup esssup ¢4 e [ug] < [luo|lpaga-s = [[uo]lx,-
0<t<T  gcRrd
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To get estimates for ||B(u,u)||x, let us notice that if v(t) € PMYP and Vi (t) =
VE4*v(t) then W(ﬁ,t) = i€|€|720(€, t) so Vip(t) € PMIPTL Thus, we have

LEMMA 3.1. For1 < 3 < %, B <2 and functions u,v € X3 we have
1B(w, v) |2, < Kllullx, vl

where
B

K=Cy pa pm (g) ‘-4,
with Cy_p.a_py1 defined by (10).
Proof. For u(t) € PM*? and d and § fulfilling the inequality
(11) 1<f< —,
we have
|(a(t) = V() ()] < (/Rd € — CﬁdC|ﬁlddC> lu(®) | paga-s v (E) [ paga-s
= €771 1C g .a-pra [[u(®) | ppgas [[0(E) | paga-s-

Thus, for u,v € Ag, using Lemma 2.2 we obtain

t

. — —8 2 T

| B(u, v)]|x, :oi?ETeSfSRLipWB‘/O ice” I (W) (s) ds
STS S

¢

2

< sup eSSSUP|§|ﬁCd—ﬁ,d—ﬁ+1/ em(t=9)lel ds||ull x4 V] x,
0<t<T ¢ecR4 0

= Ca—pa—p10°T 17 Jul| 2, |v]|x,  for every q € [0,1].

To get the required estimate for the norm of || B(u,u)|/x,, we put ¢ =
l-g=1-5>0.m

Proving the existence of global solutions we need additionally ¢ = 1(= g) In the case
of local existence, it is enough that 1 — g =1 — g > 0, which implies 8 < 2. Thus the
constant K required in Theorem 2.1 is equal to

B
2 8
(12) K= Cdﬂ,dﬁ+1<§> T'"z,

and for 3 = 2 the constant does not depend on 7.
We have an analogous result for the operator L.

LEMMA 3.2. For o, >0, a <1, a+ 3 < d, ® such that V® € PM?~* and function
u € Xg we have
[ Lullxs < £llullx,

where
a+1

a+1\ "% 1.
= 198l Capaa(“5 ) T
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Proof. For the exponents «, § satisfying
(13) a,0>0, a+p<d,
we have
(600« TR < ([ |16~ P01 dC ) 9@l (O s
= [¢]7*27Cup,a—al VOl ppgi-olult) | paga-s-

Thus we have

t —_—
| Ll :supesssup|§|d_ﬂ‘/ ife_(t_s)lflz(uV@(s) ds
t>0 geRrd 0

t
Ssupesssupcdg’da|§|a+1(/ e—(t—s)€|2d5>|u||Xﬁ||V(I>||pMda
t>0 ¢cRd 0

= supess sup ¢?Cy_g,4—a || 72T |ul| a0, | VR ppga—a-
t>0 geRrd

Hence to obtain the finite norm | Lu| x, we should take ¢ = %+, s0, 1 —¢=15%>0. =

To get a global solution we need o = 1, but to obtain local existence it is enough to
take a < 1. Note that the conditions of existence in global and local case do not depend

on 3.

So for such ¢ = QT“ and with the assumption o < 1 we have an estimate for
a+1
a+1\ "% 1.
(14 = 198l Capaa(“5 ) T T
The required condition ¢ < 1 (needed in Theorem 2.1) reads
a+1
. a+1\ ? _ia
(15) 90lpaase < Gl (S50) T

It is interesting to observe that for &« = 1 we can satisfy the condition above taking
IV ®|| ppqi—o small enough only. But for av < 1 we can get the same result taking 7" small
enough and any value of ||V®||ppqi-a. So for a@ < 1 local existence can be proved for
arbitrary values of external potential. This is impossible for & = 1 using our method.

Now we are ready to prove the following theorem.

THEOREM 3.3. Assume that ug € PMP and & satisfies V& € PMI~*. Considering
the equation
(16) u = e®u(0) + Lu + B(u,u)
we have
i) (global-in-time solution) for B = 2, o = 1, d > 4, ® such that |V|ppa—1 <
C;_lz,d_l; and ug € PM*? satisfying
(1 — IV pma-1Ca-2,4-1)
[[uoll paga—2 :
4Cq-2,4-1

there ezists a unique global-in-time solution to the problem (16) (we take T = 400 in the
definition of Xs),
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1) (local-in-time solution for « = 1) ford > 3, a = 1,1 < 8 < 2, ® such that
IV®||pppa-1 < Cd_—lﬁ,d—l’ all values of ||ug||ppga-s and T small enough, there exists a
local-in-time solution to the problem (16),

i11) (local-in-time solution for d =3) ford > 3,0 < a <1, 1 < 8 < 2, all values of
lluollppga—s, IV®|ppri-a and T small enough, there exists a local-in-time solution to the
problem (16).

Proof. i) To prove global existence we should take 5 = 2 (so the space considered is A5
with T'= +00) and « = 1 (to get the constants K (12) and ¢ (14) independent of time
T). Additionally, due to (11) (and (13)), we should assume d > 4. For such constants,
IV®|[ppga-o < Cyly 4y and [Jug|ppga—2 fulfilling

(1~ IV®|lppa-1Ca-2,d-1)?
4C4_2,4-1

we apply Theorem 2.1 to get the required result. The proof of the weak continuity (in
this and in the next two cases) follows the lines of the argument in [7, Ch. 18, Lemma
24] or [10, Th. 3.1].

i1) Taking o = 1 we get | independent of time (see (14)). But for 1 < § < 2 (and
the space Xz with 7' small enough, chosen later) we can get the local existence of the
solution for all values of ||ugl||ppa—s. In fact, for ||[VO|ppa—1 < C’df_lﬁyd_1 and T small
enough the condition

[uollppga—2 <

(A = IV®llppa-1Cap.a-1)*
] ]
ACqy-pa-p+1(5)=T =2
is fulfilled for all ||ugl||ppqi-s, which guarantees that the assumptions of Theorem 2.1 are
satisfied.
111) In fact, we can also prove existence of a local solution not only for arbitrary values
of ||uol|| ppqa—s but also for arbitrary values of ||[V®||prqa—«. We can prove it taking o < 1.
Indeed the norm must fulfill (due to Theorem 2.1) the condition
(1=02 (1= |V®lppa—oCapa—al®F) 5 T7°)2

(17 uollppa-s < =
4K 404 pa-p1(3)2 T2

For a given value of ||V®|pp a-« > 0 we take T small enough, such that the condition
(15) is satisfied. Since the right-hand side of the inequality (17) tends to +oco as T tends
to 0, so taking T small enough (and smaller than the one chosen in (15)), we can satisfy
the above inequality for all values of ||ug|ppa-s and ||V®||prga-a. m

[wollpaga—s <

4. Existence of solutions in the new space )j3. The existence of global solutions
has not been proved for the three-dimensional case yet. We will do it in a subspace of
X, i.e. in a subspace of functions belonging to X5 with some control in time of the norm

[u(®)]lpaga—s-
Define

Vs = {v(t) € S'(RY) : 0(t) € Ligo(RY) for ace. t, |[v]ly, = fggtl‘g o)l paga-sts

where 3 > 0.
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The norm in the space x> N V3 is given by

Hvll?(zﬂyﬁ = ||UHX2 + ||U||yﬁ.

The first question is: which space does e**u( belong to? From the previous section
we know that uy € PM?? implies e"2uy € Xj3.
Considering the spaces Vg we can prove that ug € PMI=2 implies e'Puq € V3,8 < 2.
Moreover, the importance of the space PM?~2 follows from the fact that for § < 2
By € Y3 necessitates that ug € PM?2, Indeed we have

LEMMA 4.1. For any ug € PM%? the solution of the heat equation e'®uq belongs to Vs
for B < 2.

Proof. The statement of the lemma is a consequence of the following calculations:

2 A
[let uoHyﬁfsupesssupt1 |§\d*ﬁe*t‘§| o]
t>0 geRrd

1—

B _ 2 DTN ﬁ 1B

— supesssup(le?) e g ol < (1-7) e D unlpuee
t>0 ¢cRd

for < 2 and uy € PM? 2. The norm of e'®uy is equal to

B
B\'"® s
le"uol|xyny, = <1+ (1 2 e 072 ) gl ppga-z.

To prove the existence of solutions in the space A N V3, B < 2, we must estimate
B(u,v) and Lu in PM%2 and Y. The following lemmas give the required inequalities.

LEMMA 4.2. For 1 < 8 <d—1, the functions u € X5 and v € Vg we have

H (u7v)||X2 <— C||“||X2||U||yﬁ?
)
/6 .

s
C=Cq-2,4-p+1 (g) (1 +e”
V()] < Ca—z.a-pra ] ult) | prga—z[o(t) || paga-s,

where

[N

Proof. Analogously as in the previous section we have

hence
t
(t—s)e2 B
| B, v)l|x, = supesssup Ca-s4- ﬁﬂaﬁ‘/ e (s sl |0l
t>0 ¢eRd 0
< Cllullx, [[vllys
where )
B\ ? 52
= _ _ — ]_ 2 — .
C=0Cq24 ,@+1<2 +e 3
To prove the last inequality we consider two cases:
— For 3 > 2 we have (due to (7))
t1—a
|§|B/ —(t—s)[€|? 5371 ds < |§|ﬁt2*1 ‘§|2q ¢ =q (flﬁ\ ) 7 qelo,1].
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Taking ¢ = g we get

B\ 2
1B (u, v)||x, < Cd—z,d—ﬂ+1<5 [l [[v]lys-

— For 1 < 3 < 2 we have

t B
' . z A
|§|ﬁ/ e (=9E 51 g < |§|’6675‘£‘2/0 sglds+|§|ﬁ<§) / e~ (=9I g
0 t
]
2

B
t 2 i 2 t 1
< (lep) et e (Ger)

Thus, taking the maximal value of the function 2%e* in the first term, and putting

q= g in the second one, we get for 1 < 3 < 2

B
A 82
[B(u, )|l x, < Ca-2,d-p+1 5 l1+e 25 [[wllae, V]l s -

So for d > 3 and 1 < B < d — 1, we obtain the required constant C' as was stated in
the Lemma. =

Following the preceding reasoning we can prove the estimate
LEMMA 4.3. For 1 < B <d—1, the functions u € X5 and v € Vg we have
[1B(u,v)[lys < Cllullx, [[v]ly,

where

2
C = Cd—2,d—5+1217§ (1 + Be:l).

Next we prove estimates for Lu. From the previous section we know that for o = 1
and 0 < 8 < d—1 we have ||Lul|x, < Cllullx,.

LEMMA 4.4. For 1 < 8 <d—1, ® such that V® € PMIL and the function u € Yz we
have

[Lullx, < Cllully,,

where

8
2 B 2
CZCd_g,d_1 g l+e 2-— HV‘I)HpMd—L
2 B
Proof. We have

098] < [ i€ = Ol VBl ppge
< Ca—pa—1 €17 [u(®) [ paga—s [Vl paga—r-

Thus

t

2. —
[ / e Cap.a 1 [€17F T u(s) I ppga-s ds| V@]l pagas
0

| L] 2, =sup ess sup |¢
t>0 ¢eRd
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t
—(t— 2 B
< Capacilluly, [0 pags s supesssupl€l? [ e s 1y
t>0 ¢ecRd 0

B
2 B 2
< Cy-g,a-1 <§> <1 +e 2 ﬁ) [V ppga—r|lully,-

The proof of the last inequality can be rewritten from Lemma 4.2 where such an
i to—(t—s)|El? g5 -1

estimate for [ e s2~1ds appears.
It can be easily seen that for o # 1 the integral is unbounded. =

Analogously we can prove

LeEMMA 4.5. Ford > 3,1 < 3 <2, ® such that Vo € PMIL and the function v € Vg
we have

[Lully, < Cllully,,

where

B8
C=Cynag1 (g) VDl ppqa-r. m

To prove existence of a global solution we apply Lemmas 4.2, 4.3 to get the estimate
(18) HB(’U,/U)HX?myﬁ < K”u”?@ﬁyﬁ”v”?(‘zﬂyﬁ'
Then applying Lemmas 4.4, 4.5 we get
(19) [ Lullxznys < €lullxny, -

These inequalities allow us to apply Theorem 2.1 to obtain existence and uniqueness
of global solutions. Thus we arrive at

THEOREM 4.6. Letd > 3 and 1 < 3 < 2. For ® such that V® € PM*~" with |V ®|| ppqa—1
small enough (such that { = ((||V®| ppra-1) < 1), and ||uo||ppra-2 such that

1-0?°
1K

with constants K and ¢ obtained from (18) and (19), there exists a unique solution u €
X> N Vg to the problem (6).

[uollpaga—2 <

A simple consequence of the above theorem is the following proposition:

PROPOSITION 4.7. For d > 4 there is no stationary solution U = U(x) to the problem
(1)-(8) with small norm ||U||ppqa-2.

Proof. Let us assume that such a stationary solution exists. Since its norm ||U||ppqa-2 is
small enough, we can obtain a unique global solution belonging to X2 (due to Theorem
3.3) and to its subspace X> N Y3, § < 2 (due to Theorem 4.6). From Theorem 3.3 we
conclude that U must be this global solution (but independent of time). But due the
uniqueness and Theorem 4.6 U must belong also to )g. This implies that =% U || ppaga-2
must be bounded what is imposible. So stationary solution with small norm in PMI2
cannot exist. m
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REMARK. The next possibility of proving the existence of solutions to the problem is to
consider a more general space ), 3 equipped with the norm

llully, ; = supess sup t7[|u(t) |l ppre—s-
t>0 £eR

Unfortunately, the condition ug € PM?~2 implies e*“ug € ), 5 only for v = 1 — g This
means that e®ug € Vo(=Y,_ 8 B)' It is obvious since the norm of e/ is equal to

2 A~
HemuoHywﬂ = supesssupt'y\f|”l_ﬂe_t|£| | @0
t>0 ¢eRd

= supess sup(t\§|2)1_§e_t|5|2 |§|d_2|120|t7_1+§
t>0 ¢eRd

c s 8
which is unbounded for v # 1 — 5.

REMARK. We can ask whether it is possible to repeat the construction of global solution
in X3 NY,s,0 < B (as in Theorem 4.6), but with uy € PMIP 5 <2 (let us remind
that for such uy we get only a local solution). Unfortunately, it fails for two reasons.
The first one is that [le'®ugl|y, , < Cllug||x, only for v = ?. The second one is that
|1B(u,v)||x, < Cllullx,]lv]ly, , with C independent of time holds true only for v =1 — &
what implies that § must be equal to 2.

5. Asymptotic stability of solutions. In this section we would like to prove conver-
gence of solutions to the evolution problem towards stationary states. Due to Proposition
4.7 such a solution with a small norm cannot exist. Thus we prove in this section the
asymptotic stability of solutions. The first observation is that if we take wu(t), the solu-
tion with uy € PM?~2, and v(t), the solution of the heat equation with the same initial
condition, we have (due the estimates for || B(u,v)||ppa—2 and || Lu||ppqa—2)

lu(t) = v(®) | paga—2 < 1B(w,u)lpaga-2 + | Lullpaga—2z < K Jul%, + €llullx, < const.

This means that the solutions u(t) stay in a neighbourhood of v(t).
For 3 = 2 (we restrict to the case 5 = 2 since we have a global solution only in the
space X»), we are able only to prove following result concerning asymptotic stability.

THEOREM 5.1. Let u(t) and v(t) be the solutions of the problem with initial data u(0)

and v(0) respectively, and the same external potential ®. We take u(0) and v(0) such that
2 2

lu(0)]| ppga—2 < € < % and |[v(0)]| pppa-2 < e < %. If, additionally, the solutions

of the heat equation with the same initial conditions u(0),v(0) approach each other, i.e.

(20) lim_[e"®(u(0) = v(0))||paga—2 = 0,

m
t——+oo
then also

lim ||u(t) — v(t)| paga-z = 0.

t——+o0

Proof. First, let us estimate the integral

t
sup / €26~ | £(5) | pppas s,

£eR4
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Forp>1andl:1—lwehave

sup / €26~ | £(5) | ppgasdls

£eRd

t 2
tIE|® _tiep2 1—e all
< oup & |7 I st s P s 16 e
eera t Jo 4 ¢EcRA €] t<s<t
D /5
<\ 7% £ ($) | paga—2ds 4+ sup || f(s)]lppa-2
(6(10 - 1)’5) 0 M t<s<t e
1
D /P
<= £ (ts) | ppga—2ds + sup || f(s)]lppga-z.
(6(10 - 1)) 0 M L<s<t e

Coming back to the main conclusion, we have
lu(t) = v(t) | ppga—2 <[le*? (w(0) = v(0)) [ paga-2 + [ B(u—v,u)| ppga—2
1B (v, u=v)lppga-2 +[| L(u—v)|| ppga-2
<[le"® (u(0) = v(0)) [l ppqa-2 )
+2max{||u||x2,|v||X2}K§;H5/O 126 = ER | (= ) () || ppga—2ds

t
+0sup / €26~ | (u—0) (5) | pga—s s
cerd Jo

<1 w0)~ o0 s+ (2K VTP iRe !

(oo [ N0 pas-sds sup w0}

e(p—1) L<s<t

<6 0(0) (O g + (1T TP 1K

S =

><< £ /0 I(u—v)(ts)llppga-2ds+ sup |[(u—v)(s )|7>Md—2>~

e(p—1) t<s<t
Since we want to calculate the limit lim; o ||u(t) — v(¢)|| paqa—2, let us define
A = limsup |lu(t) — v(t)|lppge-2 =  limsup  [Ju(t) — v(t)||ppga—2-
t—+oco t>keN, k—+oo

Let us observe that, due to assumption (20) and the Lebesgue Dominated Convergence
Theorem, the inequality above reads

A< (ﬁﬂ) (1— (6—1)2—4K5>A.

So if (= + (1 — /(£ - 1)2 — 4Ke) < 1, which is equivalent to /(£ — 1)2 — 4Ke >
W, then A = 0.

Indeed, the value of the left-hand side of the last inequality belongs to the interval
(0,]1—4]), £<1,since 0 < e < ( ) . Thus, taking p > 1 great enough, we can get the
right-hand size of the last 1nequahty less than /(¢ — 1)2 — 4Ke. This implies that A = 0,
i.e.

Jimu(t) = o(t)lppges = 0. m
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REMARK. The condition (20) in the assumption of Theorem 5.1 is equivalent to
(21) Jim J¢[*2/0(€) = o (€)] = 0.

Indeed, for any ¢ > 0 there exists § = (<) such that for |¢| < § we have || 2[ug(¢) —
’66(5)‘ S €. SO 2
esssup e e [¢]972ug (&) — 5o (€)| < e
|€1<6

For |£| > § we have

_ 2 9~ ~ 182
esssupe U112 g (6) — a0 (&) < e (luollpaga—2 + llvollpga—2) < &

for t = t(8, ug, vo)(= t(e, up, vp)) large enough. Thus

lim_ess sup e~ 1< |||z (¢) — 5 (€)] = 0.
t——+o0 €€Rd
On the other hand, if the condition (21) is not fulfilled, then there exists a sequence
{&k}, &k — 0, such that the limit considered in (21) is equal to some A > 0. So

esssup e 161972 5(6) — Go(€)] = Tim e~ ¢4 |92 5 (6x) — o (&n)| = A,
SERd §k~>0

where A does not depend on ¢, and condition (20) cannot be satisfied.
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