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Abstract. This note is concerned with the recent paper “Non-topological N-vortex condensates
for the self-dual Chern-Simons theory” by M. Nolasco. Modifying her arguments and state-
ments, we show that the existence of “non-topological” multi-vortex condensates follows when
the number of prescribed vortex points is greater than or equal to 2.

1. Introduction. Inrecent years, charged vortex solutions in (241) dimensional abelian
Chern-Simons vortex theory have received much attention, because of their relation to
many fields of physics such as high-critical temperature superconductivity, some con-
densed matter systems, charged anyon-model, and so on ([5], [11]). A mathematical
proof of the existence of stationary vortex solutions, called the vortexr condensate, has
been given by [1], [3], [4], [7], [8], [10] on the periodic cell domain satisfying a suitable
gauge-invariant periodicity, that is, the 't Hooft boundary condition.

Let © be the fundamental cell domain in R? generated by linearly independent vectors
e1 = (a,0) and ey = (0,):

Q:{x:(xl,x2)6R2—g<x1<g

and let p1,...,ps € Q\ 9 be s distinct vortex points with multiplicities mq,...,ms €
N. Then, after the reduction process of Taubes, existence of Chern-Simons N-vortex
condensates is reduced to finding a solution u = u, to

—é<x <é
) 272727

4 u u . 3
(1) —Au = ¢ (1—e )747rjz::1mj5pj in Q,

u : doubly periodic on 0f2,
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where k£ > 0 is the Chern-Simons coupling parameter and ijl m; = N. From the
maximum principle it follows that e* < 1 on Q, while integrating (1.1) over € implies

/ e“(1 — e*)dxr = mNK?.
Q

Hence we obtain e~ (1 — e¥~) — 0 a.e. as k — 0 passing through a subsequence. Actually,
we are interested in the following cases:

e “topological” N-vortex condensates:

e — 1 locally uniformly on Q\ {p1,...,ps} as k — 0.
e “non-topological” N-vortex condensates:

e — 0 locally uniformly on Q\ {p1,...,ps} as k — 0.

The existence of “topological” N-vortex condensates was solved affirmatively in [10].
On the other hand, only partial results have been known concerning “non-topological”
N-vortex condensates ([10], [8], [4], [3])-

In a recent paper, M. Nolasco asserted that “non-topological” N-vortex condensate
existed for any given vortex points in €. Unfortunately, some estimates are not described
in detail and there seem to be several gaps in the argument. In this note, first, we shorten
and clarify her analytic arguments. Second, we point out that some modifications are
needed in the statement of the above theorem. More precisely, if the number of vortex
points s is greater than or equal to 2, then the conclusion of the above theorem is proven;
more precisely,

THEOREM 1. Givenp; € Q\9Q and m; € N (j=1,...,s), if s > 2 we have & > 0 such
that if k € (0, ) there is a solution u = u, to (1.1) satisfying the following:

(1) e*= <1 on .

(2) e — 0 in CL (Q\ {p1,...,ps} for any ¢ >0 as k — 0.

(3) Zevs(1—e's) = dm Z;Zl m;dp, in the sense of measures on Q as Kk — 0.

In spite of the above mentioned technical improvements, we reproduce some parts
of [9] for completeness. The authors thank Professor Dongho Chae for informing them
about the original paper [9].

2. Radially symmetric vortex. First, we extend the solution u = u(z) to (1.1) for all
x € R? by periodicity. That is, u(x) = u(z + nie; + nges), which satisfies that

~_ 4 g - .
—Au = o (1—¢€*) —4dnm Z ijépy in R?,
neZz? j=1
u(x +e;) = u(z) forz € R? and i = 1,2,

(2.1)

where pj = p; + nie1 + ngez with (n1,m2) € Z? denotes the periodic lattice of vortex
points for j = 1,...,s. Next, we introduce the scaling parameters J,¢ in 0 < § < € as
K = 2ed, and set u(z) = u(dz) and p} = %p}’ for j =1,...,s. Then, it follows that

IO R - :
AT ¢ (1—e*) —4r Z ijéf,y in R?,
neZz? j=1
u(z+e;) =1u(x) forzx € R? and i = 1,2

(2.2)
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for € := %e;, because we have a*§(z) = 6(%) for any a > 0 and « € R?. This is the
equation that we solve by the implicit function theorem, taking suitable approximate
solutions. It is done by “glueing” radially symmetric vortex solutions of Chae-Imanuvilov
[2], and therefore, we briefly recall the latter work.

Namely, we consider N-vortex condensate at the origin,

(2.3) g2

1
—Au= —e"(1 —e“) —4rNdy in R?,
u(x) — —o0 as |z| — oo,
where the case N = 0 is allowed. Chae-Imanuvilov [2] constructs a solution to (2.3) as a
perturbation from log px, where py is the radially symmetric function defined by

~8(N 4 1)2|x2N

(2.4) pn([z]) L+ [PV 2)

Actually, it is a solution to the Liouville equation

(2.5) —Alogpy = py — 47N§y  in R

Next, we introduce the auxiliary function w = wy(|z|) € C?(R?) by
(2.6) —Aw = py(z)w — py(z)? in R,

and make a change of variables in (2.3):

(2.7) u(lal) = log(=2pn (Jo]) + 2w (Jol) + e2o(fo]).
Then, the new unknown v = v(]z|) has to satisfy

(2.8) —Av = épNesz(”“”N) — pRe lvten) épN + Awy
in R2.

Now, we take Hilbert spaces
2,2
X ={ue Wi (R | ulk = (u,u)x < +oo},
(2.9) Y = {uc L*R?) | |[ull} = (u,u)y < +oo},
with the inner products (, )x, (, )y defined by

(u,v)y = / (1 + |z*T ) uvdz,
R?2

(2.10) (u,v)x = (Au, Av)y —l—/ wv(1 + |z[*T) " tda,
R2
for a € (0, %) Further, X", Y" denote the spaces of radially symmetric functions in X,Y
respectively. Then, we have the following (Lemmas 1.1 and 2.2 of [2]).
LEMMA 1. We have
(2.11) o(2)] < [|v]|x (log™ |2] + 1)
forve X and z € R2.
LEMMA 2. There are C,C > 0 such that

(2.12) lwy (Jz])| < C(log™ |2| + 1) for all x € R2,
. wy (|z]) = =Clog™ |z| + o(log |z]) as |z| — oo.



320 T. SUZUKI AND F. TAKAHASHI

In view of those lemmas, we can realize
1 1
(2.13) Py(v,e) = Av+ E_szeg(v-‘rwN) _ p?VeQEQ(U-‘rwN) _ E_sz — pNWN + p?v

as a smooth mapping from a bounded neighbourhood of (0,0) in X" x R into Y". Fur-
thermore, v € X" is a solution to (2.8) for € > 0 if and only if Px(v,¢) = 0, and we have
Py (0,0) = lim. o Py (0,e) = 0 by the choice of wy.

To find continuous € — v, € X" in a neighborhood of (0,0) satisfying Py (ve, &) = 0,
we take the bounded linear operator

?V = DUPN(O,O) = A—I—pN X" SY".
It is proven in [2] that L7 is onto and Ker(LY) is equal to span{¢n} for ¢n(|z|) =
(1 — |2|*N*+2) /(1 + |2|*N*2). Therefore, taking
Hy={ue X" | (u,¢n)x =0} = X" /KerLYy,

we can apply the standard implicit function theorem and obtain v? ;v € HJ in a neigh-
borhood of the origin, satisfying Py (v y,€) =0 for 0 < e < 1. We can check that v y
is a smooth function, and by (2.11),

(2.14) [0z n (2] < Ce)(log™ || + 1)

with C(e) = [[v yllx — 0 as e | 0. Thus,

(2.15) uZ n(|2]) = log(e®pn (o)) + e*wn (|2]) + %02y (|a])
is a solution to (2.3) satisfying

(2.16) eUen = O(|z| 2N 1780

as |z] — oo for some B(e) > 0 in lim. o G(e) = 0, and hence is a “non-topological”
solution.

3. Linearization. Process of glueing requires fine analysis of the linearized operator
around the Chae-Imanuvilov solution, namely,

Aen = Dy Py (v y,6) : X — Y.

Although the proof of this part is not described in detail in [9], we can justify the state-
ment by using the perturbation theory for Fredholm operators. Actually, this operator is

given as

(31) AE,N =A _’_pNe‘g?(wN—i-U;N) _ 252p?\]6282(wN+U:’N)~
Because e (WNHUIn) = 1 4 g2y + o(¢2) by (2.12) and (2.14), we have
(3.2) Aen =Ly +°By + o(e?)

in the operator norm, where

and

(34) BN = PNWN — 2[)?\,

Now, we recall the following (Lemma 2.4, Proposition 2.2, and Lemma 2.5 of [2]).
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LEMMA 3.
Ker Ly = Span{¢N7¢;§a¢fv}
for
1— [o]2N+2
on(@) = T
N+1
vzl cos(N +1)0
(3.5) oy (z) = 1+ |22V +2
_ o JxN T sin(N 4+ 1)6
¢N($) = 1+ |x\2N+2
LEMMA 4.
ImLN:{f€Y|/ fﬁdw:o}-
R2
LEMMA 5.

+ + + <0 (N:]-a2a)a

We also make use of
(BNOK, N L2 (r2) = (BNén, 63)12(R2) =0
valid for N € N U {0}. Furthermore, we have ¢= € Hy for
(3.6) Hy ={ue X | (u,¢n)x =0},
and the orthogonal decomposition X = Hy & H J{, with
Hyx = span{¢n}.

The following lemma assures the injectivity of A. n|uy : Hv — Y, and we provide
a detailed proof for completeness. Actually, it simplifies the original one and justifies
Lemma 4.2 of [9]. Let us note that (4.18) of [9] does not hold for N = 0.

LEMMA 6. If N > 1, we have g9 > 0 and C > 0 such that

1A= volly > Ce?|lv]lx
for any € € (0,&9) and v € Hy.
Proof. If this is not the case, we have ¢, | 0 and v, € Hy with |lu,|lx = 1 and
£, 2| Ac Nn|ly — 0. Then, we can extract a subsequence, denoted by the same symbol,
satisfying v, — ¥ weakly in X for some v € Hy. This implies A, yv, — Ln¥ weakly in
Y, and hence Lyv = 0 follows from [|Ac, nyv,| = o(e2). Namely, we have v € KerLy N
Hy, and hence

0= Cyo% +C oy

with some C,,C_ € R by Lemma 3. Now, we claim that v,, — v strongly in X, and
therefore, that v #Z 0 or equivalently, C’i +C?% #£0.
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In fact, by (3.2) and our assumption, we have ||Ly (v, — 9)||y = o(1), which leads to
[A(vn = 0)[ly < llon(vn = D)y +0(1)

as n — oco0. On the other hand, Rellich-Kondrachov’s theorem and the growth estimate
(2.11) guarantee the compactness of K1 = py : X — Y, and therefore, Av,, — Av
strongly in Y. On the other hand, Ko = (1 + |2[>*®)~1/2: X — L?(R?) is also compact,
and then we conclude that v,, — v strongly in X as desired.

Now, we show that this is a contradiction in the case of N # 0. In fact, for w =
v/(1+ |z|*T*) € Y we have

1 B 1 _
= |(Ae, Nvn, W)y | < — | Ac,, Nn |y |l@]ly — O,
n n

while (3.2) implies

1 1
?(Asvanam)Y = 572(LNU7L,1D)Y + (BNU"’ ’lf))y + O(]‘)

We also have from Lemma 4 that

%(LN’UM’ID)Y = %(LNU“7 C+¢} + Ci(ﬁj_\[)LQ(R% =0,
and hence it follows that (Byv,,w)y = o(1). Therefore, because v,, — ¥ strongly in X,
we have
(Bno, @)y = (BND,0)2(R2) = 0.
However,

(BnD,0)12(m2) = CT(BNOG, 08 ) r2me) + C2 (BN, ON) L2(R2)
+2C,C_(BNd4,N,O— N)r2mre) = CRI + C2Iy <0

by N # 0 and Lemma 5, and this contradiction proves the lemma. m

It is asserted in [9] that Im(A¢ n|my) is closed in YV and A, n|m, is surjective if
¢ > 0 sufficiently small (Lemmas 4.3 and 4.4), and therefore, A; n|my : Hv — X has
a bounded inverse (Lemma 4.5). We justify this by using the perturbation theory of
Fredholm operators in the case of N > 1. (See [2].) Let us recall that a bounded linear
operator T : E — F, between Banach spaces E, F, is Fredholm if Ker(T) is of finite
dimension in F, and Im(T) is closed and has a finite codimension in F' and that its index
is defined by Index(T) = dim Ker(T) — codim Im(7T'). Then, we can make use of the
following abstract theorem of Gohberg and Krein ([6]):

THEOREM 2. Let E, F be Banach spaces, and assume that the bounded linear operator
T :FE — F is Fredholm. Then, there is v > 0 such that if B : E — F is a bounded linear
operator with || B|| < vy, then T + B is also Fredholm,

dim Ker (T + B) < dim Ker (T,

codim Im (T + B) < codim Im (7)),

Index (T + B) = Index (T).
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Actually, Be yn = Acn — Ly : X — Y is a bounded linear operator satisfying
lim.|o || Be,n|| = 0 by (3.2). On the other hand, we have for Ly|g, : Hy — Y the
following.

e Ker(Ly|my) = Ker(Ly) N Hy = span{@t,,(éfv} and hence dim Ker (Ly|my) = 2

by Lemma 3.
e We have
Ln(X)=Ly(Hy & Hy) = Ly(Hy @ span{¢n}) = Ln(Hy) & {0},
and hence
Im(Ly|ay) =Im(Ly) ={f €Y |(f, (/ﬁ)L%RZ) =0}
by Lemma 4. In particular, Im(Ly|g, ) is closed in Y and
codim Im(LN|HN) =2.
Those facts guarantee that Ly |y, : Hy — Y is a Fredholm operator of index 0, and we
can apply Theorem 2 for E = Hy, F =Y, T = Ly|u,, and B = B y|m,. Then, we
conclude that
Ac Ny = Ln|ay + Ben|Hy
is also a Fredholm operator of index 0 for 0 < ¢ < 1. Because Lemma 6 guarantees the

injectivity of Ae Ny : Hv — Y for N > 1 and 0 < € < 1, we get that A n|m, is also
surjective then. Now, we conclude the following.

LEMMA 7. If N > 1, we have g9 > 0 such that Ac n|ay : Hv — Y is invertible for
e € (0,e0). Furthermore, there is C > 0 independent of € such that

_ C
(A vlmy) Mullx < E—QHUHY

for any e € (0,e09) andu €Y.

4. Glueing. Nolasco [9] constructed the approximate solution to (2.2) by “glueing”
radially symmetric single vortex entire solutions to (2.5), by applying a partition of
unity. More precisely, setting a false vortex point pg = 0 with multiplicity my = 0, she
studied the invertibility of the linearized operator. However, some modifications seem to
be needed in this process. For example, (A\go)*l in (6.34) of [9] does not exist.

To this end, we assume that the number of vortex points is greater than or equal to
2, namely, s > 2. Then, we suppose that the multiplicity of p; is equal to

my = _min {my}

.8
without loss of generality, and letting r = %mini#ﬂpi — pj|, dist(p;, 002)}, we put
Bj={zeQ||lz—pjl<r}, j=2,...,s,

B = {x € R?| dist(:c,Q\ U Bj) < g}

=205

Let us note that B;NB; =0 fori,j € {2,...,s}, i #j,and BiNB; # 0 for j =2,...,s.
By the definition, each B; contains exactly one vortex point p; with multiplicity m;. It
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is different from [9], where By contains no vortex points at all. Our situation is possible
because of the assumption of s > 2.
Given n = (n1,m9) € Z% and j = 1,..., s, we set
B]n = Bj + nier + noesa.

Then, the collection {B;‘L}nezz,jzl,...,s forms a locally finite periodic open covering of RZ,
and therefore, we can take an associated partition of unity

{@?}nez2,j:1,...,s
such that S C’;X’(B;?), 0<¢p? <1, and

Z Z(p?(x)zl (z € R?).

n€eZz? j=1
Now, we recall that the scaling parameters 0 < § < € are so taken as k = 2ed. Then,
letting

ATL 1 n N n
Bj = gBja ‘Pj( r) = Pj (6z)

for n € Z? andj:1,...,s,wehavesupp<ﬁ?C§?,Oggﬁ}lgl,and

(4.1) Y FHe)=1 (xR

neZz? j=1
That is, {@1 }n,j is a partition of unity subordinate to the locally finite periodic covering
{B}}nj of R2. We also have

(4.2) sup |V@7| < Co, sup |AA"|<C’52
CEGB" $€B"
and
BrNBY =0, i,je{2... s} i#],
(43) glmggc?é@? .7:27"'353 o
ByNBY =0, k#nandkd (n),i,j=1,...,s,
B”ﬂBk#Q) k€ (n),

where (n) = {k € Z? | |n — k| = 1} denotes the nearest neighborhood of n € Z2.
We put

S(my +1)21 — 2

(4.4) P} (@) = pun, (J& = P}1) = —— :

(T +Te =B P 7P

and

wj (@) = wm, |z = P},

where py and wy stand for the functions defined by (2.4) and (2.6) for N € N U {0},
respectively. Further, we set
AT_L|27?’7.]'+2

(4.5) T @) = 6, (12 —F2]) = =T
: b = Pmy pil) = 1+|x_ﬁ?|2mj+2'
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We introduce Hilbert spaces

— {u e W2ZB) | Jull%, = (uu)z, < -+oo},

loc
(4.6) Vi={ue LR | |lulf, = (u,u)y, <-+oo},
—{ueX"|( )XnZO},
with the inner products (, ) gn, (', )y« defined by

(u,v)y?:/R(l—F(ﬂx Fo)2 uvsd,

(4.7) w52

Sn = A ’A O n ’
(U’a U)Xj ( u U)Yj + /RQ ]. + (§|5E 7ﬁ?|)2+a dx

We also put that

(48) Hs={ue W22(R?) | Pju € ﬁ? for any n, j and [lul| 7, < +oc},
. Vs ={uecL?,(R? | Pju € }7? for any n, j and [|uly, < +oo},

where

lull g, = sup |PFull gy llully, = sup[|@Fullyn-
n,j 7 n,J ’

B

Finally, we take
(4.9) 5?,1-(33) = m,(‘x 13?”

for v¥ ;v = vZ ny(|z|) constructed in §2, which solves Py(v,e) = 0 for 0 < ¢ < 1. This

)

means that PP'(v7 ;,¢) = 0 for

1 2ppran ORI | .,
(4.10) P}'(v,e) = Av+ pyes (T — ()22 H) — S — Ry + (75)7,
and the linearized operator ﬁ" =D, P}VL ;,¢) ¢ H — Y , defined by

(411) A\? — A_’_"‘ﬂ £ (w"-&-v" D 25 (p )2 2e2 ('w"+v" )

is subject to Lemma 7. Namely, we have the following lemma. (See Proposition 5.2 of
[9].) It will become clear from this lemma that the sum of radial vortex solutions with
vortex points p (j =1,2,...,s) is a good approximate solution to (2.2).

LEMMA 8. There exist eg > 0 and C > 0 independent of 0 < & < 1 such that EQJ\H :
J

HY} — Y7 is invertible and satisfies

| Q

[[ul

H(A?,j|ﬁfy)71“||f(; S

for any e € (0,e0) and u € 57?

Yn

Now, we define z = z(x) by
(4.12) = > > G (@) + ()
n€eZ? j=1
n (2.2), where
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(4.13) ﬂ?(x) = log(aQﬁ?(x)) + 52@?(33) + 626?7]-(3:)
is a solution to

~n 1 " a"
(4.14) —Auj} = =2¢" (1 —e%) —dmm;dpn

in R2. Then, (2.2) is reduced to finding z = 2(z) satisfying

(4.15) Aw%—E:{A%’W+2V”‘VW}

n,j

(Z(pn 247 _ exp( Zgo ) exp(2e z))

n,j
64(290”6“1 —exp(Zap" ”) exp(e z)) =0

in R?, because Do, Pymgdpn — 32, sm;idpr = 0. In the rest of this section, we shall

represent (4.15) in a simple form.
First, we set

(4.16) C7(z) = (AG})u} 4+ 2Vey - Vuy
forne€Z? j=1,...,s. Next, we put

_exp{ztpl —uy }XGXP{ 2(!51(“]16_77?)}

ke(n)

—exp{ZsOl <logp—+6 (W — @}) + (@ el_val)>}

=2

(4.17) xexp{ Z <log p_ + 2w — ) + 52(17’;1 - 5721)) },

ke(n) !
R} (x) = exp{@7 (uy —uj)}
_ o[ 1 ﬁ 2/~n _ ~n 25 _ o~n
=exp{ ¥ Ogﬁ,} +e (W} —w}) +e* (vl —0;) ) ¢
J
for j = 2,...,s. Then, we obtain

R (z)=1 on (UEZ"U l§’f) ,

2
Rj(z) =1 on (E?)C, j=2,...,s.
On the other hand, we have from (4.3) that
grap+ @y (xeBYj=2,....5)

S

(4.18) 29 = Yarat+ 3 ftat (e D)
=

Now

(4.19) exp( @?A;‘) = x)e 7@ = szﬁ?eg(w?*@;i)R? on E?
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by (4.17) and (4.18), where n € Z*, j = 1,...,s. In fact, if z € E? for j # 1, we have
o1 (z) + @7 () = 1, and hence

" ARG 4 BTG non_snon sny anyon on
eXP( E SOn n) = PTUIH@T U] — oPrar —Praf | (P +E)E) R?(x)e“y.
7l,]

For x € B}, we have Y5, &7(x) + D ke(ny P1(x) = 1, and therefore,

exp (D @pay) = exp (fjwu? > hat)
n,j =

ke<n>
—exp(zwl Poan+ Y gt -an)
ke<n>
cop ((Lar+ Y #)ar) = Rt
=1 ke<n>

This proves (4.19).
By (4.19), we have

exp(Z% @) =S FRe, e (23 @) = Y@ (R))e
j n,J n,Jj

on R?2. Therefore, (4.15) is equivalent to

(4.20) F.5(z) =0,
where

1 n
(4.21) Fep(s) = Azt Z Cr(x)

2
2 ZNnNn € (w +07 )(ee zR;z(x)_l)

AT 2
62 Z@] 2 26 (w7 +v57j)(625 ZR;L(:I:)Q _ 1).

This equation is solved by Banach s fixed point theorem, and in the next section we study
the linearized operator.

5. Second linearization. We show the solvability of F; s(z) = 0 by examining the
method of [9] in detail. First, F, s : Hs — Y is well defined by (2.12) and (2.14). More
precisely, we have the following estimates (Lemmas 6.2, 6.3, 6.4 of [9]).

LEMMA 9. We have

(5.1) Sup, &7 ()0 ()| Ry (x) — 1] = O(5*~7))
and
(5.2) H > c;l(x)Hya — 0(6?| log 6|)

as 0 | 0 with B(e) — 0, wheren € Z?> and j =1,...,s
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Proof. By (4.5) and
(5.3) diam(B7) = O(671),
there are C1, Cy > 0 such that

Cy 67t < i) < Cpa*™i T,
wheren € Z2,j=1,...,sand x € ﬁ;‘ Hence

Sup p]( ) <C§2m]‘*2ml SC’ (j:2’...,8),

a:EB”ﬂB” prir (

~
sup pi(z)

zeBEnBY P1 (z)

\./

(5.4)

<C (k € (n)).

In fact, the exponent of § in (5.4) is nonnegative by our choice of m1. Moreover by (2.12)
and (2.14), we have

sup  (|wy(z) — wj (x)] + [0 1 () — V7 ;(x)]) < C[logd|
IEB;‘QB?

for j=2,...,s and

sup (| (x) — @ (2)] + |07, (2) = 02, (w)]) < C[log )]
zeB¥NBY

for k € (n). Therefore by (5.4) and (4.17), we have
(5.5) |R?(z)| < exp(C + Ce?|logd|) = 5
for all € R2. This implies that

SGUI?EQ @?(x)ﬁjn(x)'R?(x) - 1| < sup ﬁ?(x)(R?(x) + 1) < 0(527”1""'4_5(5)
! IGB;‘

for 0 < § < 1, where (3(g) = Ce?. Thus, we obtain (5.1).
Now, we note the following: If fF (k € Z2%, ¢ € {1,...,s}) are functions satisfying
supp(fF) C BF, then

5.6 H k H < (Csu kil ,
(5.6) ;fz 75 kf”fz ||Y;c
where C' is a constant independent of k, ¢. In fact,

1>, ZM\<mwsw\mmm,
k,l

B”ﬂBk#(D

and

IIsﬁyffH@:/R(u(&x— )2 B0 (@) fF (x)[20%dw

_/ 1+ (0| — p7)*+
B B

oot Lt (O — i

(14 Bl = 1))@} £ 707 de

s0/1u+wm—ﬁW“mﬁ@Wﬁm
By
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because
1+ (0]z —

2
T+ Gl — pEDEe
and @7 (x) < 1. This shows (5.6).

From this, we obtain that

(5.7) HZC]" v < Csu?HC}LHY/;
n,j ™

)2+a

=0(1) (zeB'nBf)

< C sup (|AG} (2)[uf ()| + 2|VE] ()| Vuy (z)]).
JUEB;.1

Similarly, we have from (2.11), (2.12), (2.14) that
. C
(5.8) [uj (z)| < Clloglz —p}Il,  |Vuj(@)| < =5
|z — p; ‘
as |z| — oo, where C' > 0 is a constant independent of n, j. We also have (4.2), and hence
(5.2) follows as

H ZO" H C(6%1og 1 =+ %),

The proof is complete. m

Now, we see that F ; is a smooth map from the unit ball of ﬁg to }75 fo<ex 1.
Furthermore, by (2.12), (2.14) and (5.3), we have

(5.9) sup = (@7 +025) < 057052,
zeéy
and hence
n (w40 )| pn
(5.10) || @npyes (@RI [RY — llgn < sup & ()57 (w)e” it R (2) — 1]
zeBn

< Cé2m]~+47C52 _ 0(52)
as 0 | 0. Similarly, we have
2,2 Pl ol n\2 2
183326 O D (R 1) < 0(67)
Therefore, Lemma 9 guarantees the following.
LEMMA 10. For 0 < § € e < 1,
1 F=,5(0)]ly, S §°| log |

as 6 | 0.

Now, we turn to A, s = DF, 5(0) : ﬁ,; — 175. It is realized as
(5.11) Acs=A+ Z o pres (WIHIL) RY (1) — 262 Zw )2e2 (@5 +005) R ()2,
The next lemma, is Lemma 6.4 of [9]. There, it is shown that this operator is approximated
locally by A7 ; of (4.11):

A\:, _ A+~n € (w +o7 )*252(b?)26262(w?+ﬁ?’j)-
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LEMMA 11. There are C > 0 and 3(e) — 0 as e | 0 such that
[(Aes — gg,j)@”h)ﬂyy < 05|15

|XT.L
J

J
for anyn,j and h € I;T(; in the case of 0 < K e K 1.
Proof. In fact, we have
1 ~ 24D ) [ An 7
(5.12) 1(Ae,s = AL (@GPl < llPf e (05020 (37 R () — D(@5h) [l

2/, ~m | aAm
+22| (7)) TN (B R ()2 = D)@ )y

N 2 (wF Lok
H| S a3y

(k)2 () Yy
w222 30 B RO RE @) @) |

(k,D)#(n.5)
We apply (5.9) and (5.1) for the first term of the right-hand side, and get that
B3¢ “F R (BF R (@) — D@3 g
< sup (5} (2)e= DR (@) — 1)@} Ry < C5 PO G0 4
zeB? ! ’
Similarly, we have
(752502 (@R (@)~ (@) g < 00" 7©) B 5.
For the third and the fourth terms, we apply (5.6) and (5.9). Then, we get that

. &2 (wk Lok
> dpte IR @) @),
(k,D)#(n,5) I

2/ ~k | ~k ~ — o~
< sup sup ﬁf(w)ea (i +U€J)Rf(9€)”@?h”?y <ot B(E)”SD?hHXm
(kD#£(n.5) ze BrnBY ' ’

and
N 2ok Lk ~n
| > @rhe et Rl @) @)
(kD) #(n,5)

From these estimates, we obtain the lemma. =

4—3 ~n
oy SO g

Now, we show the main result of section. (See Proposition 6.5 of [9].)

THEOREM 3. Given 0 < ¢ < 1, there exists 6 = d. > 0 such that A.s = DF,;(0) :
Hs — Y is invertible for any 6 € (0,0:). Moreover, ||A;§|| < C/e* with a constant
C > 0 independent of 6 € (0,d;) and 0 < e < 1.

Proof. We follow the key idea of the original proof [9], and take the smooth function
¢j ()

(5.13) 90 = I R

J
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where n € Z? and j = 1,...,s. Now, we introduce the auxiliary linear operator S, s :
115—%5/5by
(5.14) Sesh=Y > GHAZ)TN@h),

neZz2 j=1,...,s

where h € Y. In fact, we have from (5.6) and Lemma 8 that
. C
(5.15) 15e.shll gy < CS:? 157 (AZ,) 71571 < Zlklly,

with a constant C' > 0 independent of § in 0 < § < €.
We shall show that both A, 55. 5 : }75 — }75 and S; 5A: 5 I;T(; — ﬁg are invertible.
In fact, we have

(5.16)  SesAcs =TIy, + Y G (AL) " (Acs — AZ)TT — Y G5 (AL) A5, 37,
n,j n,j

with the commutator [A. 5, 77| given by

(5.17) [Ac5,97]h = Ac 5(g7h) — 97 Ac sh = A(g}h) — g7 Ah = [A, g7 ]h

for h € ﬁg. Then, we can prove that the error term S: 5A: s — I, in (5.16) is small in

the operator norm for 0 < § < e. Because the original proof of [9] is not described in
detail at this stage, here we examine it in full length.

First, by (5.6) and Lemmas 8 and 11, we have
(18) |3 a (AL (Aes - A2 @R,
n,j

< Osup g5 (A2 ;)" (Aes — AL @5 1)l 5

n,J

C -, —~ C 4
< 5 sup [[(Aes = AL )@} R)lgn < 647 sup |87 A 5.
13 J 13 n,j J

n,J

for any h € H 5. Similarly, we have

(19) | a AL Mes G|, < Coup 55 (AZ,) 7 145,55 A5,
n,j J !

C
< 5 sup [[[A, g7 1Al g0
€% n,j J

Now, we shall show that
(5.20) 1A, g51hllyn = O(8) sup [[£5 | ¢n
J n,j J
as 0 | 0. Actually, this part requires several (rather delicate) modifications of the original
paper. First, we note

sup |Ag] (x)| < C82, sup |Vgj(z)| < C4,
xeB? xeﬁ?

and 14 (0|z — pj[)*t™ = O(1) for z € E;‘, which implies that
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(5:21)  [I[A,g7hl13 —/ (14 (8|lz = pj)>**)(2Vg} - Vh + (AG})h)*6°da
< C/ (IAG} PR + [V} * |V h|?)6%da

< 054[ h26%dx + 052[ |Vh|?6%dz.
Here, we show the following.

LEMMA 12. We have

(5.22) [ 0+ [vhP)ds < Csupathl,
n k.l 1

for any h € }AL;.
Proof. Given (n,j) € Z? x {1,...,s}, we put
(5.23) Jr={(k,0) € Z* x {1,...,s} | BEFn B} £ 0}.

The cardinality of J}' satisfies |J| = sup, ; |J}'| < 400, because the periodic covering

{E?}HJ of R? is locally finite. Therefore, Schwarz’ inequality guarantees for any x € E;L
that

G2y 1= Y dw<{ ¥ d@}{ ¥ 2V < ¥ der

(kDe? (kheTr (ke (ke
and hence
(5.25) W8%de < 1| S / 12h26

By (ke ﬁB’”
(gofh)252 »
< C sup / d$<CSup ofh
(k,heJr Bk (1 4+ (5|33 — ﬁﬂ)%—a H l ||Xk

because

C <14 (flz -yt <C

for all z € E”. Similarly, we have

(5.26) / VhEsdr < 7] Y / (85)2|Vh|25%d x<CZ/ PFV A6 de
an

(k, l)eJ"

gcsup/ |V(¢fh)\252da;+0sup/ |V@r|>h26%da
k.l JBF k. JBF

SCsup/ |V(g3fh)\252dx+052sup/ h252dx
kl JBF kl JBFk

since |pFVh| < V(@ PFh)| + |[V@r||h|. For the first term of the right-hand side, we note
that gafh eC 1(B’“) by Sobolev’s imbedding theorem, and hence it follows from Young’s
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inequality that

(5.27) /IV(@fh)l252dx§/ (@7 R) AT )6 dw
Bk Dk

l Bl

k1252
2 Jor 0+ Gl — D7)

1 PN «@
+y [ IAGEEREQ+ @l = B0
By
1
< SIBtRI%, + SIAGHIR, < I3thIE,

Therefore, combining (5.26), (5.27), and (5.25), we obtain
[ VAR < Ot 8 sup IR
B k,l L
J

and the proof is complete. =
From (5.21) and Lemma 12, we obtain

1A, G71hllgn < C(5 4 6%) sup I15E Rl

and thus (5.20) follows. Therefore, we have from (5.18) and (5.19) that
C
||Se,6A6,6 - IHJ H = 6_20(6) —0
as § | 0. On the other hand,
(5.28) AcsS.s=1Ip, + > G0(Acs — AT (A2 )G+ [Acs. GTI(AT )G,

n,j
and [|Ac 5S:5 — Iy, || — 0 follows similarly.

Therefore, both S A5 : ﬁ(; — }AL; and A. 555 : }A/(; — }A/(; are invertible with
1(Ac.55:26) 7] < 2and ||(Se,5Ac5) | < 2 uniformly for 0 < § < & < 1. Thus, (A.5)"":
Ys — Hgs exists as

(Ae,é)_l = Sa,&(Aa,(SSa,é)_l = (56,6A5,6)_1SE,6-

We also have by (5.15) that

1(Ac5)™

_ C
= [|(S.54¢c,5) " Se 5hll 7, < 21Seshll g, < = bl

for h € }75. The proof of Theorem 3 is complete. =

6. Completion of proof. We are in a position to apply Banach’s fixed point theorem
to the functional equation F; 5(z) = 0. Henceforth, we put B, = {2 € Hs | ||z|/z, < 7}

for r > 0, and introduce the nonlinear mapping G. s : B; — ﬁg by
(6.1) Ges(2) = 2 — (Acs) ' Fo5(2).

Thus, we are seeking a fixed point of G, s in B;. Actually, this is done by the following.
(See Theorem 7.1 of [9].)
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THEOREM 4. For any 0 < ¢ < 1 there exists 6. > 0 satisfying lim.|o 6. = 0 such that if
0 € (0,0.) there is a unique fized point 2% 5 in Br, of Ge 5, where Rs = 68 with 3 € (1,2).

Proof. We show that G. s is a contractive self-map on B, for r = R; = O(éﬁ) chosen
below. In fact, we have

DG. 5(z) = I — A_jDF. 5(z) = AZ;(Ac 5 — DF. 5(2)),
and hence Theorem 3 guarantees that
(6.2) IDGes(2)|| < | AZSIIDFes(2) — Assll < =5 IIDFea( ) = Acsll

for any z € Bj.
Now, we have

(6.3) A_;'_ZAnﬂn e (W} +02 ) e e? an( )
R o

and hence
(6.4)  [[(DFes(2) — Aes)hlly, = [(DFes(2) — DFe 5(0)h]ly,
= sup |7 (DFe 5(2) = DFe5(0)hllgn

n,J
nsn 2 ~n
< csup 1§77y T+ R () (5% — 1)@ hly-

+ Ot sup 137 (75)% LD RY ()X~ 1)@} hll g

for any h € Hjs. Because of the maximum principle to (4.14) we have u} < 0 and hence
it follows from (4.19) that
2/, ~m | AN
EQﬁ;_Les (0] +v€1j)R;z <1

in E;‘ We also have
1
(6.5) |e€22(’:) -1 = i/ e @) gt | < 52||z||ooe‘32”z”°°
dt Jo -

for all € R2, and Sobolev’s inequality implies that

lelloo < Cllullwae ~ =

for u e X 7 insupp u C E’?. From those relations we obtain

(6.6) ||(DF5,6( ) — sé)thé < CSU.pHgO 2| oo (€° ?[1zlloo +625 HZHOO>||<Pnh||

_C ., c C
< 5suplleZIIXn@+3€2||2||oo)||so Rl < Sllzllg, (U4 S 1zl g,

since e*(1 + %) =2+ 3x + o(z) as ¢ — 0.
We conclude from (6.6) and (6.2) that

(67) IDGs() <5 (=€ Br,)
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for 0 < e < 1if

CR5 C 1,
. < —e”.
(6.8) E <1+ 5R5> < 26

If we take Rs = 07 for 8 € (1,2), this requirement (6.8) follows from

08P+ 6%y < &

[\3‘[\7\_/

or equivalently, §°~! < £-. Therefore, setting

22\ /(-1

we see that (6.7) holds for § € (0,4.) and Rs = 6, which implies that G, s is a contraction
on BR§ .
Next, we have for z € Bp, that

1Ge5(2) iz, < 1Ge6(2) = Ges(0)ll 7, + 1Ge5(0)]] 5,

1 _
< Sllell, + IAZ5Fes5(0)ll g,
and it follows from Theorem 3 and Lemma 10 that

_ _ C
1425 FesO)ll g, < 1AZ5H1F=50) g, < 6| log .

Therefore, if 8%62|10g6| < %Rts then G.s(Bgr;) C Bpgs. Because Rs = &7, this is
equivalent to 627|logd| < 5=e*, which means that 6 € (0,0.) for some §. > 0 with
lim.|p 6. = 0. The proof is complete. m

Theorem 4 assures that

(6.10) e 5(z Z Z & (x)(log(e2p) (x)) + 2} () + 207 ;(x)) + €227 ()

n€z? j=1
is a solution to (2.2). On the other hand, it is obvious that 27 ;(- + ) € Bgr, and
Fos(225(+ +er)) = Fes(2l5) = 0. Hence from the uniqueness of the fixed point of

G.s in Bg,, we have 2% 5(x + ;) = 27 5(x) for any € R? and k = 1,2. This implies
Ue,5(x +€r) = Us s(x) for k =1,2 and U, s is a doubly periodic solution to (2.2).

Back to (1.1), given Kk = 2¢6 > 0 with 0 < ¢ <« 1, we have §. > 0 such that if
0 € (0,0,) there is a solution uc s to (1.1). It has the form

(6.11) Ue,5(x Z% U, (|2 = ;1/0) + €222 5(2/6)

for x € Q, with uZ ,, (|- —p;l/ (5) standing for the radially symmetric single vortex solution
with the vortex point p; and multiplicity m;. Once this expression is obtained, we can
evaluate the asymptotic behavior of |¢,| = exp(us/2) exactly in the same way as in
Proposition 8 of [9]. We just state it for completeness.

THEOREM 5. If k = 2¢d with 0 < e < 1 and 6 € (0,0.), then |¢.| = exp(us,s/2) defined
for us 5 given by (6.11) satisfies the following:

(1) |¢wl <1 on Q and vanishes exactly at the vortex points p;.
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(2) |¢x]l — 0 in CL_(Q\{p1,...,ps}) for any ¢ >0 as k — 0.

(3)

Lokl (1 — |pn]?) — 47 ijl m;0,, in the sense of measures on @ as | 0.

Note. After completing the work, we noticed that Nolasco’s paper has appeared in Comm. Pure
Appl. Math. 56 (2003), 1752-1780. In that paper, she provided several modifications of the orig-
inal preprint ([9]), and the numbers of formulas and propositions are changed. In particular,

formula (6.34), Theorem 7.1, and Proposition 8 referred to in our paper are formula (6.36), The-

orem 6.6, and Proposition 7.1 of the modified version, respectively. Lemma 6.4 of the original

paper is corrected just as we pointed out (Lemma 11), but other parts still seem to need modifi-

cations. So far, we have confirmed that her result is correct in the case of s > 2, but fortunately,

this is also the case for s = 1. It is proven by a slightly different covering of vortices, and detailed

arguments will be published elsewhere.

[11]
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