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Abstract. Mourrain [Mo] characterizes those linear projectors on a finite-dimensional polyno-
mial space that can be extended to an ideal projector, i.e., a projector on polynomials whose
kernel is an ideal. This is important in the construction of normal form algorithms for a poly-
nomial ideal. Mourrain’s characterization requires the polynomial space to be ‘connected to 1’,
a condition that is implied by D-invariance in case the polynomial space is spanned by mono-
mials. We give examples to show that, for more general polynomial spaces, D-invariance and
being ‘connected at 1’ are unrelated, and that Mourrain’s characterization need not hold when
his condition is replaced by D-invariance.

By definition (see [Bi]), ideal interpolation is provided by a linear projector whose
kernel is an ideal in the ring II of polynomials (in d real (F = R) or complex (F = C)
variables). The standard example is Lagrange interpolation; the most general example
has been called ‘Hermite interpolation’ (in [M] and [Bo]) since that is what it reduces to
in the univariate case.

Ideal projectors also occur in computer algebra, as the maps that associate a polyno-
mial with its normal form with respect to an ideal; see, e.g., [CLO]. It is in this latter
context that Mourrain [Mo] poses and solves the following problem. Among all linear
projectors N on

with range the linear space F, characterize those that are the restriction to II1(F) of an
ideal projector with range F'. Here,

0;:=0%, e :=0u,:k=1d), j=04d,
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with

d
0% :F =Tz z®:= H ()20
Jj=1

a handy if nonstandard notation for the monomial with exponent «, with
aeZl ={aeZ:a(j)>0,j=1d}.

I also use the corresponding notation
D,

for the derivative with respect to the jth argument, and
d .
D =[] D5, aezd.
j=1

To state Mourrain’s result, I also need the following, standard, notations. The (total)
degree of the polynomial p # 0 is the nonnegative integer

degp := max{|a| : p(a) # 0},

with
p =Y ()*pl),
and
lal =Y a(j),
J
while

Mo, :={pell:degp <n}.

THEOREM 1 ([Mo]). Let F be a finite-dimensional linear subspace of 11 satisfying Mour-
rain’s condition:

(2) felF = felli(FNllcgegs)s
and let N be a linear projector on Iy (F') with range F. Then, the following are equivalent:

(a) N s the restriction to 1 (F) of an ideal projector with range F.
(b) The linear maps M; : F — F : f+— N(();f), j = 1:d, commute.

For a second proof of this theorem and some unexpected use of it in the setting of
ideal interpolation, see [Bo].

Mourrain’s condition (2) implies that, if F' contains an element of degree k, it must
also contain an element of degree k — 1. In particular, if F' is nontrivial, then it must
contain a constant polynomial. This explains why Mourrain [Mo] calls a linear subspace
satisfying his condition connected to 1. Since the same argument can be made in case F
is D-invariant, i.e., closed under differentiation, this raises the question what connection
if any there might be between these two properties.

In particular, for the special case d = 1, if F' is a linear subspace of dimension n and
either satisfying Mourrain’s condition or being D-invariant, then, necessarily, F = II_,,.
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More generally, if F' is an n-dimensional subspace in the subring generated by the linear
polynomial

() F' = Frae (2,y) = Zx(j)y(j)

for some y # 0, then, either way,

F=ran[(-,y)? 1 :j=1n]:= { ; oy a(g) ra € IF"}

As a next example, assume that F' is a monomial space (meaning that it is spanned
by monomials). If such F is D-invariant, then, with each () for which a —¢; € Z%, it
also contains ()*~% and therefore evidently satisfies Mourrain’s condition.

Slightly more generally, assume that F' is dilation-invariant, meaning that it con-
tains f(h-) for every h > 0 if it contains f or, equivalently, F' is spanned by homogeneous
polynomials. Then every f € F is of the form

f=: fT+f<degf7

with f; the leading term of f, i.e., the unique homogeneous polynomial for which

deg(f — f1) < deg f,

hence in F' by dilation-invariance, therefore also

f<degf c F<degf =In H<degf7
while, by the homogeneity of f1,

();D;(f1) = (deg f) f1

-

1

j
(this is Euler’s theorem for homogeneous functions; see, e.g., [Enc: p281] which
gives the reference [E: §225 on pl54]). If now F is also D-invariant, then D,(f1) €
Fqeg 7, hence, altogether,

felli(Fegegs), [f€F.

In other words, if a dilation-invariant finite-dimensional subspace F of 11 is D-invariant,
then it also satisfies Mourrain’s condition.
On the other hand, the linear space

ran[()°, )M, 0] = {0+ 0"+ ()"'c: a,b,c € F}

fails to be D-invariant even though it satisfies Mourrain’s condition and is monomial,
hence dilation-invariant.

The final example, of a space that is D-invariant but does not satisfy Mourrain’s
condition, is slightly more complicated. In its discussion, I find it convenient to refer to

supp p

as the ‘support’ of the polynomial p = Y _()“p(«), with the quotation marks indicating
that it is not actually the support of p but, rather, the support of its coefficient sequence, p.



52 C. DE BOOR

The example is provided by the D-invariant space F' generated by the polynomial
p=0""+0"+ 0>
hence the ‘support’ of p is

suppp = {(17 7),(3,3), (570)}

(see (4) below). Here are a first few elements of F:

Dip=()""+30>*+50"°, Dap=70"%+3()>?
hence
DiDop =70)"%+9()*?, Dip=42()""+6()*",
also
D?p=6()"%420*° D D2p=42()"° 4 18()>1,

etc. This shows (see (4) below) that any g € II; (Fcgeg p) having some ‘support’ in supp p
is necessarily a weighted sum of ()1 D1p and ()2Dap (and, perhaps, others not having any

‘support’ in suppp), vet (p, ()1 D1p,()2D2p) is linearly independent ‘on’ suppp, as the
matrix

1 1 7
1 3 3
1 50
(of their coefficients indexed by « € suppp) is evidently 1-1. Consequently,
p & i (Fedegp),

i.e., this F' does not satisfy Mourrain’s condition (as also follows from Proposition 3
below, in view of Theorem 1).

This space also provides the proof that, in Theorem 1, one may not, in general, replace
Mourrain’s condition by D-invariance.

PROPOSITION 3. Let F' be the D-invariant space spanned by
p=0""+0%+ 0>
Then there exists a linear projector, N, on I1y(F) with range F for which (b) but not (a)
of Theorem 1 is satisfied.
Proof. For o, 3 € Z% , set

[a..0] = {yeZi:a<~y<BY,
with

a<y = a(j) <v(j), j = Ld.
With this, we determine a basis for F' as follows.

Since D%p is a positive scalar multiple of ()13, we know, by the D-invariance of F,
that

{0¢:¢€(0,0)..(1,3)]} C F.

2,0

This implies, considering D?p, that ()3, hence also ()>°, is in F. Hence, altogether,

F =Tlg, ¢ ran[D% : a € [(0,0) .. (1, 3)]],
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with
Ip :=ran[()” : v € T
and

== [(0,0) .. (1,3)] U {(2,0), (3,0)}.

This provides the convenient basis

for F, indexed by

namely
bg ::{()57 B 56505
DNy ¢ €=,
The following schema indicates the sets supp p, Zo, and =1, as well as the sets 9=
and 9=, defined below:

X X ®: suppp

1 1® x 0: =

1 1 x 1: =

1 1 x 185,
4) 1 1 x x: 021

0 0 + ®

0 0 +

0o 0 + +

o 0 0 0 + ®

Now, let N be the linear projector on II; (F') with range F' and kernel ran[by], with
bz obtained by thinning
[bE; ()1b57 ()QbE]

to a basis [bz, bz] for II; (F). This keeps the maps M; : F — F : f +— N((); f) very simple
since, as we shall see, for many of the £ € =, ();be is an element of the extended basis
[b=, bz], hence N either reproduces it or annihilates it.

Specifically, it is evident that the following are in F', hence not part of by:

O1b, € €[(0,0)..(0,2)],

(O2be, €€ [(0,0)..(1,3)],
with ()2be € F for € = (0,3),(1,3) since D1 ~¢p and ()5+(3~3) are in F. Further, for
each
¢ € 02y U 0=,
with
E0 = {(23 3)7 (27 2)v (25 1)7 (37 1)a (47 0)}7 aE1 = {[(27 4) . (27 7)]a (17 8)7 (Oa 8)},

there is £ € Z so that, for some j, ( — £ = ¢;. Set, correspondingly,

be = ()b
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Then, none of these is in F', and, among them, each b; is the only one having some
‘support’ at ¢, hence they form a linearly independent sequence. Therefore, each such b¢
is in by.

The remaining candidates for membership in bz require a more detailed analysis. We
start from the ‘top’, showing also along the way that (b) of Theorem 1 holds for this F'
and N by verifying that

(5) M]_M2 = M2M1 on bf

for every £ € E.

& =(1,7): As already pointed out, both ()1b1,7 and ()2b1,7 are in bz, hence (5) holds
trivially for £ = (1,7).

£ =1(0,7),(1,6): Both ()1bo.7 = )% +3()>* +5()>? and ()ab1,6 = 7()1" +3()>> have
their ‘support’ in that of p = by 7 = ()17 + ()>3 4 ()%, while, as pointed out and used
earlier, the three are independent. Hence ()1bo 7, ()2b1,6 € bz, while we already pointed
out that ()2bo.7, ()1b1,6 € bz, therefore (5) holds trivially.

¢ = (0,6),(1,5): Both ()1bos = 7)Y +9()>2 and ()2b15 = 42()1 + 6()>? have
their ‘support’ in that of by = 7()"6 + 3()>2, but neither is a scalar multiple of
b1,6. Hence, one is in bz and the other is not. Which is which depends on the order-
ing of the columns of [bz, ()1b=, ()2b=]. Assume the ordering such that ()2b15 € bz.
Then, since we already know that ()1b15 € bz, (5) holds trivially for £ = (1,5). Fur-
ther, ()1bo,6 = 4b1,6 — (1/2)()2b1,5, hence M1byg = 4b1 6, while we already know that
(Jabi1e € bz therefore, MyMibyg = 0. On the other hand, ()2bos = 7()%7 + 3()>3
has its ‘support’ in that of b7 = ()*7 + 3()>3 + 5()*° but is not a scalar multi-
ple of it, hence is in by, and therefore already Mabge = 0. Thus, (5) also holds for
&= (0,6).

€ = (0,5),(1,4): Both ()1bo5 = 42()1° +18()>! and ()2b1 4 = 210()1° + 6()>! have
their ‘support’ in that of b 5 = 42()1° + 6()>! but ()>! = b3, was already identified
as an element of bz, hence neither ()1bg5 nor ()2b14 is in byz. But, since () € by,
and so b5 = Nbys = N(42()'%), we have Mibys = b1 s and Maby 4 = 5by 5. Since
we already know that ()1015 € by, it follows that Mj;Msb; 4 = 0 while we already
know that ()1b14 € bz, hence already Miby 4 = 0. Therefore, (5) holds for £ = (1,4).
Further, we already know that ()2b15 € bz, hence MoMibys = 0, while ()2bys =
42()%6 + 18()*? has the same ‘support’ as bog = 7()>® + 9()>? but is not a scalar
multiple of it, hence is in by and, therefore, already Ma2bg s = 0, showing that (5) holds
for £ = (0,5).

5 = (074): ()2b0’4 = 210()0’5 + 18()2’1 = 5b0’5 - 721)2’17 with bg’l S bZ7 hence ()2()0’4 is
not in bz and Mabg 4 = 5bg 5, therefore My Mobg s = 5M1by s = 5by 5, the last equation
from the preceding paragraph. On the other hand, ()1bp4 = 210()"* + 18()3° = by 4 +
12bs3 9, with both by 4 and b3 o in F, hence ()1bo 4 is not in bz, and Mibg 4 = by 4 + 12b3 9,
therefore, since ()2b3,0 = b31 € bz, MaMibo.a = Maby 4 = 5by 5, the last equation from
the preceding paragraph. Thus, (5) holds for £ = (0,4).

&€ = (1, 3): We already know that ()1b1,3 = b2 3 € bz and therefore already M1by 3 = 0,
while ()2[)173 = ()1’4 = (b174 - 6b3,0)/210 € F, therefore 210M1M2b173 = M1b174 = 0, thus
(5) holds for ¢ = (1, 3).
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For the remaining & € E, each bg is a monomial, hence () ;b¢ is again a monomial, and

either in F' or not and, if not, then its exponent is in

0=y = {(2,3),(2,2),(2,1),(3,1),(4,0)}.
Moreover, ()1()2be is in F' iff ()2()1be is. Hence, (5) also holds for the remaining & € =.
This finishes the proof that, for this F' and N, (b) of Theorem 1 holds.

It remains to show that, nevertheless, (a) of Theorem 1 does not hold. For this,
observe that ()%! and ()*© are in ker N, as is, e.g., (Jab1.s = 7()1'7 + 3()33, hence p =
OY7 4+ ()33 4+ ()>Y is in the ideal generated by ker N, making it impossible for N to be
the restriction to II; (F') of an ideal projector P with range F' since this would place the
nontrivial p in both ker P and ran P. m
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