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Abstract. Mourrain [Mo] characterizes those linear projectors on a finite-dimensional polyno-

mial space that can be extended to an ideal projector, i.e., a projector on polynomials whose

kernel is an ideal. This is important in the construction of normal form algorithms for a poly-

nomial ideal. Mourrain’s characterization requires the polynomial space to be ‘connected to 1’,

a condition that is implied by D-invariance in case the polynomial space is spanned by mono-

mials. We give examples to show that, for more general polynomial spaces, D-invariance and

being ‘connected at 1’ are unrelated, and that Mourrain’s characterization need not hold when

his condition is replaced by D-invariance.

By definition (see [Bi]), ideal interpolation is provided by a linear projector whose

kernel is an ideal in the ring Π of polynomials (in d real (F = R) or complex (F = C)

variables). The standard example is Lagrange interpolation; the most general example

has been called ‘Hermite interpolation’ (in [M] and [Bo]) since that is what it reduces to

in the univariate case.

Ideal projectors also occur in computer algebra, as the maps that associate a polyno-

mial with its normal form with respect to an ideal; see, e.g., [CLO]. It is in this latter

context that Mourrain [Mo] poses and solves the following problem. Among all linear

projectors N on

Π1(F ) :=
d∑

j=0

()jF

with range the linear space F , characterize those that are the restriction to Π1(F ) of an

ideal projector with range F . Here,

()j := ()εj , εj := (δjk : k = 1:d), j = 0:d,
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with

()α : F
d → F : x 7→ xα :=

d∏

j=1

x(j)α(j)

a handy if nonstandard notation for the monomial with exponent α, with

α ∈ Z
d
+ := {α ∈ Z

d : α(j) ≥ 0, j = 1:d}.

I also use the corresponding notation

Dj

for the derivative with respect to the jth argument, and

Dα :=

d∏

j=1

D
α(j)
j , α ∈ Z

d
+.

To state Mourrain’s result, I also need the following, standard, notations. The (total)

degree of the polynomial p 6= 0 is the nonnegative integer

deg p := max{|α| : p̂(α) 6= 0},

with

p =:
∑

α

()αp̂(α),

and

|α| :=
∑

j

α(j),

while

Π<n := {p ∈ Π : deg p < n}.

Theorem 1 ([Mo]). Let F be a finite-dimensional linear subspace of Π satisfying Mour-

rain’s condition:

(2) f ∈ F =⇒ f ∈ Π1(F ∩ Π<deg f ),

and let N be a linear projector on Π1(F ) with range F . Then, the following are equivalent:

(a) N is the restriction to Π1(F ) of an ideal projector with range F .

(b) The linear maps Mj : F → F : f 7→ N(()jf), j = 1:d, commute.

For a second proof of this theorem and some unexpected use of it in the setting of

ideal interpolation, see [Bo].

Mourrain’s condition (2) implies that, if F contains an element of degree k, it must

also contain an element of degree k − 1. In particular, if F is nontrivial, then it must

contain a constant polynomial. This explains why Mourrain [Mo] calls a linear subspace

satisfying his condition connected to 1. Since the same argument can be made in case F

is D-invariant, i.e., closed under differentiation, this raises the question what connection

if any there might be between these two properties.

In particular, for the special case d = 1, if F is a linear subspace of dimension n and

either satisfying Mourrain’s condition or being D-invariant, then, necessarily, F = Π<n.
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More generally, if F is an n-dimensional subspace in the subring generated by the linear

polynomial

〈·, y〉 : F
d → F : x 7→ 〈x, y〉 :=

d∑

j=1

x(j)y(j)

for some y 6= 0, then, either way,

F = ran[〈·, y〉j−1 : j = 1:n] :=
{ n∑

j=1

〈·, y〉j−1a(j) : a ∈ F
n
}

.

As a next example, assume that F is a monomial space (meaning that it is spanned

by monomials). If such F is D-invariant, then, with each ()α for which α − εj ∈ Z
d
+, it

also contains ()α−εj and therefore evidently satisfies Mourrain’s condition.

Slightly more generally, assume that F is dilation-invariant, meaning that it con-

tains f(h·) for every h > 0 if it contains f or, equivalently, F is spanned by homogeneous

polynomials. Then every f ∈ F is of the form

f =: f↑ + f<deg f ,

with f↑ the leading term of f , i.e., the unique homogeneous polynomial for which

deg(f − f↑) < deg f,

hence in F by dilation-invariance, therefore also

f<deg f ∈ F<deg f := F ∩ Π<deg f ,

while, by the homogeneity of f↑,

d∑

j=1

()jDj(f↑) = (deg f)f↑

(this is Euler’s theorem for homogeneous functions; see, e.g., [Enc: p281] which

gives the reference [E: §225 on p154]). If now F is also D-invariant, then Dj(f↑) ∈

F<deg f , hence, altogether,

f ∈ Π1(F<deg f ), f ∈ F.

In other words, if a dilation-invariant finite-dimensional subspace F of Π is D-invariant,

then it also satisfies Mourrain’s condition.

On the other hand, the linear space

ran[()0, ()1,0, ()1,1] = {()0a + ()1,0b + ()1,1c : a, b, c ∈ F}

fails to be D-invariant even though it satisfies Mourrain’s condition and is monomial,

hence dilation-invariant.

The final example, of a space that is D-invariant but does not satisfy Mourrain’s

condition, is slightly more complicated. In its discussion, I find it convenient to refer to

supp p̂

as the ‘support’ of the polynomial p =
∑

α()αp̂(α), with the quotation marks indicating

that it is not actually the support of p but, rather, the support of its coefficient sequence, p̂.
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The example is provided by the D-invariant space F generated by the polynomial

p = ()1,7 + ()3,3 + ()5,0,

hence the ‘support’ of p is

supp p̂ = {(1, 7), (3, 3), (5, 0)}

(see (4) below). Here are a first few elements of F :

D1p = ()0,7 + 3()2,3 + 5()4,0, D2p = 7()1,6 + 3()3,2,

hence

D1D2p = 7()0,6 + 9()2,2, D2
2p = 42()1,5 + 6()3,1,

also

D2
1p = 6()1,3 + 203,0, D1D

2
2p = 42()0,5 + 18()2,1,

etc. This shows (see (4) below) that any q ∈ Π1(F<deg p) having some ‘support’ in supp p̂

is necessarily a weighted sum of ()1D1p and ()2D2p (and, perhaps, others not having any

‘support’ in supp p̂), yet (p, ()1D1p, ()2D2p) is linearly independent ‘on’ supp p̂, as the

matrix 


1 1 7

1 3 3

1 5 0





(of their coefficients indexed by α ∈ supp p̂) is evidently 1-1. Consequently,

p 6∈ Π1(F<deg p),

i.e., this F does not satisfy Mourrain’s condition (as also follows from Proposition 3

below, in view of Theorem 1).

This space also provides the proof that, in Theorem 1, one may not, in general, replace

Mourrain’s condition by D-invariance.

Proposition 3. Let F be the D-invariant space spanned by

p = ()1,7 + ()3,3 + ()5,0.

Then there exists a linear projector, N , on Π1(F ) with range F for which (b) but not (a)

of Theorem 1 is satisfied.

Proof. For α, β ∈ Z
d
+, set

[α . . β] := {γ ∈ Z
d
+ : α ≤ γ ≤ β},

with

α ≤ γ := α(j) ≤ γ(j), j = 1:d.

With this, we determine a basis for F as follows.

Since D0,4p is a positive scalar multiple of ()1,3, we know, by the D-invariance of F ,

that

{()ζ : ζ ∈ [(0, 0) . . (1, 3)]} ⊂ F.

This implies, considering D2,0p, that ()3,0, hence also ()2,0, is in F . Hence, altogether,

F = ΠΞ0
⊕ ran[Dαp : α ∈ [(0, 0) . . (1, 3)]],
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with

ΠΓ := ran[()γ : γ ∈ Γ]

and

Ξ0 := [(0, 0) . . (1, 3)] ∪ {(2, 0), (3, 0)}.

This provides the convenient basis

bΞ := [bξ : ξ ∈ Ξ]

for F , indexed by

Ξ := Ξ0 ∪ Ξ1, Ξ1 := [(0, 4) . . (1, 7)],

namely

bξ :=

{
()ξ, ξ ∈ Ξ0;

D(1,7)−ξp, ξ ∈ Ξ1.

The following schema indicates the sets supp p̂, Ξ0, and Ξ1, as well as the sets ∂Ξ0

and ∂Ξ1 defined below:

(4)

× × ⊗ : supp p̂

1 1⊗ × 0 : Ξ0

1 1 × 1 : Ξ1

1 1 × + : ∂Ξ0

1 1 × × : ∂Ξ1

0 0 + ⊗

0 0 +

0 0 + +

0 0 0 0 + ⊗

Now, let N be the linear projector on Π1(F ) with range F and kernel ran[bZ], with

bZ obtained by thinning

[bΞ, ()1bΞ, ()2bΞ]

to a basis [bΞ, bZ] for Π1(F ). This keeps the maps Mj : F → F : f 7→ N(()jf) very simple

since, as we shall see, for many of the ξ ∈ Ξ, ()jbξ is an element of the extended basis

[bΞ, bZ], hence N either reproduces it or annihilates it.

Specifically, it is evident that the following are in F , hence not part of bZ :

()1bξ, ξ ∈ [(0, 0) . . (0, 2)],

()2bξ, ξ ∈ [(0, 0) . . (1, 3)],

with ()2bξ ∈ F for ξ = (0, 3), (1, 3) since D(1,6)−ξp and ()ξ+(2,−3) are in F . Further, for

each

ζ ∈ ∂Ξ0 ∪ ∂Ξ1,

with

∂Ξ0 := {(2, 3), (2, 2), (2, 1), (3, 1), (4, 0)}, ∂Ξ1 := {[(2, 4) . . (2, 7)], (1, 8), (0, 8)},

there is ξ ∈ Ξ so that, for some j, ζ − ξ = εj . Set, correspondingly,

bζ := ()jbξ.
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Then, none of these is in F , and, among them, each bζ is the only one having some

‘support’ at ζ, hence they form a linearly independent sequence. Therefore, each such bζ

is in bZ.

The remaining candidates for membership in bZ require a more detailed analysis. We

start from the ‘top’, showing also along the way that (b) of Theorem 1 holds for this F

and N by verifying that

(5) M1M2 = M2M1 on bξ

for every ξ ∈ Ξ.

ξ = (1, 7): As already pointed out, both ()1b1,7 and ()2b1,7 are in bZ, hence (5) holds

trivially for ξ = (1, 7).

ξ = (0, 7), (1, 6): Both ()1b0,7 = ()1,7 +3()3,3 +5()5,0 and ()2b1,6 = 7()1,7 +3()3,3 have

their ‘support’ in that of p = b1,7 = ()1,7 + ()3,3 + ()5,0, while, as pointed out and used

earlier, the three are independent. Hence ()1b0,7, ()2b1,6 ∈ bZ, while we already pointed

out that ()2b0,7, ()1b1,6 ∈ bZ, therefore (5) holds trivially.

ξ = (0, 6), (1, 5): Both ()1b0,6 = 7()1,6 + 9()3,2 and ()2b1,5 = 42()1,6 + 6()3,2 have

their ‘support’ in that of b1,6 = 7()1,6 + 3()3,2, but neither is a scalar multiple of

b1,6. Hence, one is in bZ and the other is not. Which is which depends on the order-

ing of the columns of [bΞ, ()1bΞ, ()2bΞ]. Assume the ordering such that ()2b1,5 ∈ bZ.

Then, since we already know that ()1b1,5 ∈ bZ, (5) holds trivially for ξ = (1, 5). Fur-

ther, ()1b0,6 = 4b1,6 − (1/2)()2b1,5, hence M1b0,6 = 4b1,6, while we already know that

()2b1,6 ∈ bZ therefore, M2M1b0,6 = 0. On the other hand, ()2b0,6 = 7()0,7 + 3()3,3

has its ‘support’ in that of b0,7 = ()0,7 + 3()3,3 + 5()4,0 but is not a scalar multi-

ple of it, hence is in bZ, and therefore already M2b0,6 = 0. Thus, (5) also holds for

ξ = (0, 6).

ξ = (0, 5), (1, 4): Both ()1b0,5 = 42()1,5 + 18()3,1 and ()2b1,4 = 210()1,5 + 6()3,1 have

their ‘support’ in that of b1,5 = 42()1,5 + 6()3,1 but ()3,1 = b3,1 was already identified

as an element of bZ, hence neither ()1b0,5 nor ()2b1,4 is in bZ. But, since ()3,1 ∈ bZ,

and so b1,5 = Nb1,5 = N(42()1,5), we have M1b0,5 = b1,5 and M2b1,4 = 5b1,5. Since

we already know that ()1b1,5 ∈ bZ, it follows that M1M2b1,4 = 0 while we already

know that ()1b1,4 ∈ bZ, hence already M1b1,4 = 0. Therefore, (5) holds for ξ = (1, 4).

Further, we already know that ()2b1,5 ∈ bZ, hence M2M1b0,5 = 0, while ()2b0,5 =

42()0,6 + 18()2,2 has the same ‘support’ as b0,6 = 7()0,6 + 9()2,2 but is not a scalar

multiple of it, hence is in bZ and, therefore, already M2b0,5 = 0, showing that (5) holds

for ξ = (0, 5).

ξ = (0, 4): ()2b0,4 = 210()0,5 + 18()2,1 = 5b0,5 − 72b2,1, with b2,1 ∈ bZ, hence ()2b0,4 is

not in bZ and M2b0,4 = 5b0,5, therefore M1M2b0,4 = 5M1b0,5 = 5b1,5, the last equation

from the preceding paragraph. On the other hand, ()1b0,4 = 210()1,4 + 18()3,0 = b1,4 +

12b3,0, with both b1,4 and b3,0 in F , hence ()1b0,4 is not in bZ, and M1b0,4 = b1,4 +12b3,0,

therefore, since ()2b3,0 = b3,1 ∈ bZ, M2M1b0,4 = M2b1,4 = 5b1,5, the last equation from

the preceding paragraph. Thus, (5) holds for ξ = (0, 4).

ξ = (1, 3): We already know that ()1b1,3 = b2,3 ∈ bZ and therefore already M1b1,3 = 0,

while ()2b1,3 = ()1,4 = (b1,4 − 6b3,0)/210 ∈ F , therefore 210M1M2b1,3 = M1b1,4 = 0, thus

(5) holds for ξ = (1, 3).
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For the remaining ξ ∈ Ξ, each bξ is a monomial, hence ()jbξ is again a monomial, and

either in F or not and, if not, then its exponent is in

∂Ξ0 := {(2, 3), (2, 2), (2, 1), (3, 1), (4, 0)}.

Moreover, ()1()2bξ is in F iff ()2()1bξ is. Hence, (5) also holds for the remaining ξ ∈ Ξ.

This finishes the proof that, for this F and N , (b) of Theorem 1 holds.

It remains to show that, nevertheless, (a) of Theorem 1 does not hold. For this,

observe that ()2,1 and ()4,0 are in kerN , as is, e.g., ()2b1,6 = 7()1,7 + 3()3,3, hence p =

()1,7 + ()3,3 + ()5,0 is in the ideal generated by kerN , making it impossible for N to be

the restriction to Π1(F ) of an ideal projector P with range F since this would place the

nontrivial p in both kerP and ranP .
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