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Abstract. Assuming that a Markov process satisfies the minorization property, existence and
properties of the solutions to the additive and multiplicative Poisson equations are studied using
splitting techniques. The problem is then extended to the study of risk sensitive and risk neutral
control problems and corresponding Bellman equations.

1. Introduction. On a probability space ({2, F, P) consider a Markov process X = (x,,)
taking values on a complete separable metric state space E endowed with the Borel
o-algebra £. Assume that (x,) has a transition operator P(x,,-) at time n, i.e., for
D € & we have P{x,+1 € D|xg,z1,...,2n} = P(xpn,D), P ae. Let ¢ : E — R be
continuous and bounded and v > 0. We would like to find constants A and A, such that
the functions

w(a) = Be{ Y () = )} (1)
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and
ewr (@) = Ex{exp{Z’y(c(xi) - /\7)}} (2)
i=0

are well defined.

The problems above are closely related to the existence of solutions: a constant A
and a function w or constant A, and function w, respectively to the following equations:
additive Poisson equation (APE)

w(z) + A= c(x) + Pw(z) (3)
where Pf(x) := E,{f(x(1))} = [, f(y)P(x,dy), or multiplicative Poisson equation
(MPE)

e (@) Ay — 6’70(1)/ ew”(y)P(x,dy) (4)
E

respectively. In fact the functions w and w., defined in (1) and (2) are natural candidates
for solutions to (3) and (4) respectively.

A sufficient condition for existence of solutions to APE is (see [9] and [5]) uniform
ergodicity of (z,), i.e.

sup sup |P(z,A) — P(z,A)| < 1. (5)
A€€ x,z€FE

In the case of MPE a sufficient condition for the existence of solutions can be formulated
as follows (see [2] and [5])

sup h(P(z,-),P(z,-)) < o0 (6)
z,z€EE
where h(,v) :=supy geg In % is the so called Hilbert norm in the space P(E) of
probability measures on E.

In the paper we shall formulate more general conditions than (5) and (6) for the
existence of solutions of APE and MPE and study limit behavior of the solutions to
MPE with risk factor v converging to 0.

We will be furthermore interested in the control of a Markov process. For this purpose
we shall assume that (x,,) has a controlled transition operator P (z,,,-) at time n, where
an is the control at time n taking values on a compact metric space U and adapted to
the o-algebra o{xg,z1,...,z,}.

Let now ¢ : E x U — R be continuous bounded. We are looking for a control (a,)
minimizing the following cost functionals: risk neutral (average cost per unit time)

n—1

J((ap)) = limsuplEéa"){Z c(xi,al-)} (7)

n—oo T i=0

or risk sensitive cost functional

Jy((an)) == — hmsup In E{en) {exp{z ~ye xl,al)}} (8)

Y n—ooco N

where E,(Ua") stands for expectation with respect to the conditional probability measure
under control sequence (a,,), given the initial state = of the controlled process (z,,)-
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The study of risk sensitive functional is motivated by the fact that it measures not only
the average cost but also higher moments of the average cost in particular its variance
with weight v (see [1] for financial motivation of these kind of problems). It can be also
considered as a dual problem to the minimization of the probability that the average cost
is greater that a given benchmark (see [7]).

The following Bellman equations correspond to the cost functionals (7) and (8) re-

spectively
w(z) + A= inIf] (c(z,a) + Pw(x)) (9)
ae
where P*f(z) := [, f(y)P*(x,dy), and
wy (@) +YAy ye(w,a) wy (y) pa
e anelg(e /Ee P (w,dy)). (10)

One can expect that A\ and A\, are optimal values of the cost functionals (7) and (8)
respectively.
In what follows we shall assume the following Feller property

(F): U x E > (a,x) — P%f(z) is continuous for f € C(E).
Under (F) and controlled uniform ergodicity of the form

sup sup sup |[P%(z,A)— Pa/(z,A)\ <1 (11)
A€ a,a’eU z,zeE
there is (see [9]) a bounded continuous function w and a unique constant A which solve
the Bellman equation (9). Furthermore
A= (inf) J((an)) = J(0(zy)), (12)
where @ is a Borel measurable function for which the infimum on the right hand side of
(9) is attained.
If additionally to (F) we have that
sup sup h(P"(z,), P” (2,")) < o (13)
z,z€FE a,a’ €U
then there exist (see [2]) a bounded function w, and a unique constant A\, for which the
Bellman equation (10) is satisfied. Moreover

Xy = int (@) = (i 2.)) (14)

where 1 is a function for which the infimum in the right hand side of (10) is attained.

We shall consider the following two classes of controls: Markov controls Upr = {(ay) :
apn, = Up(Tn)}, where u, : E — U, and stationary controls Us = {(ay,) : an, = u(z(n))},
where u : E — U. We shall also indentify a Markov control a, = un(z,) with the
sequence (u,) of Borel measurable functions u,, : E — U. Similarly a stationary control
apn, = u(xzy) shall be identified with the Borel measurable function u : F — U.

In the paper we generalize results concerning the existence of solutions to additive
and multiplicative uncontrolled and controlled Poisson equations. The assumptions (5),
(6) and (11), (13) are mainly satisfied when the state space is compact. Our purpose is
to show the existence results under assumptions satisfied by ergodic processes on locally
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compact spaces. Since we shall use the so called splitting technique of Markov processes
introduced in [6] we shall assume the following minorization property:
(A1) d8>0 I compactee ElVEP(E) with v(C) = 1 such that Vace
inf inf P(z, A) > A).
Jof, Inf, P(@, A) 2 Bv(4)
Furthermore the following ergodicity assumption will be considered

(A2) Cin (A1) is ergodic, i.e. Y(4, )cty, VocE Eg(ca"){TC} < 00, where 7¢ = inf{i > 0 :
xT; € C} and v(an,)EMM

sup B {7¢} < oo.
zeC

Notice that assumptions (A1) and (A2) are roughly satisfied by nondegenerate ergodic
processes on locally compact state space E/, where C'is a ball which is a positive recurrent
set. Given the set C' satisfying (A1) and (A2) and the Markov control (u,) we consider a
new state space £ = {C x {0}UC x {1}U(E\ C) x {0}} and splitting of (z,,) in the form

1 .2 1

in = (21,22) € E with Markov control of the form a, = u,(z},

) and dynamics defined
in the following way:

(i) when (xl,22) € C x {0}, 21 moves to y accordingly to (1 — 8)~1 (P (x},dy) —
Br(dy)) and whenever y € C, x2 is changed into 2, = (3,41, where 3, is i.i.d.

(ii) when (z,,22) € C x {1}, &}, moves to y accordingly to v and z2 | = Bn41,

(iii) when (z1,22) € (E\ C) x {0}, L moves to y accordingly to P (zl, dy) and

whenever y € C, 22 is changed into x?H_l = Bn+1-

Let Cy = C x {0}, C; = C x {1}. The following properties of the split Markov process
are shown in [3]

LEMMA 1. Under Markov control (a,) € Uy the process (&, = (z},22)) is Markov with
transition operator P (&,,dy) defined by (i) (iii) and has a unique invariant measure
W(an) given by the formula

Plan)(4) = Egan)A{(ngi Xa(@i)} (15)
B {TCI}
with z € Cy, for any Borel subset A of E, where Eéa”) stands for the conditional law of

1
n

the Markov process &, with initial state z. Furthermore the first coordinate (z;,) is also

a Markov process with transition operator P~ (zk . dy).

COROLLARY 1. For any bounded Borel measurable function f: E™ — R, m =1,2,...,
and control (a,) € Upn we have

Eg(g“”){f(xh:cg, T} = Eég"){f(xi?:c%, conzi)) (16)

where 03 = 63,0y for x € E\ C and 05 = (1 — 3)d(4,0) + Bd(z,1) for x € C.
The paper consists of 8 sections. We formulate first the existence results for APE
which generalize results of [4] proved there in a more specific case and recall results on

MPE from [3]. In section 4 we show that APE can be considered as the limit of MPEs
letting the risk factor v tend to 0. Starting from section 5 we consider a uniformly ergodic



POISSON EQUATIONS 61

approximation of Markov processes. An approximating process with transition operator
Pg(x,dy) satisfies assumptions (11) and (13), so that we have the existence of solutions
to controlled APE and MPE. In section 6 using the above approximation we show the
existence of solutions to APE for processes satisfying (A1) and (A2). In section 7 we recall
the existence results for controlled MPE from [3] and finally in section 8 we consider the
asymptotics of MPE for the risk factor v converging to 0.

2. The study of additive Poisson equation. We start with an obvious lemma which
follows directly from the boundedness of ¢, and conditions (A1) and (A2)

LEMMA 2. Given Borel measurable u : E — U there is a unique A(u) such that for x € Cy

Tcl

B Y (elal u(l)) = Aw) } = 0. (17)

i=1
Furthermore \(u) = [ c(a', u(z')) 0¥ (dz).

For Borel measurable u : £ — U let

7'c1

(2) = B { > (el ulwh) = Aw) }. (18)

i=0
In analogy to [4] (see also [3]), where more specific case was studied, we can show the
following results:

LEMMA 3. The function @* is a solution to the additive Poisson equation (APE) for the
split Markov process (&,,):

@(a) = el ul@)) - Mu) + [ @ ()P (o dy), (19)
E
Furthermore, if w and A satisfy the equation
() = el u(e?) = A+ [ 6Pz dy) (20)
E

and 1 1is integrable with respect to the measure U then A = A(u) (defined in Lemma 2)
and W differs from W™ by an additive constant " almost everywhere.

COROLLARY 2. Given a solution @" : E — R to APE we have that w" defined by

w*(z) = w*(z,0) + 1o (z)f(@0" (2, 1) — w*(x,0)) (21)
is a solution to APE for the original Markov process (x,)
w'(z) = (o u(@) = AMa) + [ w"() P, dy). (22
E

Furthermore if w" is a solution to (22) then w" defined by
@ (', 2%) = c(a', u(@")) = Au) + Epr o2 {0 (@' (1))} (23)

is a solution to (19).
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PROPOSITION 1. For Borel measurable u : E — U the value A(u) defined in Lemma 2 is
equal to

Aw) = lim le{nz__:l elau(w))}. (24)

n—oo 1N

3. The study of the multiplicative Poisson equation. To study the MPE we need
a stronger assumption than (A2). Fix v > 0. We shall impose the condition that

(AS) V(an)eus Hd s.t. VLCEE

Tcl

e {exp{ - Aelal,ai) — d)}} < o0

i=1
and for z € C;

Tcl

E;“"){exp{z y(e(x}, a;) — d)}} > 1.

i=1
Under (A3) we easily obtain

LEMMA 4. Under (A3) for Borel measurable u : E — U there is a unique A (u) such that

Eg(ca"){exp{ii y(e(x}, a;) — )\V(u))}} =1 (25)

for x € Cy.
For Borel measurable u : E — U and v > 0 for which (A3) holds define

TCl

e = Bedexp{ 3" (el u(h) = M)}, (26)
i=0
For a Borel measurable function @ : £ — R define the operator ®(w) by the formula

®(d) _ (] _ @(2,0),,(q w(z1)y,(q 27
P — ( ﬁ)/e V(x)+ﬁ/ce v(dz) (27)

C
whenever it is well defined. We have (see [3] for the proofs)

LEMMA 5. The function wy defined in (26) is a solution to the multiplicative Poisson
equation (MPE) for the split Markov process (&,,):

ey (@) — 6WC(rl-ﬂ(ﬂEl))*)\w(u)/ eﬁﬂ‘(y)pU(Il)(x’dy). (28)
E
Moreover ®(wY) = 0, and for any other solution w" to (28) we have
w"(z) — e(w") > Wi (w) (29)
with equality for U" almost all x € E. Furthermore, if W and X\ satisfy the equation
(@) _ el ul@) - / ¢ pul) (7. dy) (30)
E

then A > A, (u).
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COROLLARY 3. For z € E and a solution " : E — R and \ to MPE (28) we have that
w" defined by
6w“(z) — eu”)“(ac,O) + lc(x)ﬂ(eﬁ)”(z,l) _ eu”)“(ac,O)) (31)

is a solution to MPE for the original Markov process (x,,)
o0 (@) _ gre(au(a) -2 / ") puCe) (). (32)
E
Furthermore if w" is a solution to (32) then w" defined by
e (@ha®) = ere(a @) AE L few (@) (33)
is a solution to (28).
From Proposition 1 of [3] we have
PROPOSITION 2. If for Borel measurable u : E — U
(D1): B {exp{7||cllspTey }} < 00 for x € E, with a, = u(zl),
where ||c||sp 1= SUp(, gyepxv ¢(T,a) — inf(z g)epxv (T, a), then for x € E

Ay(u) = — lim —lnE"{eXp{Z ye(xi,u (xl)))}} (34)

’yn—>oo’]’L

4. Asymptotics of MPEs. Given Borel measurable v : F — U assume that we have
(D1) satisfied for 0 < v < 7o. Then by Proposition 2 there are solutions A (u) and w to
the MPE (32) and A, (u) is of the form (34). We are now interested in the limit behavior
of Ay (u) and w} as v — 0.

PROPOSITION 3. We have that A\, (u) decreases to A(u) and w}(z) converges to w*(x) for
U (v,-) almost all x € E as~y | 0, where A(u) and w" are solutions to the APE (22) and
Uiy, ) = 21 27 P (v, ).

Proof. Notice first that by the Holder inequality

L In E:{exp{nzl ~y1e(xq, u(xl)))}} < 1 In Eg{exp{nzl Yo, u(xl)))}} (35)
i=0 i=0

T V2

whenever 0 < ; < 9. Therefore by (34) A, (u) is decreasing as v — 0. Consequently Ao =
lim o Ay (). Consider now the split Markov process (&) corresponding to a stationary
control u. Let 1Y be given by (26). Then

Tcl

e < Br{exp{ Y Aelwl ul@h) = 2o) } }- (36)
i=0
Consequently by de I’Hospital’s rule we have
TCy
lim sup w7 (z) < limsup — lnE“{exp{Z'y u(x})) — )\0)}}
710 710 i—0

Tcl

= B (elal u(@h)) = o)} (37)

=0
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Similarly for ¥ < o

TCq

lir%ionf %uly(x) > lir%ionf In E;f{exp{iz_% ye(z!, u(z))) - )\7)}}
Tcl
_ i 1 1
= B> (elal,ulwh) = A) ). (38)
=0
Therefore
Tcl 1
Ew{;wu}, u(a})) = M)} < liminf S (2)
1 L
< limsup i (2) < Ew{z(c(x},u(x})) - )\0)} (39)
710 Y i=0
and letting ¥ — 0 we obtain that
. 1 A ” o 1 1
lim ~ 0% () = Ex{;c(xi Ju(@h) = do) b 1= w(@). (40)

Since WY (z0) = v(c(wo, u(wo)) — Ay (u)) for zg € C1, we have w(zo) = c(xo,u(x0)) — Ao-
Therefore by Lemma 3, Ao = A(u) and w(z) = @“(z) for ¥* almost all z € E. From
(21), (31) and the form (15) of the invariant measure U" we immediately have that
lim, o w3 (7) = w*(x) for Uf(v,-) almost all x € E, which completes the proof. n

5. Approximations to the Markov process. In this section we shall introduce an ap-
proximation to a Markov transition operator in the form of a Markov transition operator
satisfying condition (13). We assume first that

<A4) Pu(‘r’ A) = pr(SL’, a,y)u(dy)

where p > 0 is a continuous function. Moreover letting |z| := p(x,0), where p is a metric
on F and 6 € F is a fixed point define
p(z,a,y)
— = for |yl < N
AR ()
i p(0,a,y)
pn(z,a,y) = At (x) for [y]>= N +1
N+1- 0,a - N
p(z,a,y)(N + \zil) 00,09y =N) e
Ay ()

with Af (z) = P*(z, BN)+P*(0, By 1)+ g\ gy [P(#: @ ) (N+1=]y)+p(0, 8, y)(|ly| -
N)v(dy), where By = {z € E: |z| < N} and a is a fixed element of U. Then let

pn(@,a,y) = pn(w,a,y) if [2]| <N
N (x,a,y) :j)‘N(%N,a,y)) for |x| > N,
and define
Py (z,dy) = pn(z,a,y)v(dy) (41)

We clearly have
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LEMMA 6.
Sup [Py () = P*(@, ) luar — 0 (42)
ac

as N — oo, uniformly in x from compact sets. Furthermore for each N

sup sup sup w < (43)

aaEUa:eryEEpN(l' a’ y)

which means that (13) is satisfied.

REMARK 1. For the controlled Markov process with transition operator Py (z, dy) defined

in (41) we clearly have that conditions (F), (11) and (13) are satisfied. Consequently we

(M) \(W)

have solutions w®™), \(") and w5 to the Bellman equations (9) and (10) respec-

tively with operator P® replaced by Py;. Furthermore, there exist optimal stationary
controls &V) and u( ) , which are in fact selectors to the right hand sides of (9) and (10)
respectively, for the cost functionals J™) and J,(YN)
J and J, with operator P replaced by Pg.

which correspond to the functionals

6. Solution to additive Bellman equation. We shall need the following assumption:

(A5) Jeso such that V. compact,C

sup sup sup £ {‘Z xl a™ (z ))—)\(N))‘LR}:M(K)<oo7 (44)
acUzxzeK N
where the control at the first time is ag = a and a,, = 4" (1) for n > 1
Notice that (A5) in particular is satisfied when sup(, )sup,cx B { HE} < o0
which is satisfied when C' is a positive recurrent set which the process enters no matter
what kind of control is used.

THEOREM 1. Under (A5) there exist A\ and a continuous function w : E — R such that
w(z) = inf [e(e,a) ~ A+ / w(y) Pz, dy)]. (45)
acU E

Moreover X\ is an optimal value of the cost functional (7) within the class of controls
~ 1

u from Uy such that E;‘l(a;z) {w(az%)} is W™ integrable. The control 4 for which the infi-

mum in (45) is attained, is an optimal control. If for an admissible control (a,) we have

limy o0 tE (an) {w(z)} =0 then A < J.((an)).
Proof. The proof consists of several steps:

Step 1. Notice first that if u?ﬁN(m is a solution to APE corresponding to transition operator

5 (N)
P% " we have

BN {10, ()0} (000} = BN o, () (eod, a™ (a1) - XV @)}

and

Tcl

BN (e (@ag” (@0} = BN {xes (02) 3 (elal,a™ (@) = A @) |

i=1
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and therefore by (A5) the terms
N N . Fa, o V™)
1 (@) = Ep M {le, (B)wy (20}
a,N o s N A~ L N
27 (@) = EpM {1y (20w (21))
and
a Fa N ~aV)
fa¥ (@) = BN {1 pyoy oy (B0 (81)}
are bounded in N uniformly on compact subsets of (Ey UCy) x U.
Step 2. We show now that for N = 1,2, ..., the functions f&" (), f&™ (x) and f$~ (z)
are equicontinuous in z and a from compact subsets of Fy U Cy and U respectively.

Notice that by (42) for each compact set K C FEo U C1, &’ > 0 there is a compact set
K1 D Cy Uy such that

sup sup sup PV {#, € K¢} <&’ (46)
acUzeK N

Furthermore by the Hélder inequality

TCy
sup sup sup | BN {1y (1) Y_(e(w}, @™ (w])) = AV (@))) }|
acU xzeK N i—1
7'c1
< sup sup sup(P2 {1 € K} 7 sup sup sup (£ {| Y (e(al, ¥ (o))
acUzxzeK N acUxzeK N i—1
(1+e) 1 e
- W) )T < e T u) T (47)

Now for a,a’ € U, z,2' € E
N @) = N @] < el PV (@, 6 ) = PN (@ G0 var (48)
[N (@) — £5N (2] < sup %" (@)[| PN (2,Co 1) = PN (2!, Co 0 ) fuar (49)
and using (47)
15N (@) = 57N (@) < ek % @) 1PN (2, Ky 1) = PN (! Ky 0 var
rek,

1

42/ T (M(K)) ™=, (50)

For § > 0 choose K in (46) such that ae’ﬁ(M(K))l%E < $.Forz,2' € EyUC; and a,
a’ € U such that

0
2][ll

||PaN(x, Cl N ) - Pa’N(x/, Cl N ')”var S

(51)

and
)

a(N)

||PaN($7K1ﬂ')_PalN($/7K1ﬂ')||var < N
2sup,ck, [0y (2)]

(52)
by (48)—(50) we obtain that

max_|foN (@) - ;N @) <8
i=1,2,3
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Now by (A5) sup, ¢, |1Z)}%,<N) (2)| is bounded in N and therefore by (42) we can choose z,
2’ and a, @' in (51) and (52) uniformly in N, which completes the proof of equicontinuity.

Step 3. By step 1, 2 and (21) we immediately see that Eg’N{waN(N) (1)} is uniformly (in N)
bounded and equicontinuous in z and a from compact subsets of E x U. Since 4V) is
optimal for Pg (x,dy) we have that w}A(,N = w™), Therefore by Ascoli’s theorem (thm. 33
of [8]) there is a subsequence N} such that E®Ne{w¥)(z1)} converges uniformly in
a € U and z from compact subsets of E and AV&)(4(Nk)) — X (since AN (a(M)) €
[infrepacv ¢(x,a),5Up,ep aer ¢(,a)]). Consequently there is a continuous function w
such that

w(zx) = inf [c(x, a) — A+ kllm

aclU oo g

W™ (y) Py, (w,dy) . (53)

Moreover, since w™) = w}ifm is a solution to the suitable Bellman equation (9) (see

Remark 1) we have that

w(z) = lim inf [ (z, )—)\—i—/Ew(N’“)(y)P]%k(x,dy)}

k—oo aclU
= lim (A — AR (g (NkDY gy (Nk) (1)) = Jim wNe) (). (54)

Step 4. To prove that the function w defined in (53) is a solution to the Bellman equation
(45) it remains to show that

Jim B9 O (2)} = 2 w(an)). (55)
In fact, by (A5) and Fatou’s lemma
Ep{w(zy)} < lim By {w™) (1)} < co. (56)
By step 1 and 2 one can find a compact set K1 D C such that

g
sup sup B3N {1 ¢ (1) |w ™) (21) |} < 3 (57)
N acU

and

sup Bz {Lics (@1)fw(z)[} <

Wl ™

Therefore
|E2{w(z1)} — SN {w™) (1) }]
< |BH{1k, (z1)w(z1)} — ESNE {1k, (@1)w(z1)}|
+ [BSN {1, (1) (w(zr) — w ™) (1))}
+ EPNe {1 (1) w™) (1)} + B3 {Lkcg (w1)w (1)}
< sup |w(@)||P*(z, K1 N-) = PN (2, K1 O )|lvar + sup |w(z) —w™) (z)] + 236
re K, e Ky

Consequently letting £ — oo and taking into account that £ may be arbitrarily small we
obtain the convergence (55). By continuity in 2 and a of the right hand side of (45) we
have the existence of a Borel measurable function @ for which the infimum is attained.
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Step 5. We shall show now that for Borel measurable v : E — U we have A(u) > A. In
fact, then

w(a) < elau(a)) = A+ [ 0P (w.dy). (59)
Define following (23)
(', 0?) = (e’ u(ah)) = A+ B0 w(a))}. (60)
Since by Corollary 1 for a € U
Eefu(en)} = B {w(@h))
— 1@ = AEL o {wwh)} + BES ) {w(@)}] + Lpo(e) B o) {wlwh))

from (59) we have
w(z) < ez u(x)) = A+ 1e(@)[(1 - BB fw(zh)} + BEL) {w(ah)]
+ 1o (@) B {w(al)}
= 1e(@)((1 — A" (x,0) + i (z, 1)) + Lpyo(2)@" (2, 0).

Therefore
), fw(eh)} < B {Le(@d) (1 - B)a" (),0) + 8" (¢}, 1)) + Lpo(a}) i (21, 0))
— B®) [ (1)) (61)
Consequently by (60) we have that
(2t 0?) < el ule")) = A+ B, [t (a0)). (62)

Integrating both sides of the last inequality with respect to measure ¥* we obtain that

A < A(u).
Step 6. By Proposition 1 and step 5 we have for any Borel measurable v : E — U

A= Na) = Jo(a(rn)) < Jo((w(zn))),

which shows optimality of (@(z,)) within the (‘laqq of stationary controls. If for an ad-
missible control (a,) we have limsup,_, . tE (an) {w(z¢)} = 0, then iterating (45) we

obtain
t—1

wie) < B3 (el a) = X) + w(z))

i=0
and dividing both sides of the last inequality by ¢ and letting ¢ to infinity we obtain that
Jz((an)) > A which completes the proof. m

7. Solution to multiplicative Bellman equation. Assume now that

(A6) Je>o such that V

KcompactCE
oV L [ ) ) (gL
sup sup sup F% {exp{Z’y x})) — A (U ))}} < 00, (63)

aclU zek N

where the control at the first time is ag = a and a,, = uy(x}) for n > 1.
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A sufficient condition for (A6) can be found in [3]. We can now recall Theorem 1 of [3]:

THEOREM 2. Under (A1) (A4) and (A6) there exist Ay and a continuous function w. :
E — R such that

) = i | 'w(:c,a)—/\w/ 0 Pz, dy)]. 64
e inf e Ee (x,dy) (64)

Moreover, under:

(D2)  supy sup(,,)eu, EAQ(CG")’N{eXp{fyHcHSpTCI}} < oo forx e Cy

(D3)  sup(y,)eu, E’ia”){exp{(l—|—5)’y||c||sp7'cl}} < oo for x € Cy and a sufficiently small
e >0,

we have that

No= int (@) = Jim XV (E0), (65)

Assuming additionally that (D1) is satisfied for a,, = u(x,,), where 4 is a Borel measurable
function for which the infimum in the right hand side of (50) is attained we have that
Ay = Ay(@). Furthermore, if for an admissible control (a,) we have

lim sup Eg(ga){(Eg; {e""})*} < o0
t—oo

for every a > 1, then Ay < J,((ay)).

8. Asymptotics of Bellman equations. Notice first that by Proposition 3 if (D1) is
satisfied for sufficiently small v > 0, we have for any Borel measurable v : E — U

Jy((u(z(n))) — J((u(x(n)))) (66)
as v — 0, and the limit is decreasing. Consequently we have

THEOREM 3. Under (A1)—(A6) if (D1)—(D3) are satisfied for sufficiently small v > 0 we
have

lim A, = A (67)
7—0

Furthermore, risk neutral e-optimal control u € Us within the class of stationary controls
is nearly optimal for the risk sensitive cost functional with v close to 0, within the class
of stationary controls.

Proof. By Theorem 2

A= inf () (65)
and by Theorem 1
A= inf J(u). (69)
u€EU,

Therefore from (66) we immediately obtain (67). Now, if u € U is e-optimal for J within
the class of stationary strategies, then by (66) for 0 < v < 79 we have

Jy(u) < J(u) +e < A+2e < Ay + 3¢, (70)
which is the required 3e-optimality. m
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REMARK 2. Although we have convergence (67) it is not clear that the function w.,, the
solution to (64) converges, (or at least a suitable subsequence does) to the function w,

the solution to (45), as v — 0, provided that at fixed point Z € E we have w,(Z) = w(Z).
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