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Abstra
t. Assuming that a Markov pro
ess satis�es the minorization property, existen
e andproperties of the solutions to the additive and multipli
ative Poisson equations are studied usingsplitting te
hniques. The problem is then extended to the study of risk sensitive and risk neutral
ontrol problems and 
orresponding Bellman equations.
1. Introdu
tion. On a probability spa
e (Ω,F , P ) 
onsider a Markov pro
ess X = (xn)taking values on a 
omplete separable metri
 state spa
e E endowed with the Borel
σ-algebra E . Assume that (xn) has a transition operator P (xn, ·) at time n, i.e., for
D ∈ E we have P{xn+1 ∈ D|x0, x1, . . . , xn} = P (xn,D), P a.e. Let c : E → R be
ontinuous and bounded and γ > 0. We would like to �nd 
onstants λ and λγ su
h thatthe fun
tions

w(x) := Ex

{

∞
∑

i=0

(c(xi) − λ)
} (1)
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58 G. B. DI MASI AND Ł. STETTNERand
ewγ(x) := Ex

{

exp
{

∞
∑

i=0

γ(c(xi) − λγ)
}} (2)are well de�ned.The problems above are 
losely related to the existen
e of solutions: a 
onstant λand a fun
tion w or 
onstant λγ and fun
tion wγ respe
tively to the following equations:additive Poisson equation (APE)

w(x) + λ = c(x) + Pw(x) (3)where Pf(x) := Ex {f(x(1))} =
∫

E
f(y)P (x, dy), or multipli
ative Poisson equation(MPE)

ewγ(x)+λγ = eγc(x)

∫

E

ewγ(y)P (x, dy) (4)respe
tively. In fa
t the fun
tions w and wγ de�ned in (1) and (2) are natural 
andidatesfor solutions to (3) and (4) respe
tively.A su�
ient 
ondition for existen
e of solutions to APE is (see [9℄ and [5℄) uniformergodi
ity of (xn), i.e.
sup
A∈E

sup
x,z∈E

|P (x,A) − P (z,A)| < 1. (5)In the 
ase of MPE a su�
ient 
ondition for the existen
e of solutions 
an be formulatedas follows (see [2℄ and [5℄)
sup

x,z∈E

h(P (x, ·), P (z, ·)) < ∞ (6)where h(µ, ν) := supA,B∈E ln µ(A)ν(B)
ν(A)µ(B) is the so 
alled Hilbert norm in the spa
e P(E) ofprobability measures on E.In the paper we shall formulate more general 
onditions than (5) and (6) for theexisten
e of solutions of APE and MPE and study limit behavior of the solutions toMPE with risk fa
tor γ 
onverging to 0.We will be furthermore interested in the 
ontrol of a Markov pro
ess. For this purposewe shall assume that (xn) has a 
ontrolled transition operator P an(xn, ·) at time n, where

an is the 
ontrol at time n taking values on a 
ompa
t metri
 spa
e U and adapted tothe σ-algebra σ{x0, x1, . . . , xn}.Let now c : E × U → R be 
ontinuous bounded. We are looking for a 
ontrol (an)minimizing the following 
ost fun
tionals: risk neutral (average 
ost per unit time)
J((an)) := lim sup

n→∞

1

n
E(an)

x

{

n−1
∑

i=0

c(xi, ai)
} (7)or risk sensitive 
ost fun
tional

Jγ((an)) :=
1

γ
lim sup

n→∞

1

n
lnE(an)

x

{

exp
{

n−1
∑

i=0

γc(xi, ai)
}}

, (8)where E
(an)
x stands for expe
tation with respe
t to the 
onditional probability measureunder 
ontrol sequen
e (an), given the initial state x of the 
ontrolled pro
ess (xn).



POISSON EQUATIONS 59The study of risk sensitive fun
tional is motivated by the fa
t that it measures not onlythe average 
ost but also higher moments of the average 
ost in parti
ular its varian
ewith weight γ (see [1℄ for �nan
ial motivation of these kind of problems). It 
an be also
onsidered as a dual problem to the minimization of the probability that the average 
ostis greater that a given ben
hmark (see [7℄).The following Bellman equations 
orrespond to the 
ost fun
tionals (7) and (8) re-spe
tively
w(x) + λ = inf

a∈U
(c(x, a) + P aw(x)) (9)where P af(x) :=

∫

E
f(y)P a(x, dy), and
ewγ(x)+γλγ = inf

a∈U

(

eγc(x,a)

∫

E

ewγ(y)P a(x, dy)
)

. (10)One 
an expe
t that λ and λγ are optimal values of the 
ost fun
tionals (7) and (8)respe
tively.In what follows we shall assume the following Feller property(F): U × E ∋ (a, x) 7→ P af(x) is 
ontinuous for f ∈ C(E).Under (F) and 
ontrolled uniform ergodi
ity of the form
sup
A∈E

sup
a,a′∈U

sup
x,z∈E

|P a(x,A) − P a′

(z,A)| < 1 (11)there is (see [9℄) a bounded 
ontinuous fun
tion w and a unique 
onstant λ whi
h solvethe Bellman equation (9). Furthermore
λ = inf

(an)
J((an)) = J(û(xn)), (12)where û is a Borel measurable fun
tion for whi
h the in�mum on the right hand side of(9) is attained.If additionally to (F) we have that

sup
x,z∈E

sup
a,a′∈U

h(P a(x, ·), P a′

(z, ·)) < ∞ (13)then there exist (see [2℄) a bounded fun
tion wγ and a unique 
onstant λγ for whi
h theBellman equation (10) is satis�ed. Moreover
λγ = inf

(an)
Jγ((an)) = Jγ((ûγ(xn))), (14)where ûγ is a fun
tion for whi
h the in�mum in the right hand side of (10) is attained.We shall 
onsider the following two 
lasses of 
ontrols: Markov 
ontrols UM = {(an) :

an = un(xn)}, where un : E → U , and stationary 
ontrols Us = {(an) : an = u(x(n))},where u : E → U . We shall also indentify a Markov 
ontrol an = un(xn) with thesequen
e (un) of Borel measurable fun
tions un : E → U . Similarly a stationary 
ontrol
an = u(xn) shall be identi�ed with the Borel measurable fun
tion u : E → U .In the paper we generalize results 
on
erning the existen
e of solutions to additiveand multipli
ative un
ontrolled and 
ontrolled Poisson equations. The assumptions (5),(6) and (11), (13) are mainly satis�ed when the state spa
e is 
ompa
t. Our purpose isto show the existen
e results under assumptions satis�ed by ergodi
 pro
esses on lo
ally
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ompa
t spa
es. Sin
e we shall use the so 
alled splitting te
hnique of Markov pro
essesintrodu
ed in [6℄ we shall assume the following minorization property:(A1) ∃β>0 ∃C compact∈E ∃ν∈P(E) with ν(C) = 1 su
h that ∀A∈E

inf
x∈C

inf
a∈U

P a(x,A) ≥ βν(A).Furthermore the following ergodi
ity assumption will be 
onsidered(A2) C in (A1) is ergodi
, i.e. ∀(an)∈UM
∀x∈E E

(an)
x {τC} < ∞, where τC = inf{i > 0 :

xi ∈ C} and ∀(an)∈UM

sup
x∈C

E(an)
x {τC} < ∞.Noti
e that assumptions (A1) and (A2) are roughly satis�ed by nondegenerate ergodi
pro
esses on lo
ally 
ompa
t state spa
e E, where C is a ball whi
h is a positive re
urrentset. Given the set C satisfying (A1) and (A2) and the Markov 
ontrol (un) we 
onsider anew state spa
e Ê = {C×{0}∪C×{1}∪ (E \C)×{0}} and splitting of (xn) in the form

x̂n = (x1
n, x2

n) ∈ Ê with Markov 
ontrol of the form an = un(x1
n) and dynami
s de�nedin the following way:(i) when (x1

n, x2
n) ∈ C × {0}, x1

n moves to y a

ordingly to (1 − β)−1(P an(x1
n, dy) −

βν(dy)) and whenever y ∈ C, x2
n is 
hanged into x2

n+1 = βn+1, where βn is i.i.d.
P{βn = 0} = 1 − β, P{βn = 1} = β,(ii) when (x1

n, x2
n) ∈ C × {1}, x1

n moves to y a

ordingly to ν and x2
n+1 = βn+1,(iii) when (x1

n, x2
n) ∈ (E \ C) × {0}, x1

n moves to y a

ordingly to P an(x1
n, dy) andwhenever y ∈ C, x2

n is 
hanged into x2
n+1 = βn+1.Let C0 = C × {0}, C1 = C × {1}. The following properties of the split Markov pro
essare shown in [3℄Lemma 1. Under Markov 
ontrol (an) ∈ UM the pro
ess (x̂n = (x1

n, x2
n)) is Markov withtransition operator P̂ an(x̂n, dy) de�ned by (i)�(iii) and has a unique invariant measure

Ψ(an) given by the formula
Ψ(an)(A) =

Ê
(an)
z {

∑τC1
i=1 χA(x̂i)}

Ê
(an)
z {τC1

}
, (15)with z ∈ C1, for any Borel subset A of Ê, where E

(an)
z stands for the 
onditional law ofthe Markov pro
ess x̂n with initial state z. Furthermore the �rst 
oordinate (x1

n) is alsoa Markov pro
ess with transition operator P an(x1
n, dy).Corollary 1. For any bounded Borel measurable fun
tion f : Em → R, m = 1, 2, . . . ,and 
ontrol (an) ∈ UM we have

E(an)
x {f(x1, x2, . . . , xm)} = Ê

(an)
δ∗

x
{f(x1

1, x
1
2, . . . , x

1
m)} (16)where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C.The paper 
onsists of 8 se
tions. We formulate �rst the existen
e results for APEwhi
h generalize results of [4℄ proved there in a more spe
i�
 
ase and re
all results onMPE from [3℄. In se
tion 4 we show that APE 
an be 
onsidered as the limit of MPEsletting the risk fa
tor γ tend to 0. Starting from se
tion 5 we 
onsider a uniformly ergodi




POISSON EQUATIONS 61approximation of Markov pro
esses. An approximating pro
ess with transition operator
P a

N (x, dy) satis�es assumptions (11) and (13), so that we have the existen
e of solutionsto 
ontrolled APE and MPE. In se
tion 6 using the above approximation we show theexisten
e of solutions to APE for pro
esses satisfying (A1) and (A2). In se
tion 7 we re
allthe existen
e results for 
ontrolled MPE from [3℄ and �nally in se
tion 8 we 
onsider theasymptoti
s of MPE for the risk fa
tor γ 
onverging to 0.2. The study of additive Poisson equation. We start with an obvious lemma whi
hfollows dire
tly from the boundedness of c, and 
onditions (A1) and (A2)Lemma 2. Given Borel measurable u : E → U there is a unique λ(u) su
h that for x ∈ C1

Êx

{

τC1
∑

i=1

(c(x1
i , u(x1

i )) − λ(u))
}

= 0. (17)Furthermore λ(u) =
∫

Ê
c(x1, u(x1))Ψu(dx).For Borel measurable u : E → U let
ŵu(x) := Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ(u))
}

. (18)In analogy to [4℄ (see also [3℄), where more spe
i�
 
ase was studied, we 
an show thefollowing results:Lemma 3. The fun
tion ŵu is a solution to the additive Poisson equation (APE) for thesplit Markov pro
ess (x̂n):
ŵu(x) = c(x1, u(x1)) − λ(u) +

∫

Ê

ŵu(y)P̂u(x1)(x, dy). (19)Furthermore, if ŵ and λ satisfy the equation
ŵ(x) = c(x1, u(x1)) − λ +

∫

Ê

ŵ(y)P̂u(x1)(x, dy) (20)and ŵ is integrable with respe
t to the measure Ψu then λ = λ(u) (de�ned in Lemma 2)and ŵ di�ers from ŵu by an additive 
onstant Ψu almost everywhere.Corollary 2. Given a solution w̃u : Ê → R to APE we have that wu de�ned by
wu(x) := w̃u(x, 0) + 1C(x)β(w̃u(x, 1) − w̃u(x, 0)) (21)is a solution to APE for the original Markov pro
ess (xn)

wu(x) = c(x, u(x)) − λ(u) +

∫

E

wu(y)Pu(x)(x, dy). (22)Furthermore if wu is a solution to (22) then w̃u de�ned by
w̃u(x1, x2) = c(x1, u(x1)) − λ(u) + Êx1,x2

{

wu(x1(1))
} (23)is a solution to (19).



62 G. B. DI MASI AND Ł. STETTNERProposition 1. For Borel measurable u : E → U the value λ(u) de�ned in Lemma 2 isequal to
λ(u) = lim

n→∞

1

n
Ex

{

n−1
∑

i=0

c(xi, u(xi))
}

. (24)
3. The study of the multipli
ative Poisson equation. To study the MPE we needa stronger assumption than (A2). Fix γ > 0. We shall impose the 
ondition that(A3) ∀(an)∈Us

∃d s.t. ∀x∈Ê

Ê(an)
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − d)

}}

< ∞and for x ∈ C1

Ê(an)
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − d)

}}

≥ 1.Under (A3) we easily obtainLemma 4. Under (A3) for Borel measurable u : E → U there is a unique λγ(u) su
h that
Ê(an)

x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , ai) − λγ(u))

}}

= 1 (25)for x ∈ C1.For Borel measurable u : E → U and γ > 0 for whi
h (A3) holds de�ne
eŵu

γ (x) = Êu
x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λγ(u))
}}

, (26)For a Borel measurable fun
tion w̃ : Ê → R de�ne the operator Φ(w̃) by the formula
eΦ(w̃) = (1 − β)

∫

C

ew̃(x,0)ν(dx) + β

∫

C

ew̃(x,1)ν(dx) (27)whenever it is well de�ned. We have (see [3℄ for the proofs)Lemma 5. The fun
tion ŵu
γ de�ned in (26) is a solution to the multipli
ative Poissonequation (MPE) for the split Markov pro
ess (x̂n):

eŵu
γ (x) = eγc(x1,u(x1))−λγ(u)

∫

Ê

eŵu
γ (y)P̂u(x1)(x, dy). (28)Moreover Φ(ŵu

γ ) = 0, and for any other solution w̃u to (28) we have
w̃u(x) − Φ(w̃u) ≥ ŵu

γ (x) (29)with equality for Ψu almost all x ∈ Ê. Furthermore, if w̃ and λ satisfy the equation
ew̃(x) = eγc(x1,u(x1))−λ

∫

Ê

ew̃(y)P̂u(x1)(x, dy) (30)then λ ≥ λγ(u).



POISSON EQUATIONS 63Corollary 3. For x ∈ E and a solution w̃u : Ê → R and λ to MPE (28) we have that
wu de�ned by

ewu(x) := ew̃u(x,0) + 1C(x)β(ew̃u(x,1) − ew̃u(x,0)) (31)is a solution to MPE for the original Markov pro
ess (xn)

ewu(x) = eγc(x,u(x))−λ

∫

E

ewu(y)Pu(x)(x, dy). (32)Furthermore if wu is a solution to (32) then w̃u de�ned by
ew̃u(x1,x2) = eγc(x1,u(x1))−λÊx1,x2{ewu(x1

1)} (33)is a solution to (28).From Proposition 1 of [3℄ we haveProposition 2. If for Borel measurable u : E → U(D1): Ê
(an)
x {exp{γ‖c‖spτC1

}} < ∞ for x ∈ Ê, with an = u(x1
n),where ‖c‖sp := sup(x,a)∈E×U c(x, a) − inf(x,a)∈E×U c(x, a), then for x ∈ E

λγ(u) =
1

γ
lim

n→∞

1

n
lnEu

x

{

exp
{

n−1
∑

i=0

γc(xi, u(xi)))
}}

. (34)
4. Asymptoti
s of MPEs. Given Borel measurable u : E → U assume that we have(D1) satis�ed for 0 < γ < γ0. Then by Proposition 2 there are solutions λγ(u) and wu

γ tothe MPE (32) and λγ(u) is of the form (34). We are now interested in the limit behaviorof λγ(u) and wu
γ as γ → 0.Proposition 3. We have that λγ(u) de
reases to λ(u) and wu

γ (x) 
onverges to wu(x) for
Uu

1 (ν, ·) almost all x ∈ E as γ ↓ 0, where λ(u) and wu are solutions to the APE (22) and
Uu

1 (ν, ·) =
∑∞

i=1 2−iPui(ν, ·).Proof. Noti
e �rst that by the Hölder inequality
1

γ1
lnEu

x

{

exp
{

n−1
∑

i=0

γ1c(xi, u(xi)))
}}

≤
1

γ2
lnEu

x

{

exp
{

n−1
∑

i=0

γ2c(xi, u(xi)))
}} (35)whenever 0 < γ1 ≤ γ2. Therefore by (34) λγ(u) is de
reasing as γ → 0. Consequently λ0 =

limγ↓0 λγ(u). Consider now the split Markov pro
ess (x̂n) 
orresponding to a stationary
ontrol u. Let ŵu
γ be given by (26). Then

eŵu
γ (x) ≤ Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λ0)
}}

. (36)Consequently by de l'Hospital's rule we have
lim sup

γ↓0
ŵu

γ (x) ≤ lim sup
γ↓0

1

γ
ln Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λ0)
}}

= Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
}

. (37)
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lim inf
γ↓0

1

γ
ŵγ(x) ≥ lim inf

γ↓0
ln Êu

x

{

exp
{

τC1
∑

i=0

γ(c(x1
i , u(x1

i )) − λγ̄)
}}

= Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λγ̄)
}

. (38)Therefore
Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λγ̄)
}

≤ lim inf
γ↓0

1

γ
ŵγ(x)

≤ lim sup
γ↓0

1

γ
ŵγ(x) ≤ Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
} (39)and letting γ̄ → 0 we obtain that

lim
γ↓0

1

γ
ŵu

γ (x) = Êx

{

τC1
∑

i=0

(c(x1
i , u(x1

i )) − λ0)
}

:= w(x). (40)Sin
e ŵu
γ (x0) = γ(c(x0, u(x0)) − λγ(u)) for x0 ∈ C1, we have w(x0) = c(x0, u(x0)) − λ0.Therefore by Lemma 3, λ0 = λ(u) and w(x) = ŵu(x) for Ψu almost all x ∈ Ê. From(21), (31) and the form (15) of the invariant measure Ψu we immediately have that

limγ↓0 wu
γ (x) = wu(x) for Uu

1 (ν, ·) almost all x ∈ E, whi
h 
ompletes the proof.5. Approximations to the Markov pro
ess. In this se
tion we shall introdu
e an ap-proximation to a Markov transition operator in the form of a Markov transition operatorsatisfying 
ondition (13). We assume �rst that(A4) P a(x,A) =
∫

A
p(x, a, y)ν(dy)where p > 0 is a 
ontinuous fun
tion. Moreover letting |x| := ρ(x, θ), where ρ is a metri
on E and θ ∈ E is a �xed point de�ne

p̃N (x, a, y) =



































p(x, a, y)

∆a
N (x)

for |y| ≤ N

p(θ, ā, y)

∆a
N (x)

for |y| ≥ N + 1

p(x, a, y)(N + 1 − |y|) + p(θ, ā, y)(|y| − N)

∆a
N (x)

elsewherewith ∆a
N (x) = P a(x,BN )+P ā(θ,Bc

N+1)+
∫

BN+1\BN
[p(x, a, y)(N+1−|y|)+p(θ, ā, y)(|y|−

N)]ν(dy), where BN = {x ∈ E : |x| ≤ N} and ā is a �xed element of U . Then let
pN (x, a, y) = p̃N (x, a, y) if |x| ≤ N

pN (x, a, y) = p̃N

(

x
|x|N, a, y)

) for |x| > N ,and de�ne
P a

N (x, dy) = pN (x, a, y)ν(dy) (41)We 
learly have
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sup
a∈U

‖P a
N (x, ·) − P a(x, ·)‖var → 0 (42)as N → ∞, uniformly in x from 
ompa
t sets. Furthermore for ea
h N

sup
a,a′∈U

sup
x,x′∈E

sup
y∈E

pN (x, a, y)

pN (x′, a′, y)
< ∞ (43)whi
h means that (13) is satis�ed.Remark 1. For the 
ontrolled Markov pro
ess with transition operator P a

N (x, dy) de�nedin (41) we 
learly have that 
onditions (F), (11) and (13) are satis�ed. Consequently wehave solutions w(N), λ(N) and w
(N)
γ , λ

(N)
γ to the Bellman equations (9) and (10) respe
-tively with operator P a repla
ed by P a

N . Furthermore, there exist optimal stationary
ontrols û(N) and û
(N)
γ , whi
h are in fa
t sele
tors to the right hand sides of (9) and (10)respe
tively, for the 
ost fun
tionals J (N) and J

(N)
γ whi
h 
orrespond to the fun
tionals

J and Jγ with operator P a repla
ed by P a
N .6. Solution to additive Bellman equation. We shall need the following assumption:(A5) ∃ǫ>0 su
h that ∀K compact,⊂Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x

{
∣

∣

∣

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λ(N))

∣

∣

∣

1+ǫ}

= M(K) < ∞, (44)where the 
ontrol at the �rst time is a0 = a and an = û(N)(x1
n) for n ≥ 1.Noti
e that (A5) in parti
ular is satis�ed when sup(an) supx∈K Ê

(an),N
x {τ1+ǫ

C1
} < ∞whi
h is satis�ed when C is a positive re
urrent set whi
h the pro
ess enters no matterwhat kind of 
ontrol is used.Theorem 1. Under (A5) there exist λ and a 
ontinuous fun
tion w : E → R su
h that

w(x) = inf
a∈U

[

c(x, a) − λ +

∫

E

w(y)P a(x, dy)
]

. (45)Moreover λ is an optimal value of the 
ost fun
tional (7) within the 
lass of 
ontrols
u from Us su
h that Ê

u(x1)
x1,x2

{

w(x1
1)

} is Ψu integrable. The 
ontrol û for whi
h the in�-mum in (45) is attained, is an optimal 
ontrol. If for an admissible 
ontrol (an) we have
limt→∞

1
t
E

(an)
x {w(xt)} = 0 then λ ≤ Jx((an)).Proof. The proof 
onsists of several steps:Step 1. Noti
e �rst that if ŵû(N)

N is a solution to APE 
orresponding to transition operator
P û(N) we have

Êa,N
x {1C1

(x̂1)ŵ
û(N)

N (x̂1)} = Êa,N
x {χC1

(x̂1)(c(x
1
1, û

(N)(x1
1)) − λ(N)(û(N)))}and

Êa,N
x {1Cc

1
(x̂1)ŵ

û(N)

N (x̂1)} = Êa,N
x

{

χCc
1
(x̂1)

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λ(N)(û(N)))

}



66 G. B. DI MASI AND Ł. STETTNERand therefore by (A5) the terms
f

a,N
1 (x) := Êa,N

x {1C1
(x̂1)ŵ

û(N)

N (x̂1)},

f
a,N
2 (x) := Êa,N

x {1C0
(x̂1)ŵ

û(N)

N (x̂1)}and
f

a,N
3 (x) := Êa,N

x {1(E\C)×{0}(x̂1)ŵ
û(N)

N (x̂1)}are bounded in N uniformly on 
ompa
t subsets of (E0 ∪ C1) × U .Step 2. We show now that for N = 1, 2, . . . , the fun
tions f
a,N
1 (x), f

a,N
2 (x) and f

a,N
3 (x)are equi
ontinuous in x and a from 
ompa
t subsets of E0 ∪ C1 and U respe
tively.Noti
e that by (42) for ea
h 
ompa
t set K ⊂ E0 ∪ C1, ε′ > 0 there is a 
ompa
t set

K1 ⊃ C0 ∪ C1 su
h that
sup
a∈U

sup
x∈K

sup
N

P̂ aN
x {x̂1 ∈ Kc

1} < ε′. (46)Furthermore by the Hölder inequality
sup
a∈U

sup
x∈K

sup
N

∣

∣

∣
Êa,N

x

{

1Kc
1
(x̂1)

τC1
∑

i=1

(c(x1
i , û

(N)(x1
i )) − λN (û(N)))

}
∣

∣

∣

≤ sup
a∈U

sup
x∈K

sup
N

(P̂ a,N
x {x̂1 ∈ Kc

1})
ε

1+ε sup
a∈U

sup
x∈K

sup
N

(

Êa,N
x

{∣

∣

∣

τC1
∑

i=1

(c(x1
i , û

N (x1
i ))

− λN (ûN ))
∣

∣

∣

(1+ǫ)})
1

1+ε

≤ ε′
ε

1+ε (M(K))
1

1+ε . (47)Now for a, a′ ∈ U , x, x′ ∈ Ê

|fa,N
1 (x) − f

a′,N
1 (x′)| ≤ ‖c‖‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var, (48)

|fa,N
2 (x) − f

a′,N
2 (x′)| ≤ sup

x∈C0

|ŵû(N)

N (x)|‖P̂ aN (x,C0 ∩ ·) − P̂ a′N (x′, C0 ∩ ·)‖var (49)and using (47)
|fa,N

3 (x) − f
a′,N
3 (x′)| ≤ sup

x∈K1

|ŵû(N)

N (x)|‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var

+ 2ε′
ε

1+ε (M(K))
1

1+ε . (50)For δ > 0 
hoose K1 in (46) su
h that ε′
ε

1+ε (M(K))
1

1+ε < δ
4 . For x, x′ ∈ E0 ∪ C1 and a,

a′ ∈ U su
h that
‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var ≤

δ

2‖c‖
(51)and

‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var ≤
δ

2 supz∈K1
|ŵû(N)

N (z)|
(52)by (48)�(50) we obtain that

max
i=1,2,3

|fa,N
i (x) − f

a′,N
i (x′)| ≤ δ.



POISSON EQUATIONS 67Now by (A5) supz∈K1
|ŵû(N)

N (z)| is bounded in N and therefore by (42) we 
an 
hoose x,
x′ and a, a′ in (51) and (52) uniformly in N , whi
h 
ompletes the proof of equi
ontinuity.Step 3. By step 1, 2 and (21) we immediately see that Ea,N

x {wû(N)

N (x1)} is uniformly (inN)bounded and equi
ontinuous in x and a from 
ompa
t subsets of E × U . Sin
e û(N) isoptimal for P a
N (x, dy) we have that wûN

N = w(N). Therefore by As
oli's theorem (thm. 33of [8℄) there is a subsequen
e Nk su
h that Ea,Nk
x {w(Nk)(x1)} 
onverges uniformly in

a ∈ U and x from 
ompa
t subsets of E and λ(Nk)(û(Nk)) → λ (sin
e λN (û(N)) ∈

[infx∈E,a∈U c(x, a), supx∈E,a∈U c(x, a)]). Consequently there is a 
ontinuous fun
tion wsu
h that
w(x) = inf

a∈U

[

c(x, a) − λ + lim
k→∞

∫

E

w(Nk)(y)P a
Nk

(x, dy)
]

. (53)Moreover, sin
e w(N) = wû(N)

N is a solution to the suitable Bellman equation (9) (seeRemark 1) we have that
w(x) = lim

k→∞
inf
a∈U

[

c(x, a) − λ +

∫

E

w(Nk)(y)P a
Nk

(x, dy)
]

= lim
k→∞

(λ − λ(Nk)(û(Nk)) + w(Nk)(x)) = lim
k→∞

w(Nk)(x). (54)Step 4. To prove that the fun
tion w de�ned in (53) is a solution to the Bellman equation(45) it remains to show that
lim

k→∞
Ea,Nk

x {w(Nk)(x1)} = Ea
x{w(x1)}. (55)In fa
t, by (A5) and Fatou's lemma

Ea
x{w(x1)} ≤ lim

k→∞
Ea,Nk

x {w(Nk)(x1)} < ∞. (56)By step 1 and 2 one 
an �nd a 
ompa
t set K1 ⊃ C su
h that
sup
N

sup
a∈U

Ea,N
x {1Kc

1
(x1)|w

(N)(x1)|} ≤
ε

3
(57)and

sup
a∈U

Ea
x{1Kc

1
(x1)|w(x1))|} ≤

ε

3
. (58)Therefore

|Ea
x{w(x1)} − Ea,Nk

x {w(Nk)(x1)}|

≤ |Ea
x{1K1

(x1)w(x1)} − Ea,Nk
x {1K1

(x1)w(x1)}|

+ |Ea,Nk
x {1K1

(x1)(w(x1) − w(Nk)(x1))}|

+ Ea,Nk
x {1Kc

1
(x1)w

(Nk)(x1)} + Ea
x{1Kc

1
(x1)w(x1)}

≤ sup
x∈K1

|w(x)|‖P a(x,K1 ∩ ·) − P aN (x,K1 ∩ ·)‖var + sup
x∈K1

|w(x) − w(Nk)(x)| +
2ε

3
.Consequently letting k → ∞ and taking into a

ount that ε may be arbitrarily small weobtain the 
onvergen
e (55). By 
ontinuity in x and a of the right hand side of (45) wehave the existen
e of a Borel measurable fun
tion û for whi
h the in�mum is attained.



68 G. B. DI MASI AND Ł. STETTNERStep 5. We shall show now that for Borel measurable u : E → U we have λ(u) ≥ λ. Infa
t, then
w(x) ≤ c(x, u(x)) − λ +

∫

E

w(y)Pu(x)(x, dy). (59)De�ne following (23)
ŵu(x1, x2) = c(x1, u(x1)) − λ + Ê

u(x1)
x1,x2 {w(x1

1)}. (60)Sin
e by Corollary 1 for a ∈ U

Ea
x{w(x1)} = Êa

δ∗

x
{w(x1

1)}

= 1C(x)[(1 − β)Êa
(x,0){w(x1

1)} + βÊa
(x,1){w(x1

1)}] + 1E\C(x)Êa
(x,0){w(x1

1)}from (59) we have
w(x) ≤ c(x, u(x)) − λ + 1C(x)[(1 − β)Ê

u(x)
(x,0){w(x1

1)} + βÊ
u(x)
(x,1){w(x1

1)}]

+ 1E\C(x)Ê
u(x)
(x,0){w(x1

1)}

= 1C(x)((1 − β)ŵu(x, 0) + βŵu(x, 1)) + 1E\C(x)ŵu(x, 0).Therefore
Ê

u(x1)
(x1,x2){w(x1

1)} ≤ Ê
u(x1)
(x1,x2){1C(x1

1)((1 − β)ŵu(x1
1, 0) + βŵu(x1

1, 1)) + 1E\C(x1
1)ŵ

u(x1
1, 0)}

= Ê
(u(x1)
(x1,x2){ŵ

u(x1)}. (61)Consequently by (60) we have that
ŵu(x1, x2) ≤ c(x1, u(x1)) − λ + Ê

u(x1)
(x1,x2){ŵ

u(x1)}. (62)Integrating both sides of the last inequality with respe
t to measure Ψu we obtain that
λ ≤ λ(u).Step 6. By Proposition 1 and step 5 we have for any Borel measurable u : E → U

λ = λ(û) = Jx(û(xn)) ≤ Jx((u(xn))),whi
h shows optimality of (û(xn)) within the 
lass of stationary 
ontrols. If for an ad-missible 
ontrol (an) we have lim supt→∞
1
t
E

(an)
x {w(xt)} = 0, then iterating (45) weobtain

w(x) ≤ E(an)
x

{

t−1
∑

i=0

(c(xi, ai) − λ) + w(xt)
}

and dividing both sides of the last inequality by t and letting t to in�nity we obtain that
Jx((an)) ≥ λ whi
h 
ompletes the proof.7. Solution to multipli
ative Bellman equation. Assume now that(A6) ∃ǫ>0 su
h that ∀K compact⊂Ê

sup
a∈U

sup
x∈K̂

sup
N

Êa,N
x

{

exp
{

τC1
∑

i=1

γ(c(x1
i , û

(N)
γ (x1

i )) − λ(N)
γ (û(N)

γ ))
}}1+ǫ

< ∞, (63)where the 
ontrol at the �rst time is a0 = a and an = uN (x1
n) for n ≥ 1.
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ient 
ondition for (A6) 
an be found in [3℄. We 
an now re
all Theorem 1 of [3℄:Theorem 2. Under (A1)�(A4) and (A6) there exist λγ and a 
ontinuous fun
tion wγ :

E → R su
h that
ewγ(x) = inf

a∈U

[

eγc(x,a)−λγ

∫

E

ewγ(y)P a(x, dy)
]

. (64)Moreover, under:(D2) supN sup(an)∈Us
Ê

(an),N
x {exp{γ‖c‖spτC1

}} < ∞ for x ∈ C1(D3) sup(an)∈Us
Ê

(an)
x {exp{(1+ε)γ‖c‖spτC1

}} < ∞ for x ∈ C1 and a su�
iently small
ε > 0,we have that

λγ = inf
(an)∈Us

Jγ((an)) = lim
N→∞

λ(N)
γ (û(N)

γ ). (65)Assuming additionally that (D1) is satis�ed for ân = û(xn), where û is a Borel measurablefun
tion for whi
h the in�mum in the right hand side of (50) is attained we have that
λγ = λγ(û). Furthermore, if for an admissible 
ontrol (an) we have

lim sup
t→∞

E(an)
x {(Eat

xt
{ew(x1)})α} < ∞for every α > 1, then λγ ≤ Jγ((an)).8. Asymptoti
s of Bellman equations. Noti
e �rst that by Proposition 3 if (D1) issatis�ed for su�
iently small γ > 0, we have for any Borel measurable u : E → U

Jγ((u(x(n))) → J((u(x(n)))) (66)as γ → 0, and the limit is de
reasing. Consequently we haveTheorem 3. Under (A1)�(A6) if (D1)�(D3) are satis�ed for su�
iently small γ > 0 wehave
lim
γ→0

λγ = λ. (67)Furthermore, risk neutral ε-optimal 
ontrol u ∈ Us within the 
lass of stationary 
ontrolsis nearly optimal for the risk sensitive 
ost fun
tional with γ 
lose to 0, within the 
lassof stationary 
ontrols.Proof. By Theorem 2
λγ = inf

u∈Us

Jγ(u) (68)and by Theorem 1
λ = inf

u∈Us

J(u). (69)Therefore from (66) we immediately obtain (67). Now, if u ∈ Us is ε-optimal for J withinthe 
lass of stationary strategies, then by (66) for 0 < γ < γ0 we have
Jγ(u) ≤ J(u) + ε ≤ λ + 2ε ≤ λγ + 3ε, (70)whi
h is the required 3ε-optimality.



70 G. B. DI MASI AND Ł. STETTNERRemark 2. Although we have 
onvergen
e (67) it is not 
lear that the fun
tion wγ , thesolution to (64) 
onverges, (or at least a suitable subsequen
e does) to the fun
tion w,the solution to (45), as γ → 0, provided that at �xed point x̄ ∈ E we have wγ(x̄) = w(x̄).
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