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Abstract. A short survey of results on classical Franklin system, Ciesielski systems and general

Franklin systems is given. The principal role of the investigations of Z. Ciesielski in the develop-

ment of these three topics is presented. Recent results on general Franklin systems are discussed

in more detail. Some open problems are posed.

The classical Franklin system, introduced by Ph. Franklin [11] in 1928, is a complete

orthonormal system of continuous, piecewise linear functions with dyadic knots. In 1972

(see [6], [7]) Z. Ciesielski introduced the orthonormal spline systems of higher order

that were later called Ciesielski systems. Z. Ciesielski and A. Kamont in [9] started the

investigation of general Franklin systems with quasi-dyadic knots.

A detailed review of the studies on these systems up to the year 2000 is provided in

the survey article by Z. Ciesielski and A. Kamont [10].

Let σN = {sn : 0 ≤ i ≤ N} be a partition of [0;1], admitting at most double knots,

i.e.,

0 = s0 < s1 ≤ . . . ≤ sN−1 < sN = 1 (1)

and

si < si+2 for all i, 0 ≤ i ≤ N − 2. (2)

Denote by S(σ) the space of piecewise linear functions on [0;1] corresponding to the

sequence of knots σ. By this we mean the space of functions linear on each interval

(si;si+1), left-continuous at each si (and right-continuous at s0) and continuous at each

si, 1 ≤ i ≤ N − 1 satisfying si−1 < si < si+1. The space S(σ) is a linear space of

dimension N + 1.

Now, let σN = {si : 0 ≤ i ≤ N} and σ∗
N+1 = {s∗i : 0 ≤ i ≤ N + 1} be a pair

of partitions of [0; 1] satisfying (1), (2) such that σ∗
N+1 is obtained from σN by adding

one knot s∗. Note that s∗ may be different from all points of σN (in this case we have
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s∗ = s∗i , for some i, and s∗i−1 < s∗i < s∗i+1 ), or s∗ = si, for some i (then s∗i−1 < s∗i = s∗ =

s∗i+1 < s∗i+2). Now, there is a unique function ϕ ∈ S(σ∗
N+1) that is orthogonal to S(σN )

with ‖ϕ‖2 = 1 and ϕ(s∗) > 0. This function ϕ is called the general Franklin function

corresponding to the pair of partitions (σN ;σ∗
N+1).

Definition 1. Let T = {tn : n ≥ 0} be a sequence of points from [0; 1]. The sequence T

is called admissible if t0 = 0, t1 = 1, tn ∈ (0; 1) for n > 1, for each t ∈ (0; 1) there are at

most two different indices n1 > n2 > 1 such that t = tn1
= tn2

, and T is dense in [0; 1].

For an admissible sequence T = {tn : n ≥ 0} and n > 1, let σn = {tn,i : 0 ≤ i ≤ n} be

the partition of [0; 1] obtained by the nondecreasing rearrangement of the first n+1 terms

of the sequence {tn : n ≥ 0}, counting multiplicities. It is clear, that each σn satisfies (1),

(2) and σn is obtained from σn−1 by adding one knot tn.

Definition 2. Let T be an admissible sequence of points. A general Franklin system

corresponding to the sequence of knots T is a sequence of functions {fn : n ≥ 0} given

by f0(t) = 1, f1 =
√

3(2t − 1), and for n ≥ 2, fn is the general Franklin function

corresponding to the pair of partitions (σn−1; σn); i.e. fn ∈ S(σn), fn is orthogonal to

S(σn−1), ‖fn‖n = 1 and fn(tn) > 0.

Definition 3. Let T = {tn : n ≥ 0} be a sequence of points from [0; 1] satisfying

conditions;

1) t0 = 0, t1 = 1, 0 < t2 < 1;

2) t2k+1 < t2k+2 < . . . < t2k+1 , k = 1, 2, . . .;

3) between two neighbouring points from {ti : 0 ≤ i ≤ 2k} there is a point in {ti :

2k + 1 ≤ i ≤ 2k+1}.
Then the sequence T is called a quasi-dyadic partition of [0; 1] and the corresponding

general Franklin system is called a quasi-dyadic Franklin system.

The classical orthogonal Franklin system is obtained when the partition T = {tn :

n ≥ 0} is dyadic, i.e. t0 = 0, t1 = 1, and tn = 2m−1
2k+1 for n = 2k + m, k = 0, 1, . . .,

1 ≤ m ≤ 2k. In 1928 Ph. Franklin [11] proved that this system is a basis in C[0; 1] (now

called the classical Franklin system). It is the first example of orthogonal basis in C[0; 1].

Before Ph. Franklin in 1910, A. Haar [19] introduced an orthogonal complete system with

the property: its Fourier expansion of any continuous function converges uniformly. But

the functions of the Haar system are not continuous, consequently the Haar system is

not a basis in C[0; 1] .

Afterwards the Franklin system was not studied until the work of Z. Ciesielski, who

started the systematic investigation of this system. In 1966 Z. Ciesielski [5] proved the

exponential estimates for functions of the classical Franklin system.

Theorem 1 (Z. Ciesielski). Let {fn : n ≥ 0} be the classical Franklin system. Then

there exist constants C > 0 and q ∈ (0; 1) such that for each n = 2k + m, k = 0, 1, 2, . . .,

1 ≤ m ≤ 2k

|fn(x)| ≤ C
√

nqn|x−tn| (3)

where tn = 2m−1
2k+1 .
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The estimate (3) plays an important role in the investigation of the classical Franklin

system. Here we mention some of the principal results.

Let M(f, x) be the Hardy-Littlewood maximal function of an integrable function f

and let SN (f, x) be the partial sum of f with respect to the classical Franklin system.

Moreover let

S∗(f, x) = sup
1≤N<∞

|SN (f, x)|

be the majorant of the Fourier–Franklin series.

Theorem 2 (Z. Ciesielski [5]). For any f ∈ L1[0; 1]

S∗(f, x) ≤ C · M(f, x),

where C is an absolute constant.

Later Z. Ciesielski and A. Kamont [9] proved that Theorem 2 is true for any general

Franklin system.

Theorem 3 (S. V. Bochkarev [1]). The classical Franklin system is an unconditional ba-

sis in all reflexive Orlicz spaces; in particular, in the spaces Lp for 1 < p < ∞.

Theorem 4 (P. Wojtaszczyk [24]). The classical Franklin system is an unconditional ba-

sis in H1[0; 1] .

Applying the classical Franklin system, S. V. Bochkarev [3] constructed a basis in the

space A of complex-valued functions analytic inside the unit disk and continuous in the

closed unit disk. For the classical Franklin system {fn : n ≥ 0} S. V. Bochkarev defined

Fn(x) =

{
fn( x

π ), for x ∈ [0;π],

fn(− x
π ), for x ∈ [−π; 0],

(4)

and

G0(x) =
1 + i

2
√

π
, Gn(x) =

1√
2π

[Fn(x) + iF̃n(x)], (5)

where the function

F̃n(x) = − lim
ε→+0

1

π

∫ π

ε

Fn(x + t) − Fn(x − t)

2 tan t
2

dt (6)

is the trigonometric conjugate of Fn(x)

Theorem 5 (S. V. Bochkarev). The system of functions

Gn(z) ≡ Gn(reix) =
1

2π

∫ π

−π

Gn(t)P (r, x − t)dt, (7)

where P (r, x) is the Poisson kernel, forms a basis in the space A.

Combining the results from [5], [1], [14], [23] we can formulate

Theorem 6. Let {fn : n ≥ 0} be the classical Franklin system and p ∈ (0;+∞). Then

the following conditions are equivalent:

1)
∑∞

n=1 anfn(x) converges unconditionally in Lp;

2) {∑∞
n=0 a2

nf2
n(x)}1/2 ∈ Lp;

3) supN |∑N
n=0 anfn(x)| ∈ Lp.
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Theorem 7 (G. G. Gevorkian [13]). Let E be a given Lebesgue measurable subset of

[0; 1] of positive measure and let {fn : n ≥ 0} be the classical Franklin system. Then

the following conditions are equivalent:

1)
∑∞

n=1 anfn(x) converges a.e. on E;

2)
∑∞

n=0 a2
nf2

n(x) < ∞ a.e. on E;

3) supN |∑N
n=0 anfn(x)| < ∞ a.e. on E;

4)
∑∞

n=1 anfn(x) converges unconditionally in measure on E.

In my opinion the main open problems for classical Franklin series are related to

Cantor’s type uniqueness theorem.

Problem 1. Let {fn : n ≥ 0} be the classical Franklin system and let
∑∞

n=0 anfn(x) = 0

for each x ∈ [0; 1]. Does it follow that an = 0 for all n = 0, 1, 2, . . .?

It is well-known [4], [5] that |
∑N

n=0 fn(0)fn(t)| < C · N · qNt, where C, q are some

absolute constants and 0 < q < 1. Hence, there is a series
∑∞

n=0 anfn(t) convergent to

zero for t ∈ (0; 1] with a0 6= 0.

Note, that |fn(0)| < C
√

n and lim supn→0
|fn(0)|√

n
> 0 (see [4], [5]).

Problem 2. Let {fn : n ≥ 0} be the classical Franklin system. Do the conditions∑∞
n=0 anfn(x) = 0 for x ∈ (0; 1] and an = o(

√
n) imply that an = 0 for all n = 0, 1, 2, . . .?

Problem 3. Let {fn : n ≥ 0} be the classical Franklin system and let E be some finite

or countable set. Do the conditions
∑∞

n=0 anfn(x) = 0 for t ∈ [0; 1] \ E and an = o(
√

n)

imply that an = 0 for all n = 0, 1, 2, . . .?

The uniqueness theorem of another type was proved in [12], where we found the fol-

lowing necessary and sufficient conditions for the Franklin series to be a Fourier-Franklin

series.

Theorem 8 (G. G. Gevorkian [12]). The classical Franklin series
∑∞

n=0 anfn(x) is a

Fourier-Franklin series of a function f ∈ L1[0; 1] if and only if it converges a.e. to f

and

lim inf
λ→+∞

λ · |{x ∈ [0; 1] : sup
N

|
N∑

n=0

anfn(x)| > λ}| = 0.

In particular, if f = 0, then an = 0 for all n ≥ 0.

In [15, 16, 17] several types of regularities of partitions were defined.

Let T = {ti : i ≥ 0} be an admissible sequence of points and let σn = {0 = tn,0 <

tn,1 ≤ . . . ≤ tn,n−1 < tn,n = 1} be a partition of [0; 1] obtained by nondecreasing

rearrangement of Tn = {ti : 0 ≤ i ≤ n}. Denote In,i = [tn,i−1 : tn,i] and λn,i = |In,i| =

tn,i − tn,i−1.

Definition 4. Let T be an admissible sequence of points. We say that T satisfies the

strong regularity condition with parameter γ ≥ 1 if for n ≥ 1 and 2 ≤ i ≤ n

1

γ
λn,i−1 ≤ λn,i ≤ γλn,i−1.
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Definition 5. Let T be an admissible sequence of points. We say that T satisfies the

strong regularity condition for pairs with parameter γ ≥ 1 if for n ≥ 1 and 2 ≤ i ≤ n

1

γ
(λn,i−1 + λn,i) ≤ λn,i + λn,i+1 ≤ γ(λn,i−1 + λn,i)

with the convention λn,0 = λn,n+1 = 0.

M. P. Poghosyan [20, 21] proved the analogues of theorems 7 and 8 for quasi-dyadic

Franklin systems generated by a partition T satisfying the strong regularity condition.

Problem 4. Are the analogues of theorems 7 and 8 true for an arbitrary general Franklin

system?

The problem of unconditionality of general Franklin systems was treated in [15] and

[18], where some partial results were obtained, under additional conditions on the struc-

ture and regularity of the sequence of knots. Developing the method of [18], we proved

that for any admissible sequence of knots T , the corresponding Franklin system is an

unconditional basis in Lp[0; 1], 1 < p < ∞. Moreover, we show that each general Franklin

system normalized in Lp[0; 1], 1 < p < ∞, is a greedy basis in this space.

Theorem 9 (G. G. Gevorkyan, A. Kamont [16]). Let T = {tn : n ≥ 0} be an admissible

sequence of knots. Then the corresponding general Franklin system is an unconditional

basis in each Lp[0; 1], 1 < p < ∞.

Theorem 10 (G. G. Gevorkyan, A. Kamont [16]). Let T = {tn : n ≥ 0} be an admissi-

ble sequence of knots with the corresponding general Franklin system {fn : n ≥ 0}. For

given p, 1 < p < ∞, let fn,p = fn/‖fn‖p. Then {fn,p : n ≥ 0} is a greedy basis in Lp[0; 1].

In [15] a general Franklin system was discussed as a basis in H1[0; 1], but only for

quasi-dyadic partitions of [0; 1]. Theorem 5.3 from [15] states that for any quasi-dyadic

sequence of partitions, the general Franklin system is a basis in H1[0; 1] iff it is an uncon-

ditional basis in H1[0; 1], and both these conditions are equivalent to the strong regularity

of the corresponding sequence of partitions. It turns out that for general Franklin sys-

tems corresponding to partition without any structural constraints, the property of being

a basis in H1[0; 1] and being an unconditional basis in H1[0; 1] are no longer equivalent.

Clearly, for quasi-dyadic sequences of partitions strong regularity and strong regularity

for pairs are equivalent.

Theorem 11 (G. G. Gevorkyan, A. Kamont [17]). Let Tn = {tn : n ≥ 0} be an admis-

sible sequence of knots with the corresponding general Franklin system {fn : n ≥ 0}. Then

{fn : n ≥ 0} is a basis in H1[0; 1] if and only if T satisfies the strong regularity condition

for pairs with some parameter γ > 1.

Theorem 12 (G. G. Gevorkyan, A. Kamont [17]). Let Tn = {tn : n ≥ 0} be an admis-

sible sequence of knots with the corresponding general Franklin system {fn : n ≥ 0}. Then

{fn : n ≥ 0} is an unconditional basis in H1[0; 1] if and only if T satisfies the strong

regularity condition with some parameter γ > 1.

One of the main new ideas in the proofs of theorems 9-12 is a new choice of “canonical”

intervals associated with a general Franklin function. In [15], [18] the function fn with
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n = 2j + k has been associated with the interval {n} = ∆j,k, into which the point tn is

inserted, and all estimates, splittings and reorderings for a general Franklin system have

been done with respect to positions of {n} or tn.

Now we describe the new choice of the canonical intervals (intervals J ). Let

σn = {0 = tn,0 < tn,1 ≤ . . . ≤ tn,n−1 < tn,n = 1}
be a partition of [0; 1] obtained by nondecreasing rearrangement of Tn = {ti : 0 ≤ i ≤ n}
and tn = tn,k for some k, 1 ≤ k ≤ n − 1. Consider the following intervals:

I = [tn,k−1; tn,k+1], I− = [tn,k−2; tn,k], I+ = [tn,k; tn,k+2]

and denote

ν = |I|, ν− = |I−|, ν+ = |I+|, µ = min{ν−, ν, ν+}.
Now, let I∗ = [tn,i; tn,i+2] be one of the intervals I−, I, I− such that µ = |I∗|, and

consider its left and right parts Ii,l = [tn,i; tn,i+1], Ii,r = [tn,i+1; tn,i+2]. Finally, let Jn

be one of the intervals Ii,l, Ii,r such that |Jn| = max{|Ii,l|, |Ii,r|}. For canonical intervals

we have the following

Proposition. Let T = {tn : n ≥ 0} be an admissible sequence of points with the corre-

sponding Franklin system {fn : n ≥ 0}. Let k, l ≥ 0 be such that tk ≤ tl and there is no

integer i ≤ max{k, l} with ti ∈ (tk; tl). Then

1) card{n : Jn = [tk; tl]} ≤ 5;

2) card{n : Jn ⊂ [tk; tl] and |Jn| > |[tk; tl]|/2} ≤ 25.

Problem 5. Let T = {tn : n ≥ 0} be a sequence of simple knots, i. e. ti 6= tj for i 6= j,

and {fn : n ≥ 0} be the corresponding general Franklin system.

Is the system of functions Gn(z), defined by (4)-(7), a basis in the space A?

Problem 6. If the answer of problem 5 is negative, then describe sequences T for which

the functions Gn(z) form a basis in the space A.

Many properties of the classical Franklin system are fulfilled for Ciesielski systems

with dyadic knots. But some of them are not known. In particular, the equivalence of

Paley’s function and majorant of partial sums for Ciesielski systems is checked only for

p ≥ 1.

Problem 7. Let {Fm
n (x)} be the Ciesielski system of order m > 2. Are the following

conditions equivalent for 0 ≤ p < 1?

1) The series
∑∞

n=1 anFm
n (x) converges unconditionally in Lp;

2) {∑∞
n=0(anFm

n (x))2} 1
2 ∈ Lp;

3) supN |∑N
n=0 anFm

n (x)| ∈ Lp.

For the orthonormal spline system with dyadic knots on R (Strömberg’s wavelet

system) the answer is positive (Z. Ciesielski, G. G. Gevorkyan [8]).

Recently, A. Shadrin [22] solved in the positive de Boor’s conjecture on the uniform

boundedness of L∞-norms of the orthogonal projections onto the space of splines of any

(fixed) order with arbitrary knots. This implies that for any partition with simple knots

the corresponding general Ciesielski system is a basis in C(0; 1).
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Problem 8. Does the general Ciesielski system form an unconditional basis in Lp[0; 1]

for 1 < p < ∞?

Now we consider periodic Franklin systems with simple knots.

Let T = {tn : n ≥ 1} be a sequence of points from [0; 1] and ti 6= tj for i 6= j.

Denote by Sn(T ) the space of piecewise linear and continuous functions on [0; 1] with

knots t1, t2, . . . , tn and periodic with period 1.

Definition 6. A general periodic Franklin system corresponding to the sequence of knots

T is a sequence of functions {fn : n ≥ 1} given by f1(t) = 1, and for n ≥ 2, fn ∈ Sn(T ),

fn⊥Sn−1(T ), ||fn||2 = 1 and fn(tn) > 0.

Problem 9. Is the periodic general Franklin system unconditional basis in the space

Lp[0; 1], 1 < p < ∞?

Problem 10. Let {fn : n ≥ 1} be periodic general Franklin system corresponding to the

sequence of knots T . Find necessary and sufficient conditions on the sequence T = {tn :

n ≥ 1} for the system {fn : n ≥ 1} to be a basis or an unconditional basis in ReH1.

In 1985 S. V. Bochkarev [2] proved that if {fn : n ≥ 1} is the periodic classical

Franklin system on [0; 2π], then the system of functions 1
2π , f̃2 , f̃3, . . . form a basis in

the space of continuous and 2π-periodic functions, where g̃ is the trigonometric conjugate

of g.

Problem 11. Let {fn : n ≥ 1} be periodic general Franklin system on [0; 2π]. Is the

system of functions 1
2π , f̃2 , f̃3, . . . a basis in the space of continuous and 2π-periodic

functions?

Problem 12. If the answer to problem 11 is negative, then what is the necessary and

sufficient condition on the sequence T = {tn : n ≥ 1} under which the corresponding

system 1
2π , f̃2, f̃3, . . . is a basis in the space of continuous and 2π-periodic functions?

Added in proof. After this paper was submitted for publication, some of the problems listed

above have been solved. Problem 9 has been solved in the positive in K. A. Keryan, Unconditional

basis property of the periodic general Franklin system in Lp[0, 1], 1 < p < ∞, to appear in Izv.

Nats. Akad. Nauk Armenii, Mat. (in Russian), English transl. in J. Contemp. Math. Anal.

Problem 10 has been solved in K. A. Keryan and M. P. Poghosyan, Periodic Franklin systems as

bases in H1[0, 1], to appear in Izv. Nats. Akad. Nauk Armenii, Mat. (in Russian), English transl.

in J. Contemp. Math. Anal.; the result is a periodic version of Theorems 11 and 12. Problems 5

and 11 have been answered in the negative, and some partial answers to Problems 6 and 12 have

been found. The summary of these results is contained in G. G. Gevorkyan and A. Kamont,

Some properties of the conjugate general Franklin system (in Russian), to appear in Dokl. Nats.

Akad. Nauk Armenii, and the full version with proofs is in preparation for publication.
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