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Abstract. Properties of representation systems with respect to summation methods are studied.

For a given representation system with respect to a given summation method we study, in

particular, the question of the stability of that property after deleting finitely many elements.

As a consequence we obtain the existence of null series for the systems with respect to a given

method of summation.

1. Introduction. The motivation of the present study comes from the following two

theorems (see [6]-[8]) proved recently.

Theorem 1. There exists a complete ONS Ω = {Ωn}
∞
n=1, ‖Ωn‖L∞

[0,1]
≤M for all n ∈ N,

such that
∑∞

n=1 anΩn converges a.e. on [0, 1] if {an}
∞
n=1 ∈ l2 and

∑∞
n=1 anΩn diverges

a.e. for any {an}
∞
n=1 6∈ l2.

Theorem 2. Let {fn}
∞
n=1 be a complete ONS of functions defined on [0, 1]. Then there

exists an increasing subsequence {nk}
∞
k=1 of natural numbers such that for any measurable

and a.e. finite function defined on [0, 1] and some sequence of coefficients {bn}
∞
n=1

(1)

nk
∑

n=1

bnfn(x) → f(x) a.e. when k → ∞.

It thus becomes of interest to study the properties of a system of functions F =

{fk}
∞
k=1 such that any measurable and a.e finite function can be represented by a series

∑∞
k=1 akfk which is a.e. T -summable, where T is a fixed summation method, to the

function f. Traditionally one of the first questions that have been studied is the existence

of null series. Having Theorem 2 one would like to clarify if for any complete ONS {fn}
∞
n=1

of functions defined on [0, 1] there exists an increasing subsequence {nk}
∞
k=1 of natural
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numbers and a non-trivial series
∑∞

n=1 anfn(x) such that

(2)

nk
∑

n=1

anfn(x) → 0 a.e. when k → ∞.

We study this question in a general and more abstract context. The formulation of our

main result needs various definitions which are given in the next section. Here we give

some corollaries of the main result. In particular, the answer to the question formulated

above.

Proposition 3. Let {fn}
∞
n=1 be a complete ONS of functions defined on [0, 1] and

{nk}
∞
k=1 be an increasing subsequence of natural numbers such that for any measurable

and a.e. finite function defined on [0, 1] and some sequence of coefficients {bn}
∞
n=1 we

have (1). Then there exists a non-trivial series
∑∞

n=1 anfn(x) such that (2) holds.

Proposition 4. Let T be a regular triangular matrix (see section 2) and let {ϕn}
∞
n=1 be a

system of functions defined on [0, 1] such that for any measurable and a.e. finite function

defined on [0, 1] and some sequence of coefficients {bn}
∞
n=1 the series

∑∞
n=1 bnfn(x) is T -

summable a.e. to the function f. Then for any natural number N the system {ϕn}
∞
n=N+1

has the same property.

Proposition 4 is an extension of a result by A. A. Talalian [11] for summation methods.

It should be mentioned that representation of functions by trigonometric series that are

summable in Abel-Poisson and some other methods were considered by N. N. Lusin [9]. He

also has indicated the interest of studying such questions for other orthogonal systems.

It seems that after Menshov’s [10] proof that the trigonometric system is a system of

convergence in the sense of a.e. convergence mainly the ordinary convergence was studied

in the theory of representation of function by series. The following remark at the end

of B. S. Kashin’s article [4] should be mentioned as an exception: “. . . it is possible to

construct a system {ψn(x)} such that the series
∑∞

n=1 cnψn(x) is not summable on sets

of positive measure if its coefficients satisfy condition
∑∞

n=1 c
2
n = ∞.” We do not know

if there was any publication with specification of those summation methods.

2. Definitions and preliminary results. A quasi-norm (or Fréchet norm) on a linear

space X is a real-valued function ‖ · ‖ on X such that

‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

‖x + y‖ ≤ ‖x‖ + ‖y‖,

‖ − x‖ = ‖x‖, lim
αn→0

‖αnx‖ = 0, and lim
‖xn‖→0

‖αxn‖ = 0,

where α denotes a scalar. A complete quasi-normed linear space is called an F -space (or

Fréchet space) [12], pp. 30-31, 52. The real and natural numbers will be denoted by R

and N respectively. Let χE denote the characteristic function of a set E ⊆ [0, 1].

Let M be the linear space of all Lebesgue measurable real-valued finite almost every-

where functions on the interval [0, 1] and let M0 denote the subspace of functions almost

everywhere equal to zero. We consider F -spaces with elements in the factor space M/M0.

An F -space F is said to be a Fréchet function space (see also [5]) if
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(i) F ⊆M/M0 and x is the trivial element of F ⇔ x ≡M0;

(ii) |g| ≤ |f | a.e. and f +M0 ∈ F ⇒ g +M0 ∈ F and ‖g +M0‖ ≤ ‖f +M0‖.

We would like to indicate the parallelism of the introduced term with the definition of

Banach function spaces (see [2]).

Further in the paper we will write f ∈ F instead of f + M0 ∈ F. By L0
[0,1] we will

denote linear space M/M0 with the quasi-norm

‖f‖L0
[0,1]

=

∫ 1

0

|f(x)|

1 + |f(x)|
dx.

Let T = (tij)i,j∈N be a regular triangular matrix (see [13], [3]): tij = 0 if j > i and

∞
∑

j=1

|tij | ≤ C <∞ ∀i ∈ N;

lim
i→∞

tij = 0 ∀j ∈ N;

lim
i→∞

∞
∑

j=1

tij = 1.

For a given system of functions Φ = {φk}
∞
k=1 defined on [0, 1] and a given sequence of

coefficients c = {ck}
∞
k=1 we denote

Sn(c,Φ)(x) =

n
∑

k=1

ckφk(x)

and

σn(c,Φ, T )(x) =
n

∑

j=1

tnjSj(c,Φ)(x).

Definition 5. Let F be a Fréchet function space. A system of functions Φ = {φk}
∞
k=1

defined on [0, 1] is called an (M,F)-representation system of the space L0
[0,1] if, for every

f ∈ L0
[0,1], there exist a sequence of coefficients c and a bounded function mf , 0 <

mf (x) ≤ 1 for x ∈ [0, 1] such that

Sn(c,mfΦ)(·)
F
→ mf (·)f(·), when n→ ∞,

where mfΦ := {mfφk}
∞
k=1.

Definition 6. Let F be a Fréchet function space. A system of functions Φ = {φk}
∞
k=1

defined on [0, 1] is called a T -(M,F)-representation system of the space L0
[0,1] if, for

every f ∈ L0
[0,1], there exist a sequence of coefficients c and a bounded function mf , 0 <

mf (x) ≤ 1 for x ∈ [0, 1] such that

(3) σn(c,mfΦ, T )(·)
F
→ mf (·)f(·), whenn→ ∞

and thus

σ∗
F
(c,mfΦ, T ) := sup

n

‖σn(c,mfΦ, T )(·)‖F < +∞.

The following result of Banach ([1], p. 25) will be used in the proof of Theorem 9.
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Lemma 7 (Banach). Let U be a continuous linear operator defined on an F -space E

whose image is another F -space E1. Then for every ε > 0 there is an η > 0 such that

the image of the open sphere {x ∈ E : ‖x‖E < ε} under U contains the open sphere

{x ∈ E1 : ‖x‖E1
< η}.

3. On the stability of representation systems. Let Φ = {φk}
∞
k=1 be a T -(M,F)-

representation system of the space L0
[0,1]. Then for any f ∈ L0

[0,1] we denote by Cf (Φ)

the class of all coefficients c = {ck}
∞
k=1 such that for any c there exists a bounded

function mf , 0 < mf (x) ≤ 1 for x ∈ [0, 1] for which (3) is satisfied. For any c ∈ Cf (Φ)

denote by M(c, f) the class of all functions mf ∈ L∞
[0,1], 0 ≤ mf (x) ≤ 1 for which (3)

is satisfied. For any 0 < α ≤ 1 let us introduce also Mα : the class of all functions

m ∈ L∞
[0,1], 0 ≤ m(x) ≤ 1 such that

(4) |{x ∈ [0, 1] : m(x) = 1}| ≥ 1 − α.

For a given f ∈ L0
[0,1] and any c ∈ Cf (Φ) let

‖c‖ =

{

infα∈[0,1]{∃m ∈ Mα ∩M(c, f) and σ∗
F
(c,mΦ, T ) ≤ α}

1 otherwise.

Proposition 8. Let Φ = {φk}
∞
k=1 be a T -(M,F)-representation system of the space

L0
[0,1]. For any f ∈ L0

[0,1] define

(5) ‖f‖⋆ = inf
c∈Cf (Φ)

‖c‖.

Then ‖ · ‖⋆ is a quasi-norm on M/M0.

Proof. It is clear that

‖f‖⋆ = 0 ⇔ f is the trivial element of L0
[0,1].

To check the triangular inequality

(6) ‖f + g‖⋆ ≤ ‖f‖⋆ + ‖g‖⋆

we should consider only the non-trivial case, when s = ‖f‖⋆ + ‖g‖⋆ < 1. In this case we

take arbitrary ε > 0 such that 2ε < 1 − s. We have that there exist m′ ∈ M‖f‖⋆+ε ∩

M(c′, f), m′′ ∈ M‖g‖⋆+ε ∩M(c′′, g) and such that

σ∗
F
(c′,m′Φ, T ) ≤ ‖f‖⋆ + ε and σ∗

F
(c′′,m′′Φ, T ) ≤ ‖g‖⋆ + ε.

Evidently, m′ ·m′′ ∈ Ms+2ε ∩M(c′, f) ∩M(c′′, g) and

σ∗
F
(c′ + c′′,m′ ·m′′Φ, T ) ≤ ‖f‖⋆ + ‖g‖⋆ + 2ε.

Hence,

‖f + g‖⋆ ≤ ‖f‖⋆ + ‖g‖⋆ + 2ε

and thus the inequality (6) is true. One can easily check that

‖ − f‖⋆ = ‖f‖⋆, lim
αn→0

‖αnf‖⋆ = 0, and lim
‖fn‖⋆→0

‖αfn‖⋆ = 0.
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Suppose that {fn}
∞
n=1 is fundamental with respect to the quasi-norm ‖ · ‖⋆. Let {εk}

∞
k=1

be a decreasing sequence of positive numbers such that ∀m ∈ N

∞
∑

k=m+1

εk <
1

2
εm; ε1 < 1/4.

We can find an increasing sequence of natural numbers {Nk}
∞
k=1 such that

‖fn − fm‖⋆ < εk for all n,m ≥ Nk.

Hence,

‖f∗k − f∗k+1‖⋆ < εk for all k ∈ N

if we define

f∗k = fNk
, for all k ∈ N.

This means that for any k ∈ N there exist c(k) ∈ Cf∗

k
−f∗

k+1
(Φ) and mk ∈ Mεk

∩

M(c(k), f∗k − f∗k+1) such that

lim
n→∞

σn(c(k),mkΦ, T )(·)
F
= mk(·)(f∗k (·) − f∗k+1(·)), σ∗

F
(c(k),mkΦ, T ) ≤ εk.

Denote

(7) m(k)(x) =

∞
∏

j=k

mj(x).

Evidently, m(k) ∈ Mεk−1
. It is obvious that for any ℓ > k

lim
n→∞

σn

(

ℓ
∑

i=k

c(i),m(k)Φ, T
)

(·)
F
= m(k)(·)(f∗k (·) − f∗ℓ (·)),

and

σ∗
F

(

ℓ
∑

i=k

c(i),mkΦ, T
)

≤ εk−1.

For any n ∈ N by qn we denote the minimal natural number such that

αi =

qn
∑

j=i

tqnj 6= 0 for all i ∈ [1, n] ∩ N.

Evidently q1 = 1 and {qn}
∞
n=1 is a non-decreasing sequence. Next we examine the sets of

functions

(8) φqn+1, φqn+2, . . . , φqn+1
, for all n ∈ N,

and deleting, if necessary, the functions with greatest indices, we obtain linearly indepen-

dent collections of functions such that any element from (8) is a finite linear combination

of remaining functions. For simplicity, we will conserve the notation and consider that

for any n ∈ N the functions (8) are linearly independent.

If we fix any ν ∈ N then for any ℓ, k ∈ N and ℓ > k > ν

lim
n→∞

σn

(

ℓ
∑

i=k

c(i),m(ν)Φ, T
)

(·)
F
= m(ν)(·)(f∗k (·) − f∗ℓ+1(·)),
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and

(9) σ∗
F

(

ℓ
∑

i=k

c(i),mνΦ, T
)

≤ εk−1.

From the above conditions and the linear independence of functions (8) it is easy to check

that there exists gν ∈ F such that

lim
n→∞

σn(b(ν),m(ν)Φ, T )(·)
F
= m(ν)(·)f∗k (·) − gν(·),

and

σ∗
F
(b(ν),mνΦ, T ) ≤ εk−1,

where

b(ν) = (b
(ν)
j )∞j=1 and b

(ν)
j =

∞
∑

i=ν

c
(i)
j .

From (7) we have that the sets Ek = {x ∈ [0, 1] : m(k)(x) = 1} constitute an increasing

sequence of sets that tend to a set of complete measure, hence, if we define

(10) f(x) = gν(x) if x ∈ Eν \
ν−1
⋃

n=0

En for any ν ∈ N,

where E0 = ∅, then f will be a measurable and a.e. finite function on [0, 1]. From (9) and

(10) follows that

lim
k→∞

‖f∗k − f‖⋆ = 0.

Thus ‖ · ‖⋆ is a quasi-norm on M/M0.

Theorem 9. Let Φ = {φk}
∞
k=1 be a T -(M,F)-representation system of the space L0

[0,1].

Then for any N ∈ N the system ΦN = {φk}
∞
k=N+1 is also a T -(M,F)-representation

system of the space L0
[0,1].

Proof. The linear space of Lebesgue measurable functions defined on the interval [0, 1]

with the quasi-norm ‖ · ‖⋆ is an F -space. Denote that space by L∗
[0,1]. Evidently, the

theorem will be proved if we prove it for the case N = 1. Suppose that the system

Φ1 = {φk}
∞
k=2 is not a T -(M,F)-representation system of the space L∗

[0,1]. It means

that for any f ∈ L∗
[0,1] only one of the following cases is possible: cardCf (Φ) = 1 or

cardCf (Φ) > 1 and for any c, c′ ∈ Cf (Φ) we have that c1 = c′1, where c = (c1, c2, . . . )

and c′ = (c′1, c
′
2, . . . ). Hence, for any f ∈ L∗

[0,1] and any c ∈ Cf (Φ), c1(f) is defined

uniquely and can be considered as a linear functional on L∗
[0,1]. By (5) it can be easily

checked that c1(f) will be also continuous on L∗
[0,1]. Then, by a well known standard

method, applying Lemma 7 one shows that c1(f) will be a non-trivial linear continuous

functional on the space L0
[0,1]. This contradicts the well known fact that the dual of L0

[0,1]

consists uniquely of the trivial element.

The following lemma permits to obtain Proposition 4 as a consequence of Theorem 9.

Lemma 10. Let {gk}
∞
k=1 ⊂ M be a sequence which converges a.e. to g ∈ M. Then there

exists m ∈ L∞
[0,1], 0 < m(x) ≤ 1 such that

(11) lim
k→∞

‖m(gk − g)‖∞ = 0.
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Proof. Let εn ↓ 0 be a decreasing sequence of positive numbers such that
∑∞

n=1 εn < 1.

By Egorov’s theorem for any εn, n ∈ N we can find Nn ∈ N and a bounded measurable

function mn(x), 0 < mn(x) ≤ 1 such that

|{x ∈ [0, 1] : mn(x) = 1}| > 1 − εn,

and

‖mn(gk − g)‖∞ < εn for all k > Nn.

Then we define m(x) =
∏∞

n=1mn(x) and easily check that (11) holds.

Proposition 3 is an immediate corollary of Proposition 4.
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