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Abstract. Two kinds of estimates are presented for tails and moments of random multidimen-
sional chaoses S = ) ail,...,idXi(ll) e X(d) generated by symmetric random variables X(11>,.

ig i )
Xi(j) with logarithmically concave tails. The estimates of the first kind are generalizations of
bounds obtained by Arcones and Giné for Gaussian chaoses. They are exact up to constants
depending only on the order d. Unfortunately, suprema of empirical processes are involved.
The second kind estimates are based on comparison between moments of S and moments of
some related Rademacher chaoses. The estimates for pth moment are exact up to a factor

(max(1, lnp))dQ.

1. Introduction. Let S = Za/i17u~;idXi(11) e Xi(j) be a random chaos of order d gener-
ated by independent random variables Xi(r). In this paper we deal with tail and moment
estimates of S in the case when Xi(r) are symmetric random variables with logarithmi-
cally concave tails. (This is also the case of Gaussian chaoses.) Exact estimates (up to
universal constants) for tails and moments of S are not known for d > 3. (For d = 1,2
see [Lal], [La2].)

Recently R. Latala [La] proved exact estimates (involving only deterministic quanti-
ties) for moments and tails of Gaussian chaoses of any order.
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Arcones and Giné (see [AG]) obtained exact bounds for Gaussian chaoses but in-
volving expected values of suprema of empirical processes. In this paper we extend their
results giving analogous estimates for chaoses generated by symmetric random variables
with logarithmically concave tails. We use similar methods as authors of [AG], i.e. a con-
centration of measure phenomenon proved by Talagrand (see [Ta]). We adapt also some
techniques from [La2].

In the last section of the paper we give estimates of another type. They involve
moments of chaoses generated only by Rademacher variables and for pth moment they
are exact up to a factor (max(1, lnp))dz. However, it seems that it is much more complex
to investigate Rademacher than Gaussian chaoses. In the proofs we use some techniques
from [LaLo].

2. Generalization of the results of Arcones and Giné. Let us start with

2.1. Notation and formulation of the results. Let d and n be positive integers and
(@iy ... i0)1<iy,....iq<n be a multidimensional matrix of reals. For h = (hq,...,h,) € R"
let |h| denote \/h? + -+ + h2.

In [AG] (see page 120) the following estimate was proven for tails of Gaussian chaos
S = Zail,n-yidgz(ll) . '-ggj), generated by N(0,1) variables gzm, 1<i<nl1<r<dIf
numbers o(S) and M,.,1 < r < d, satisfy the conditions
O

U(S) = Sup Zailv-“ﬂ:d 71 1q

|[h(F)|<1,1<k<d
r d 1
3 ] k
P(, o eI T1 0 =00) <55
[h(B) | <1,r+1<k<d j=1 k=r+1

then for all £ > 0
4 rd 1 .
P(|S] > o(S)t? t9TM, ) < e b2
(112 ot 3 ()erae ) <

We will prove an analogous estimate for more general chaoses. Henceforth XZ-(T)7
1 <i<n,1<r <d will denote independent, symmetric random variables with loga-

rithmically concave tails so that
PUXP)>t)=e MO for1<i<nl<r<dt>0,

where Ni(r) : [0;400) — [0;4+00) is a convex, strictly increasing function normalized in
such a way that

N1 =1.
For 1 <i<mnand1l<r<dlet us define
o t? if [t <1
Nt = =7
i 0 {N§”(|t|) if [t > 1.

Further, let
B = {00 e B NG < p).
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For p>1and D C {1,2,...,d} let
k
(1) Mp,=FE sup Za“’wld H X(]) H bgk),
bW eB™ keD jeD! keD
where D’ = {1,2,...,d}\D.
REMARK. For D = () we apply the convention
k x d
sup Zalh id HX(J ()_‘Zan, g X, Xl(d)
b e B* keD jeD’ keD

We use letters ¢ and C to denote universal positive constants that may change from
line to line and ¢(d) and C(d) to denote positive constants, depeding only on d (¢(d) and
C(d) may also differ at each occurrence).

Relation A ~4 B means that ¢(d)A < B < C(d)A.

The symbol #D denotes the cardinality of the set D.

We may now state the results of this section.

THEOREM 1. Let us consider chaos S of order d, generated by the variables XZ-(T)7
_ (1) (d)
S = ZailanwidXil te Xid .
For p > 1 the following estimates hold:

(2) P(ISIzC() Y Mpy)<e,
DC{1,2,...,d}
(3) P(IS|=ed) > Mp,) = min(ei(d),e),
Dc{1,2,...,d}
moreover
(4) 1Slp ~a 32 Mo,
Dc{1,2,...,d}

COROLLARY 1 (Semihypercontractivity of Xi(r)). Forp>1and A>1

(5) 1S]xp < AYC1(d)[| S]],

Proof. For A > 1,1 < k < d we have B{) ¢ AB{"). From this it follows that
Mpap < NP Mp .

Now from the above and (4) for Cy(d) = C(d)/c(d) it follows

ISy <C(d) > Mpa,<C(d) Y. MPMp,
Dc{1,2,....,d} DC{12 Ld}

< C(d)Ad Z Mp,, < C(d)A ﬁ”SHp )\dCI( NSlp. =
Dc{1,2,...,d}
We also have the following well known result, which will be used in the sequel:

COROLLARY 2 (Bonami type inequality). Forp > 1

(6) IS0, < Ca(d)pd\/m-
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Proof. Notice that [|S|a ~4 (/> af ;. so for p € [1;2), (6) follows from the mono-

tonicity of the moments, and for p > 2 from Corollary 1 we have

111y < (p/2)*C1(d)IIS|l2 < Ca(d)p™\/Ya?, ;- m

REMARK. Theorem 1 is also valid (possibly with worse constants) for undecoupled
chaoses of order d, that is, for random variables of the form

Sundec = Z ail,..A,idXh ce Xid7
1<i1 < <ig<n
where symmetric r.v.’s X; are independent with log-concave tails. It is an immediate
consequence of the result of de la Pefia and Montgomery-Smith ([dIPM]) that moments
and tails of S are comparable (with constants depending only on d) with moments and
tails of the decoupled chaos

B (1) (d)
Sdec = Z Z @ir,ia iy Ky

T 1< < <ig<n

where the first sum is taken over all permutations 7 of the set {1,2,...,d} and r.v.’s XZ(T)
are independent copies of Xj.

REMARK. Let us mention that there is also an analogue of Theorem 1 for more general
variables than S, namely for variables of the form
(1) (d)
Zlelg)“za“v iaX ' .Xid
(T is a nonempty family of multidimensional real matrices), with numbers Mp , substi-
tuted by numbers M7 p ,, defined as
Mr p,p, = Esup sup Zail,m,id H Xi(j) H bl(-f).
a€T y(m e B keD jeD’ keD
The method of proof is similar to the method of proof of Theorem 1. Other methods

for investigating the behaviour of Sp for Rademacher chaoses, based on entropy and
tensorization, were developed in [BBLM].

2.2. Proof of Theorem 1. We will use the concentration properties of the measure y with
the dens1ty Le=I7l with respect to the Lebesgue measure, proved by Talagrand.

For any p0s1t1ve integer N and product measure &~ on RN the following concen-
tration phenomenon holds:

(7) pEN(A+ V) > 1= {p®N(A)} e,

where Vi = {z € RY : Y min(|z;|,2?) < 36s}. Proof of (7) may be found in [Ta], an
alternative, simpler proof was presented in [Ma).

To prove estimates for tails and moments of S from above let us first notice that
Xi(r) = )A(i(r) + XET) for some independent symmetric random variables Xi(r),XET) such
that
t ifo<t<l,

> (r _N™ or (7
P(X| 2 1) = e "0, where N[ (1) = {N(r)(t) 1> 1
3
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and |XET)| < 1 a.e. By the contraction principle (cf. [KW]), since E|XZ(T)\ > fol e~tdt > 1,
we have

d N
Hzaih w1 X(a)+X(J))

1Sl =
is1 P
Y [T LI
Dc{1,2,... jeD! p
S fwuz%, LI TR,
Dc{1,2,...,d} jeD’

=8 Y KL X

So, in order to prove estimate in (4) from above, i.e.

ISl, <Cd) >, Mpy,

P

Dc{1,2,...,d}

it is enough to prove that

(8) IS, <C@d) Y Mpy,
Dc{1,2,...,d}

where S = Zail,_wdf(i(ll) . )A(Z.(j). Below we prove that

(9) Mp, < 3% Mp,,
where
MD’p:E sup Za“ ,,,,, ia HX(J)Hb(k)
b B keD jen’ keD

Further, we will prove
(10) IS, <C@) Y. Mp,.
Dc{1,2,...,d}
This together with (9) will give (8).
Having an estimate of ||S||, from above we immediately get, by a standard application
of Chebyshev’s inequality, the estimate of tails of S from above (2).

In order to prove (9) we will use the following

LEMMA 1. Forp > 0,D = {ky,...,k} C {1,2,...,d},j € D' and real numbers a;,
where i = (ij,4k,,...,4k, ), we have

E sup Zain'(j) H bg:) <3E sup ZaiXi(j) H bgf).
b eBM keD " keD b e B keD keD
Proof. We have
E sup Zaif(i(jj) H bl(»f:) <FE sup Zaif(i(j)[ﬂ)%?”\g} H bl(»::)

b B keD keD b e B keD

(k)
+ FE . s~u%3 ZaX I{|X<T)‘>1}Hb .
b eBM keD
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Now, since E|Xi(r)| > %, by the contraction principle,
(k)
E o swp 3 aX o 11
b eB® keD
<2F sup ZaiXi(j]) H bl(-f).
b e B keD keD
Further

>(7 k
E sup ZaiXi(jj)IﬂXWpu H bgk)
b B keD :

_ (k)
=F s~ug) ZaX I{\X(“)|>1} Hb
bk eBM keD

<F sup ZaX(J)Hb(k).

bR e B keD keD

From the above inequalities we get the assertion. m

Applying Lemma 1 for consecutive j’s belonging to D’ we get (9):

Mppy=E s Y ai.a[] X(J) IT &

b eBM keD jep’ keD
/ k
< Ry sup E iy .. ig H X(J) H b( )
b eBM keD jeD’ keD
D/
= 3% Mp.,.

Let now Mi(r) be inverse of Ni(r) and for z € (—o00;0) define Mi(T)(:c) = —]\Zfi(r)(—x),
then for any Borel set B C R"

P(S € B)
:M®din<{(x(l),--.,x € R Zan, ,ZdM(l (11)) Mz(j)(ng)) EB})

For D C {1,2,...,d},p > 1, define
Ap,p = {x € R sup Zail,_“’id H Ml(j)(xgj)) H bl(.f) < 2d+1MD7p}

b eB® keD jen’ keD

and

By Chebyshev’s inequality we get

" (Ap) = P s Yai, [T XY T 6 <20 i,

b e B keD jeD’ keD
= 1=
Hence
1
d d
(11) pEn(A) > 1 — 3 A’Dp)>1 o
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Let now R¥ 3> 2 = (zM, ..., 2@y = (4, ... y@D) + (2D, ... 2(D) =y + 2, where
ye A, zeV,= {z € R : me(|zl\,z ) < 36s}. We have the estimate

1 9 d
(12) Y anadt @) 2 @)
=[S {M“’(yfﬁ) W @) = 31 W)
j j r(k k k k
< ¥ \Zazh ao TT M2 w2 TTOED @) = 81 @)} .
Dc{1,2,...,d} JeED’ keD
By concavity of Mi(r) on [0; +00)
87 (@) = M (g7 < 207 (12 - 7)) = 2817 (12()).
Since z € Vj, then

ZN(T) |M(T) (r) Zmln (r) )2 \z DSSGS.

Z’I‘

So (M-(k)(zi(k))) € ngi for 1 <k <r and

K2

(13) 1> i TT 0 0 T M“”(yf?)}\

jeD! keD
k
<supZa“, i HM(]) yfj) H{QM()
2€Vs jeD’ keD
k
< 2#P sup Za“’ g H M(J yfj) H b( ).
b eBY) keD jeD’ keD

For A > 1 we have Bg’;) - )\BI()k). From this for s > p/36 we get

(14) sup Zaz‘l,...,id H Mi(J) yz(,]) H b(k)

b(”eBé’;l,keD jen’ keD
36s ~
)¢, () (k)
(27w S T T
p yEA, bW eBM keD jeD keD

#D
< <@> MD,p-
p

The last inequality follows from the definition of 4,. From (12), (13) and (14) we get for
x € A, + Vs, s > p/36 the estimate

#D
D, dy, (d 365 -
15 YD) P < S 2#D<_) Vip,.
DC{1.2,...d} p
From concentration inequality (7) and (11)

(16) p®i (A, + V) > 1 —2e75.

From (15) and (16), taking s = mp, m = 1,2, ..., we get the estimate for || S|, from
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above (10)
~ ~ p
1S < (> (FPIb,) (A, + V)
Dc{1,2,...,d}
(S 2mPiIn,) W (A + Vi \ (A + Vi)
m=2 Dc{1,2,...,d}
N dp Y P o—(m-1)p
<2 (72m) > Mpy)e
m=1 Dc{1,2,...,d}
~ p
< (C(d) Z MD,p) :
Dc{1,2,...,d}

Now we will prove the estimates for tails and moments of S from below:

ISl = e(d) Y Mby,

De{1,2,...,d}

P(S|>¢(d) > Mpy)>min(ei(d),e?).
De{1,2,...,d}

We will proceed by induction in d. For d = 1 the estimate is proven in [Lal]. Let us

assume that it is true for chaoses of orders 1,..., d and let now
d d+1
S Z a’Ll Zdld+1 ) X’L( ) X7,(d+1 )

For D = () we have Mp , = E|S| and the inequality
(17) 151y = e(d+ 1)Mp p
is satisfied for p > 1 with ¢(d+ 1) = 1. For D = {1,2,...,d 4+ 1} we have

(1) (d) 7(d+1)
Mp, = sup g Qiy . igiara 0, Uiy bld+1 .
b eBM k=1,...,d,d+1

By the induction hypothesis

1 1/p\p\1/p
(18) [[Sllp = (Ex<1>,...,x<d>((Ex<d+1> > i, i, X5 iain ) ) )
1/p
(EX(U’_“’X(@ (c(l) sup Zal 7'd'bd+1X(1) ..X(d)b(d+1)> )
e(1) sup (EXu)’,,‘,X(d)

1d 1d.
bld+D e BLHY o
)1/17
bld+1) g BLTD

Z ai1<~~idid+1Xi(11) .. (d)b(d+1)
c(1)-c(d)  sup sup Zazl D p(Dp(d+1)

'Ld 1d+1
3 - Adidt1 11 td td+4+1
b+ e BT p) e B k=1,...,

= C(d + 1)MD7p.

v

Y

Y]

For D # 0 and D # {1,2,...,d + 1} we have even easier estimates. Again, by the
induction hypothesis
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1 ) < (d+1) [P\ 1/P\P\ 1/P
(19) ”SHP = (EX(J) ]ED/((EX(") keD‘Zau ZdZd+1X( ) "Xz'(d)Xz'(d:_l )’ ) ) )

. /
> (EX@-)JED/ (c(#D) sup Zah,m,id,idH H Xi(jﬂ) H bgl’:))i’)l P

bW eBF keD jeD’ keD
C(#D)EX(ﬂ,jeD’ sup E Qi .. oidyide1 H X H b
b eBM keD jeD! keD

= C(d + 1)MD,p-

From (17), (18) and (19) we obtain the estimate for ||.S||, from below:

ISl > e(d+1) > Mp,,
Dc{1,2,...,d+1}

which together with the estimate from above gives (4).
In order to prove (3) we will use (5) and the Paley-Zygmund inequality (cf. [KW])
(notice that the inequality (5) is already proven). The Paley-Zygmund inequality states

that for any nonnegative, nondegenerate r. v. ¥ and for ¢ € (0;1), P(Y > tEY) >

EY)?
(1—t)2 &Y

p(1s1= 2isi) = p(is = (3) mise) = (1 (5)) S

1 (E|S|9)? _ 202d+2\—q _ . —Ca(d)
B iC’1(61)2(12261‘1(E|S|q)2 = (C1(d)"2 )y i=e q

. So for ¢ > 1 we have

From this for p > max(1, Cz(d)), taking ¢ = p/Ca(d), ¢(d) = %C’l_l(d)c;d(d), we get
(]IS, < 3/151l; and

1 _ _
PUS| 2 (@l = P(1812 18], ) = o1 = e

—max(1,C5

Now, for any p > 1, taking ¢1(d) = e (d)) | we obtain

P(S| = ¢(d)]|S]p) = min(ei (d), e™").

3. Estimates by moments of Rademacher chaoses. In this section we will apply
the previously introduced notation. Some additional notation is presented below.

Let rgk),l < i < n,1 <k < d, denote independent Rademacher variables (inde-
pendent also from the variables Xl-(k),l <i<nl1<k<d). Forp>11<k<d
define

Blgk) = {x(k) € R": ZNi(k)ﬂxEk)D <p& (osgk) =0or \xz(-k)| >1fori=1,... ,n)}
We will prove the following

THEOREM 2. Let us consider a chaos S of order d, generated by the variables Xi(r),

d
S = i X X



170 R. LOCHOWSKI

For p > 1 the following estimates hold:

(20) IIS]l, < C(d) Z max(l,lnp)d#I sup HZ aiy iy Hx(J) H 7l

Ic{1,2,....d} e@eBy) je jer kel
and
€]
@) Sl ze@d > sw [Man [[=0 [Ir
1C{1,2,....d} 2 eBY jeI jer kel

REMARK. Recently R. Latata [La] proved exact estimates for moments and tails of Gaus-
sian chaoses of any order. Below we present moment estimates for Gaussian chaoses of
order 3:

c(vollAllus +p(||AH{1}{2 31 + [ Al 23113y + [[Allsy01.23) + pv/IIAN)

< [Cauna"o e’

< C(pllAllas + p([[All {1y 233 + 1Al 23413y + [Allg3y41,23) + pv/DIIA])-

In the above inequalities A denotes the matrix (a;;i) and

IAlles = [|All{1,2,3) == Sup{z QijkTijh 1 Y Ty, < 1} = ) a2,
ik

ijk ijk

1Al {1y 2.3y = SUP{Zamkxzyﬂf Zx <1 Zy]k < 1}

ijk

Similarly define HA||{2}{173}, ||A||{3}{1,2} and
AN = | All{1y 123 43y == SUP{Z QijkTiYj 2k - fo < 1723/]2 < LZZ;% < 1}-
i 7 k

Proof of Theorem 2. The estimate from above immediately follows by the iteration ar-
gument from the following

LEMMA 2. With the same assumptions as tn Theorem 2

(1 2 d
22) ISl < C@|Y airaart) - XD X

p

oD x@ . x@

1- 74n 11 Zd

+ C(d) max(1,Inp)?  sup
zMeBM

a; .
p

We postpone the proof of Lemma 2 to subsection 3.1 and now we will prove (21), i.e
the estimate from below. From contractive properties of Rademacher variables and from
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(4) we get for any I C {1,2,...,d}

Sonw I, Wy

||S||p = (EX<J'>,jelEX(k>,k61/

kel’
() 1/p
= (Ex(n,je]EX(k),rm,kep Zail...id HX H |X“c )
Jjel kel’
() (k). (k) [P\ /P
> EX(])yjeIEr(k),k:GI’ Zah...id HXij H(EXW)lXik |Tik )
jeI kel
; p\1/p
> c(d) (Er(k),kEI/EXU),jEI‘Z iy .. ig HXi(j) H iy, )
Jjel kel
1/p
> ¢(d) (ET(k),kep sup ‘Zan iy Hx(J) H r! )
z@eBY jer jer kel
> ¢(d) sup ‘ Za“ ig Hacu H rlk ’ .

2 eB jerI jel kel

Since B,()k) - BIS’“% we get

1Sy = (@) sup ||> s, [T TT o

2 eBY jerI jeI kel P
> ¢(d) sup H E iy .4y me H r;
2 eBY jer jer kel

Now

1> 07 > el sw e I T

1C{1,2,....d} e@WeBY) kel P
()
> ¢(d) g sup H E Qiy. iy HJ; H r;
1C{1,2,...,d} 2D eBY jer jerl kel

and (21) follows. m

3.1. Proof of Lemma 2. We will proceed by induction. For d = 1 and any (a;) € R"™ we

have
(23) ﬁHZaz pSHZaﬂ"El +sup{Zax (M) GB(l)}

This follows (cf. [Lal]) from the moment estimates for linear combinations of Xi(l) and

7"1(1), and it is an even better estimate than (20). Let us assume that d > 2 and (20) is
already proven for chaoses of order 1,2,...,d — 1.

First we will prove that the sum S = > a;, .. X(l) - Xi(j) may be split into two sums
S1+S5 such that S; contains summands correqpondlng to multnndlces (41,42, ...,14q) with
1<y < p®@ and ||Sy|, is comparable with C(d)|| Y a;, i, 11 Xi(j) : "Xz'(j)”p-

First notice that multiindices (i1,...,4s) may be rearranged in such a way that
(24) if j1 <jothen Y al o> DAl .

12,0 0d 12,0 0d
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From (23) we get

(25) ﬁ”z a;

(1) o 1
P < HZam Hp +sup{Zaixi . (% )€ Bz(> )}
< H aﬂ’(l)H + pmax |a;|.
Z 7 » P | |
Now, from (25) we get
1 d
0 H Z a“"'idXi(l) ...Xi(d)

11 >pC D g, i

1 2 d
< C(l)HZ ailu.z'drfl) 'Xi(z) . 'Xi(d)

(d)
max E Gigig..igX, ~--Xid

C(d)
>p 12,...50d

+O1)p

Using (24), we will estimate

(2) (d)
c(d) Z Qiris.. ZdXiz ...Xid

% >
1~>P oyid
We have
} : (2)
max ailizn_inXiz e
i1 >pC(d) i . P

oo

§ : § : (2) (d)
Qjyiy.. ZdXig T X’id
2k C(d)<11<2k+1 c(d)

k=0 12,...,ld

Now, using a Bonami type inequality (i.e. Corollary 2 from the previous section)
(2) (d)
H Z a’711712 ldX Xid Z a/lzliz...’id'
P

i2,.. 12,...50d
Hence, by Chebyshev’s inequality, for ¢ > 1

2 d) / 1/d
P(‘ Z ailigu.idXig) X( Zahm m) — -
12,...,%d

From the inequality above, integrating by parts, for t{; > 1 we obtain

(27) H(’ Z Aiyisy.. de(z ) Xi(j) — C(d)to Z al?liQ-wid)_,'_Hp

< C(d)p*

< C(d)( sup teitl/d/@p))

- to<t<oco

Let to(k) satisfy
1

sup te=t/(2p) < @

to(k)<t<oo ~ 2kp

for example
(28) to(k) = C(d) [plnp + pk]*.
Denote by Ij the set of integers belonging to the interval (kac(d); 2’“‘11)0(‘1)].
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From (27), taking to(k) defined as in (28), we get

2, (d)
gléa;i Z Qiyiy..ig Xy, Xy, || < C(d)to(k) max

p i1€1

2k+1pc’(d)

i Z H( Z a‘iliz...idXi(f)-..

i3 =2FpC(d) 41 12,..0s ]
< O(d) [plnp + pk]

ok+1,C(d)

+ C(d) Z ( sup te_tl/d/@p))

1'1=2’“pc(d)+1 tOStSOO

< opl /
< C(d) [2plnp + pk]* max Z az i, ... ia '+ max

< C(d) [2pInp + pk]” max

i1€1g

Now, using the estimate

max
i1 €1k

which follows from (24), we get

max Z iy (2) XD

i1>pC@
(2 (d)
d)p E max E Qiyiy..igXi, = Xi,
QkPC(d)<7;1<2k+1pC(d) i .
= - 22,00

o 1
2
< Z 2plnp+p/€] \/W Z ‘ Ao ig

11,82,..y%d

C(d)p

Notice that for C(d) large enough, the last sum may be bounded by

and therefore

(29) C(d)p

max Z Qiiy.. 1nX(2) R X(d)

i1 >pC(d)




174 R. LOCHOWSKI

By (26) and (29) we have

H Z ai1..‘idXZ-(11) ox@

td

T i X

i1>pC (D ig,..ig P
So let us consider
1 d
S, = S XY X
i1 <pC D ig,. . ig
By (23) we have
1 1 2 d
60)  gglsil < D DENTRRES RS el ‘p
i1 <pC D) ig,... ig
+|| sup Z a; PAED S X(d)
01844 :
£<1)€Bz(,l) i1<pC(D) i, ig ' 2 p
Recall the definition of B,S”,
BI()DZ{ €R": ZN <pand(()—Oor|x§1)|21fori=1,...,n)}.

Since i; < p©@ we may assume that B(l) c R Let us define

21y
BM = {(#:) € R”° : 3(x) € BY, 2; = sign(w,) - |Jas]]}.
We will prove that BI(,l) has cardinality no greater than p©(®? and that for any (a;) €
Rpc(d)
1
(31) sup Za r; > max a;x; > = sup Zaimi.

zeB) zeBLY veBY
Indeed, by the definition of B,(,l), for any (z;) € Bz(,l) we have

#itw; #0} <p,#{i: |zl >p} =0
-

and since all vectors from By, ) have integer coordinates, then

C(d)
A(1 p C(d
#B,E,>§< ) >(2p+1)p§p (@e,

In order to prove (31) notice that BI(;U

the second, take (2¥) € BZ(,U such that

204 Z 5 Ssup Zalwl

EB(I)

C BI(,l)7 so the first inequality is obvious. To show

We may additionally assume that a;z? > 0 for all i’s. Take ) =sign(a?) - |[z?|| . Since
for all i’s 29 = 0 or |28 > 1, so

a;z? for all i’s,

l\D\H

agx > a;z 2
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hence

sup Zalxlz Zalas >— sup Zawl.

Using properties of BZ(, )7 for any ¢ > p we have

Z ey (2)
(32) ’ supm Gir.iaiy Xip P
sMeBYY 1, <pO@ in. . iu
1 2
max E Aiy..igT 51) X()
z<1)eB£1> p

i1<p® (D ig,...,iq

1 2 )|
(Y B Y el x® X

aWeBM  1<pC @iz, . ig

(#B(l))l/q max

(1) (2) (d)
s eBM Z Qiy.igTiy Xiz X

iq

. . . ‘q
i1<pC D ig,...,iq

Taking ¢ = pmax(1,Inp) and using Corollary 2 we get
)31 20 (2)
(#B( )4 max Z iy igty - X,

T EB N el iy, i !
< (B Pmax(iing) (pmax(l,lnp))d’l
p
X  max Z iy . ig® (1) X(Q) -~X.(d)’
w(1>63(1) i td p
P <p©Dig,...ig

< C(d) max(1,Inp)?~1  sup Z Qiy . iy T 1(11) X(z) .

P

1
eMEBLY i <pC@ iy, iy

And now, from the above inequality, from (32) and (30) the inequality (22) follows.
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