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Abstract. We study the local properties of the time-dependent probability density function for

the free quantum particle in a box, i.e. the squared magnitude of the solution of the Cauchy

initial value problem for the Schrödinger equation with zero potential, and the periodic initial

data.
√

δ -families of initial functions are considered whose squared magnitudes approximate the

periodic Dirac δ-function. The focus is on the set of rectilinear domains where the density has a

special character, in particular, remains bounded, or even has low average values (“the valleys

of shadows”).

An essential part of the paper is dedicated to a review of some earlier results concerning the

fractal properties of Vinogradov’s extensions, which incorporate the solutions of a wide class of

Schrödinger type equations. Relations are discussed with the optical diffraction phenomena dis-

covered in 1836 by W. H. F. Talbot, the British inventor of photography. In the modern Physics

literature, self-similarity in the wave diffracted by periodic gratings, is known as fractional and

fractal revivals, and quantum carpets (M. Berry, W. Schleich, and many others). Self-similarity

has been well-known, and extensively utilized in Analytic Number Theory, since the creation

of the circle method of Hardy–Littlewood–Ramanujan, and Vinogradov’s method of estimation

and asymptotic formulas for H. Weyl’s exponential sums. According to these methods, on the

major arcs, the complete rational exponential sums are the scaling factors, while the appropriate

oscillatory integrals constitute the pattern of the arising arithmetical carpets.

1. Introduction. Some time ago, in a personal conversation, Z. Ciesielski advised me

to study the properties of the solutions of the Cauchy initial value problem for the

Schrödinger equation of a free particle, with the Jacobi elliptic ϑ-function as the pe-
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Fig. 1. The Schrödinger landscape

riodic initial data:

∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(t, x)

∣

∣

∣

∣

t=0

= ϑε(x) = c(ε)
∑

m∈Z

e−
π(x−m)2

ε .

Here, ε is a small positive number (parameter), in fact, ε→ 0, and c(ε) a positive factor,

normalizing the data in the space L2(T1), i.e., on the period. Dr. D. Dix, my colleague

at USC, conducted a series of computer experiments. I am deeply indebted to him for

his work, and many useful discussions. Dix computed and plotted the 3d-graph of the

density function ρ = ρ(ϑε, t, x) := |ψ(ϑε, t, x)|2, (t, x) ∈ R2, for ε = 0.01, the contour

map, and the so-called Bohm’s trajectories.

Fig. 1 depicts “one quarter” (i.e., (t, x) ∈ [0, 1/2]× [0, 1/2]) of the 3d-graph of ρ, and

Fig. 2 is the contour (topographical) map, i.e., the level lines of the density ρ. Two features

are apparent. First, the graphs represent a rugged “mountain landscape”, and second, the

landscape is not a completely random combination of “peaks and trenches”. In particular,

it is criss-crossed by a rather well-organized set of deep rectilinear canyons, or “the valleys

of shadow”1. In Fig. 3,a family of so-called Bohm’s trajectories can be seen (cf. [6]). In the

1Even though I walk through the valley of the shadow of death, I will fear no evil, for you are
with me; your rod and your staff, they comfort me. Psalm 23 of David.
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given case, the initial data is real-valued and positive, and these trajectories are curves,

on which the solution ψ conserves the initial value of the phase, i.e. remains real-valued

and positive. Self-similarity, the main feature of fractals, is obvious on all three graphs.

Seeing this, the author decided to work out the answers to the following questions.

1) What is the description of “the valleys of shadow”, and how “deep” are they?

2) What happens with the density function ρ outside of the valleys?

3) Do these effects appear only as a result of the specific choice of the initial data, or

they represent a typical property, a “seal” of the Schrödinger equation, for wide classes

of compressed, narrowly supported data, or data functions with distinct singularities?

4) How does the introduction into the equation of a potential, generally neither smooth

nor periodic, affect the self-similarity features of the solutions?

We denote

ψ(f ; t, x) :=
∑

n∈Z

f̂ne
2πi(n2t+nx), ρ(f ; t, x) := |ψ(f ; t, x)|2

the generalized solution, and, respectively, the arising density, for the Cauchy initial value

problem

(1)
∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(f ; t, x)

∣

∣

∣

∣

t=0

= f(x) =
∑

n∈Z

f̂ne
2πinx;

for p ∈ [1,∞], Lp(·) the usual notation for Lp function spaces on the specified subsets

(·), with regard to the Lebesgue measure on these subsets; in the limiting case p = ∞,

L∞ denotes the space of essentially bounded functions with the norm ess sup |f |; C is the

space of continuous functions with the norm max |f |.
Let us introduce the notion of a periodic

√
δ-family. The purpose of this notion is

the following. The density ρ considered in this paper is given by the squared modulus

|ψ|2 of the complex-valued solution ψ of the problem (1), and for the initial density we

have ρ0 = ρ(t, x)|t=0 = |f(x)|2, x ∈ R, where f is the initial data function of (1). The

quantum-mechanical interpretation of the value ρ(t, x), for a fixed time moment t as a

function of the variable x, is the probability density of locating the quantum particle at

the point x. Thus, in the space-periodic case, for each fixed t we have
∫ 1

0

ρ(t, x) dx =

∫ 1

0

|ψ(t, x)|2 dx = 1,

which amounts to the assertion that the particle is somewhere on the period. The as-

sumption that at the initial moment t = 0 the particle is deterministic, i.e., located at

a certain definite point on the period, say, at x = 0, amounts therefore to saying that

ρ0 = |f |2 = δ where δ denotes the periodic Dirac’s delta function. Thus, for the problem

(1) as a generator of physically meaningful densities ρ, of particular interest are the initial

data f , which are L2-normalized on the period, i. e., in the space L2(T1), and such that

|f |2 approximate δ.

By the definition, a set of (generally, complex-valued) functions F = {fε}ε>0 ⊂
L2(T1), parameterized by positive ε, is called a

√
δ-family (root-delta family), if

∀g ∈ C(T1) : lim
ε→0

∫ 1

0

|fε(x)|2g(x)dx = g(0).
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If, in addition, all functions of F are even, i.e. fε(−x) ≡ fε(x), we say that F is an even

root-delta family, and use the notation
√

δ+; if fε(−x) ≡ −fε(x), the set F will be called

an odd root-delta family, and the notation
√

δ− applied.

The family {ϑε} of the Jacobi ϑ-functions

ϑε(x) :=
4

√

2

ε

∑

m∈Z

e−
π(x−m)2

ε =
4
√

2ε
∑

n∈Z

e−πn2εe2πinx, ε > 0,

suggested by Z. Ciesielski, is an example of a
√

δ+-family. Of course, there are many other

classical
√
δ -families, such as the Dirichlet kernels, wave packets, characteristic functions

of intervals, and periodic Haar functions :

wε(x) :=
√
ε

∑

n: |n|ε≤1/2

e2πinx, wε,k(x) := e2πikxwε(x), k ∈ Z;

1̃ε(x) :=
1√
ε

∑

m∈Z

1ε(x−m); χ̃ε(x) :=
1√
ε

∑

m∈Z

χε(x−m),(2)

where 1ε denotes the characteristic function of the interval [−ε/2, ε/2], i.e. 1ε(x) = 1

if |2x| ≤ ε, and 1ε(x) = 0 for all other x; χε(x) := 1ε(x)signx. In physics literature,

see e.g. [4],[5], [31], the initial data 1̃ε are known as Ronchi’s grating (for ε = 1/2). The

initial densities w2
ε , 1̃2

ε, ϑ
2
ε are classical tools of the theory of trigonometric series, and

approximation theory; in particular, w2
ε are known as Fejér’s (C, 1)-summation kernels,

see e.g. [40], v. 1, Ch. 3; 1̃2
ε is the kernel of the convolution operator of the moving average,

or sliding window; ϑ2
ε are the kernels of the Gauss summation method.

In the sequel, for fixed real numbers N, ξ, denote, respectively, LN,ξ and LT
N,ξ, the

following lines on the plane R2:

LN,ξ := |{x = (t, x) ∈ R2 : x+Nt = ξ}, LT
N,ξ := {x = (t, x) ∈ R2 : Nx+ t = ξ}.

Given a line L on R2, denote ρ|L the restriction (trace)2 of the density ρ on L. For the

initial data f of the class L2(T1), ρ(f)|L is a (locally) integrable function on L. This

easily follows by termwise integration, over finite intervals belonging L, of the double

series that represents ρ. On a line L with a rational slope N , the corresponding trace

ρ(f)|L is periodic.

Let F = {fε}ε>0 be a
√
δ-family. We say that a (positive) density distribution ρL

is the weak limit of ρ(fε)|L as ε → 0, if for every continuous and compactly supported

function g on L

lim
ε→0

∫

L

ρ(fε)|L g dµ =

∫

L

ρLg dµ;

µ denotes the usual Lebesgue measure on L. If the limit ρL not only exists, but also is the

same for all
√
δ-families, we say that ρL is the trace of ρ(

√
δ) on L, and apply the notation

ρ(
√
δ ; L) := ρL. The definitions of the weak limits ρ(

√
δ ; R2), ρ(

√

δ+ ; L), ρ(
√

δ− ; L)

2The lack of space forces us to confine the understanding of the trace ρ|LN,ξ
as the univariate

function resulting from the formal substitution x = ξ−Nt into the double Fourier series of ρ; the
trace ρ|LT

N,ξ
is understood similarly. It seems interesting to clarify which conditions guarantee

the existence of such traces in the distributional sense.
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are analogous, and the latter notations are applied if and only if the limits ρL exist, and

do not depend on the
√
δ-family, or, respectively,

√

δ+
√

δ− -families of the initial data.

Visually, the special lines on Fig. 1 and Fig. 2 are LN, M
2

, where N,M are integers. The

following theorem contains an explanation, and answers a part of the raised questions

concerning the limit densities.

Theorem 1. A) Assume that N,M are integers. Then

(3) ρ(
√

δ+ ; LN, M
2

) = 1 + (−1)NM ; ρ(
√

δ− ; LN, M
2

) = 1 − (−1)NM .

B) Assume that N is a rational number, N /∈ Z, ξ – real, and τ – irrational. Then

ρ(
√
δ,LN,ξ) = ρ(

√
δ,LT

0,τ ) = ρ(
√
δ ; R2) = 1.

Remark 1. Assume that τ is a rational number, τ = a
q , a ∈ Z, q ∈ N1, (a, q) = 1. Then

ρ(
√
δ; LT

0, a
q
) =

1

q

∑

m

δm
q

{

1, if q ≡ 1 (mod 2),

1 + (−1)m+ q
2 , if q ≡ 0 (mod 2).

(4)

Remark 2. If N,M are odd integers, and L = LN, M
2

, then according to (3) ρ(
√

δ+,L) =

0, i.e. L is one of the “valleys of shadow”. Since ρ(fε) are positive functions, the weak limit

equality ρ(
√

δ+,L) = 0 is equivalent to the statement of strong convergence in L1
loc(L):

if N is an odd integer, and F = {fε}ε>0 a
√

δ+-family, then

lim
ε→0

∫ 1

0

ρ

(

fε; t,Nt+
1

2

)

= 0.

It can be seen in Fig. 2 that the density ρ(ϑε) has a special character not only on the

lines LN, M
2

, but also on the transversal lines LT
N, M

2

whereM,N are odd integers. Although

here the peculiarity is less apparent, and these lines are not “valleys of shadow”, D. Dix

expressed a conjecture, based on the numerical analysis and the graphics, that the density

remains bounded as ε→ 0.

The next statement confirms this conjecture of Dix for the above mentioned classical
√

δ+-families of the initial data: ϑ-functions, Dirichlet kernels, and Ronchi’s gratings. (It

does not seem likely, however, that the conjecture is true for general
√

δ+-families.)

Theorem 2. Assume that N,M are odd numbers, L̃ := LN, M
2
∪ LT

N, M
2

, and the family

F = {fε}ε>0 consists of the functions ϑε, wε or 1ε, see (2). Then

(5) sup
ε∈(0,1)

‖ρ(fε)‖L∞(L̃) <∞.

For these initial data, the densities ρ(fε) tend to 0 on the line LN, M
2

not only in L1, but

also in Lp for all p <∞ .

Remark 3. The lines LN, M
2
, LT

N, M
2

with odd N,M , where the density remains bounded,

are exceptional, indeed. Thus, it can be proved that the trace of the density ρ(wε), as

ε → 0, is almost everywhere unbounded on each of the lines LN,M , LT
N,M with integer

N,M , and for almost all ξ

sup
ε∈(0,1)

‖ρ(wε)‖L∞(L0,ξ) = ‖ρ(wε)‖L∞(LT
0,ξ

) = ∞.
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Theorem 2 is deeper than theorem 1. The proof requires the local estimates of the

elliptic ϑ-function of complex argument ϑ(z) :=
∑

n∈Z e
−n2z, ℜz > 0, the estimates

of the exponential sums with the quadratic phase
∑n

ν=1 e
2πi(ν2t+νx), and the results

concerning the local properties of the discrete oscillatory Hilbert transforms, see section 8

below,

H(t, x) := p.v.
∑

n∈Z\{0}

e2πi(n2t+nx)

2πin
.

In the next few sections, we provide some comments on the fractal nature of the

solutions of a wide class of Schrödinger type equations with the periodic initial data. We

also discuss the relations with the optical effect of W. H. F. Talbot [35]. The proofs of

the theorems are contained in sections 6–8.

2. V -extensions. In the earlier papers [25]-[27] (a review can be found in [28]), the

author studied the properties of the solutions ψ, and also of an essentially wider class of

trigonometric series, called Vinogradov’s extensions, for brevity, V -extensions.

Vinogradov’s extensions appear quite naturally, via the classical method of Fourier

of separation of variables, in the study of the properties of the solutions of the Cauchy

initial value problem posed for a wide variety of Schrödinger type equations. The latter

include not just the problem (1) for a “free quantum particle in a box”, but, for example,

the linearized version of the Korteweg-deVries equation (KdV). We briefly discuss this

subject in the subsequent section 08; for more details and references, see [28]. Let us only

notice here, that the results and the methods of analytic number theory, in particular,

the circle method of Hardy–Littlewood–Ramanujan–Vinogradov, are crucial components

of the study, if the initial data function is periodic, and the goal is understanding of the

pointwise properties of the solutions. The latter especially concerns non-trivial situations,

when the series do not converge absolutely. For example, the circle method is a crucial

component of the proof of global boundedness of the solution of the linearized KdV

equation for the initial data that are periodic functions of bounded variation on the

period (i.e., of the class BV (T1)).

In general, the case of periodic initial data is complicated, in comparison with the

non-periodic case, by the necessity of the application of the micro-local analysis, see e.g.

[19]. However, it does not mean that the non-periodic case is easy. Here, the technics and

methods are based on the analysis of the oscillatory integrals. A pioneering work in the

direction of the regularity conditions of the solutions of the Schrödinger equation with

the non-periodic (compactly supported) initial data is due to L. Carleson [8], which has

later found multiple developments, see e.g. [10], [21], [32].

A V -extension (of degree r ∈ N, r ≥ 2) of a periodic function f is defined as the sum,

wherever it exists, of the oscillatory series with the real algebraic polynomial phase of

higher degree in the exponentials:

V (f ;x) :=
∑

n∈Z

f̂ne
2πiP (x,n), P (x, n) := xrn

r + · · · + x1n, x = (xr, . . . , x1) ∈ Rr.

Vinogradov’s extensions, and in particular, the solutions of the Cauchy problem (1),

are self-similar. Self-similarity is the most typical feature of a V -extension, and the clas-
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sical complete rational exponential sums (Gauss sums of higher order) play the role of

scaling factors.

Rather superficially, the source of self-similarity can be seen if we consider V -ex-

tensions for fixed rational values of the “senior” coefficients of the polynomial in the

exponent xr, . . . , x2, as a function of the variable “junior” coefficient x = x1. In the

sequel, Qr denotes the following subset of the rational points in Rr:

Qr :=

{

y = (yr, . . . , y2, y1) =

(

ar

qr
, · · · , a2

q2
,
m

q

)

, q := [qr, . . . , q2], m ∈ Z
}

where qs ∈ N1, as ∈ Z, (as, qs) = 1, s = r, . . . , 2, and q = q(y) := [qr, . . . , q2] is the least

common multiple of the denominators of the rational numbers yr, . . . , y2.

We have

V

(

f ;
ar

qr
, · · · , a2

q2
, x

)

=
∑

n∈Z

f̂ne
2πiP (n)

q e2πinx, P (n) := q

(

arn
r

qr
+ · · · + a2n

2

q2

)

.

It follows that V as a function of x, appears as a result of the multiplier transformation of

the Fourier series of the initial data f . The multiplier {e
2πiP (n)

q }n∈Z is a periodic function

of n ∈ Z, of period q. Consequently, applying the discrete Fourier transform, we see that

V

(

f ;
ar

qr
, · · · , a2

q2
, x

)

=

q
∑

m=1

G(y(m))f

(

x− m

q

)

,(6)

y(m) :=

(

ar

qr
, · · · , a2

q2
,
m

q

)

, G(y(m)) =
1

q

q
∑

n=1

e2πi
P (n)+mn

q .

Therefore, in the given context, V is a q-term linear combination of the translates of the

initial data f .

The coefficients G in these linear combinations are universal, they do not depend from

the initial data. They are (normalized) complete rational exponential sums, or Gauss sums

of higher order. The following identities (“conservation laws”) are elementary:

q
∑

m=1

G(y(m)) =

q
∑

m=1

|G(y(m))|2 = 1.

In the particular case of r = 2, the coefficients G are the classical quadratic Gauss sums,

G

(

a

q
,
m

q

)

=
1

q

q
∑

n=1

e2πi an2+mn
q , (a, q) = 1,

and the magnitudes of these complex numbers are well-known, see also (4),
∣

∣

∣

∣

G

(

a

q
,
m

q

)
∣

∣

∣

∣

2

=
1

q

{

1, if q ≡ 1 (mod 2),

1 + (−1)m+ q
2 if q ≡ 1 (mod 2).

(7)

Therefore, if q is odd, the solution operator ψ(f ; a
q , x) = V (f ; a

q , x) of the problem

(1)reproduces q copies on the torus T1, of the initial function f , while if q is even, the

number of such (non-zero) copies is q
2 .

Of course, the term “copy” is only conditionally applicable in this interpretation of

(6), because different translates of the initial data f(x− m
q ) generally interfere with each
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other. However, if the function f(x) is a “sharp image”, say, it is supported in a narrow

neighborhood |x| ≤ ε of the origin (like Ronchi’s grating 1ε, cf. (2)), and if the rational

moment of time t = a
q is such that qε ≤ 1, then the solution operator ψ is a “copy

machine”, indeed, because the supports of the translates do not overlap. On the other

hand, if qε > 2, the interference between translates of f blends the sharp separate copies

unrecognizably.

The same applies for higher degree V -extensions. Summarizing, we see that the dis-

crete functions (distributions) on Rr

(8) G :=
∑

y∈Qr

G(y)δy, G2 :=
∑

y∈Qr

|G(y)|2δy,

of the arithmetical comb type, are intrinsically associated with the general V -extensions

of periodic initial data, and consequently, with the solutions of a wide class of Schrödinger

type equations. However, a big difference with the generic case r = 2 is that the rational

sums G(y) of degree r ≥ 3 are significantly more complicated arithmetical functions,

than the quadratic Gauss sums. Anyhow, the set of rational points y for which G(y) 6= 0

is everywhere dense in Rr, so that a general V -extension V (f,x) is a self-similar function,

indeed. In particular, the sum of the series with the cubic phase

u(f ; t, x) =
∑

n∈Z

f̂ne
2πi(n3t+nx),

is self-similar. This series represents the solution of the Cauchy initial value problem for

the linearized Korteweg-deVries equation with the periodic initial data function

(9)
∂u

∂t
= − 1

4π2

∂3u

∂x3
, u(t, x)

∣

∣

∣

∣

t=0

= f(x) =
∑

n∈Z

f̂ne
2πinx,

and in this case, the scaling factors are complete cubic rational sums

G

(

a

q
, 0,

m

q

)

=
1

q

q
∑

n=1

cos 2π

(

an3 +mn

q

)

.

In this relation, curious examples of self-similar functions are provided by the sums of

the following sine-series with the cubic phase:

A(t) :=

∞
∑

n=1

sin 2πn3t

πn
, B(t, x) :=

∞
∑

n=1

sin 2π(n3t+ nx)

πn
.

Both series converge everywhere, and the partial sums are uniformly bounded, according

to a more general theorem from [2], see also section 8. The function B represents the solu-

tion u(f ; t, x) of the problem (9) with the initial data f(x) := 1
2 −{x}, where {·} denotes

the fractional part function. Thus, A(t) describes the time-evolution, in accordance with

(9), of one single “unit jump” on the period in the space variable. This jump is repro-

duced on an everywhere dense set of the rational t = a
q , where A has discontinuities of the

first kind (jumps). The value of the ”little jump” at t = a
q equals the cubic rational sum

G(a
q , 0, 0); for more details, the reader may be referred to the earlier review paper [28].

Remark 4. For r = 2, the zeros of the Gauss arithmetic function G(y) align themselves

along the “valleys of shadow”, i.e. on the lines LN, M
2

with odd N, M , see also lemma 1
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below. It would be interesting to clarify whether or not the zeros of G(y) for r ≥ 3 also

align themselves along manifolds in Rr that can be described in geometrically transparent

terms.

3. The circle method and self-similarity. A much deeper fact is the self-similarity

in H. Weyl’s exponential sums

Wn(x) :=
1

n

n
∑

ν=1

e2πiP (x,ν), x := (xr, . . . , x1) ∈ Rr, n ∈ N,

when these sums are considered globally, as functions of r+1 variables: the natural n, and

the real coefficients xr, . . . , x1 of the algebraic polynomial in the exponent. This property

has been well understood, and utilized, in analytic number theory since the beginning

of the 20th century, when the famous circle method of Hardy–Littlewood–Ramanujan–

Vinogradov was created. This method combines estimates and asymptotic formulas for

Weyl’s sums. The original goal was Waring’s problem, however, the scope of applications

of the circle method in number theory alone is immense.

As an illustration of the self-similar properties in Weyl’s sums, let us consider the

asymptotic formulas on the so-called major arcs. G. I. Arkhipov [1] established the fol-

lowing variant of Vinogradov’s [37] method of exponential sums. Given a (large) natural

number n, denote by �n the “rectangular box”

�
r
n := {z = (zr, . . . , z1) ∈ Rr, |zs| ≤ n0.3−s, s = r, . . . , 1},

and consider the subset Qr
n of the rational points in Rr with “relatively small denomina-

tors” (see also the previous section)

Qr
n :=

{

y =

(

ar

qr
, · · · , a2

q2
,
a1

q

)

, q = q(y) := [qr, . . . , q2] ≤ n0.3

}

.

The major arc An is defined as the union of the boxes, centered at the points of Qr
n :

An = Qr
n + �

r
n; for y ∈ Qr

n, z ∈ �
r
n the following asymptotic formulas are valid:

(i) Wn(z) = Wn(z) +O(n−0.7), Wn(z) :=
1

n

∫ n

0

e2πiP (z,ν) dν;

(ii) Wn(y + z) = G(y)Wn(z) +O(n−0.7).(10)

The complete rational sums G(y) appear as scaling factors in these formulas, while the

“pattern” is given by the continuous analog Wn of the sum Wn, i.e. the oscillatory

integral with the algebraic polynomial phase. A useful estimate of the integral in many

applications, in particular, in Schrödinger type equations, is the following:

(11) |Wn(z)| ≤ min

(

1,
c

P
1/r
∗ (z, n)

)

, P∗(z, n) := |zr|nr + · · · + |z1|n.

This estimate is an equivalent form of Vinogradov’s lemma [37], Ch. 2, on oscillatory

integrals, cf. also [24].

As for the minor arc, which by the definition is the complement of the major arc,

Bn := Rr \An, Weyl’s sums satisfy here the estimate

Wn(x) = O(n−α), α = (8r2(ln r + 1, 5 ln ln r + 4.2))−1, x ∈ Bn, n→ ∞.
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4. An excerpt from the work of W. H. F. Talbot In optics, the multi-scaled self-

similarity effects were experimentally discovered as early as in 1836 by W. H. F. Talbot

[35], the British inventor of photography.

Below is an excerpt from this wonderful publication of Talbot.

. . . In order to see these appearances in their perfection, it is requisite to have a dark chamber
and a radiant point of intense solar light, which, for the sake of convenience, should be reflected
horizontally by a mirror. I will relate a few, out of several experiments which were made in this
manner.

1. About ten or twenty feet from the radiant point, I placed in the path of the ray an equidistant
grating (a plate of glass covered with gold-leaf, on which several hundred parallel lines are cut,
in order to transmit the light at equal intervals) made by Fraunhofer, with its lines vertical. I
then viewed the light which had passed through the grating with a lens of considerable magnifying
power. The appearance was very curious, being a regular alternation of numerous lines of red and
green colour, having their direction parallel to the lines of the grating. On removing the lens a
little further from the grating, the bands gradually changed their colours, and became alternately
blue and yellow. When the lens was a little more removed, the bands again became red and green.
And this change continued to take place for an indefinite number of times, as the distance between
the lens and the grating increased. In all cases the bands exhibited two complementary colours.

It was very curious to observe that though the grating was greatly out of focus of the lens,
yet the appearance of the bands was perfectly distinct and well defined.

This however only happens when the radiant point has a very small apparent diameter, in
which case the distance of the lens may be increased even to one or two feet from the grating
without much impairing the beauty and distinctness of the coloured bands. So that if the source
of light were a mere mathematical point it appears that this distance might be increased without
limit; or that the disturbance of the luminous indulations caused by the interposition of the
grating, continues indefinitely, and has no tendency to subside of itself.

2. Another grating was then placed at right angles to the first, and the light transmitted
through both was examined by the lens. The appearance now resembled a tissue woven with red
and green threads. It seemed exactly as if each colour disappeared alternately behind the other.
An alteration in the distance of the lens, altered the two complementary colours.

3. A plate of copper pierced with small circular holes of equal diameter and in regular rows,
was substituted for the gratings. When this plate was held perpendicular to the ray, it produced
a beautiful pattern consisting of rows of circles divided by coloured lines or bars. When the lens
was approached to the plate, there was a particular distance between them at which it appeared
in the centre of each circle a black spot, as small and well defined in appearance as a full point
in a printed book, being a curious instance of the well-known fact, of the interference of rays of
light producing darkness. This black spot was seen in all circles at once, in consequence of their
having equal diameters.

4. When the copper-plate was placed obliquely and held in various positions, a great variety

of very singular patterns were dispayed, which can be compared to nothing so well as to tissues

woven with threads of various colours. It would be impossible to describe these, and more than

the ever-changing figures of the kaleidoscope. They seem to vary ad infinitum, and in whatever

position the plate is placed, they appear as distinct as if they were in the focus of the lens. . .

The author of the present paper learnt about Talbot’s phenomenon from the manu-

script of the work [22] which he happened to referee, and from the subsequent acquain-

tance with the physics literature, e.g. [3]–[5], [31]. The modern physics terminology with

regard to the self-similarity features includes quantum carpets, self-imaging; integer, frac-

tional and fractal revivals, etc. The integer revival reflects that the solution of the Cauchy
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problem (1) with the space-periodic initial data is periodic in both space and time vari-

ables, ψ(f ; t + 1/2, x + 1/2) ≡ ψ(f ; t, x) ≡ ψ(f ; t + 1, x) ≡ ψ(f ; t, x + 1). Self-imaging

reflects the property of the multi-scaled reproduction of the initial data. Fractional and

fractal revivals mean that at rational moments of time t = a
q with small denominators

q, the copies of the initial data reappear in the sharp focus from a blended mass. This

group of phenomena is illustrated above by the relation (6) for general Vinogradov’s ex-

tensions. A typical quantum carpet is depicted in Fig. 2, and the functions G, G2, see (8),

are quantum combs.

5. Equations: Wave ⇒ Helmholtz ⇒ Schrödinger. Paraxial approximation. It

seems proper to provide a partial argument, mathematically not meticulous, why the

fractal properties of the Schrödinger wave function ψ could so brightly manifest them-

selves in the optics phenomenon discovered by Talbot. We borrow the explanation from

the papers [4], [22], with some minor modifications, and again emphasize, that from the

mathematical point of view, the arguments below are by far not sufficiently justified. The

latter remark especially concerns the so-called paraxial approximation, see “Ansatz 3”

below. An elaboration of a deeper “mathematization” of these arguments seems to be of

considerable interest to the author.

The assumption is that the diffracted light wave in the space past the grating satisfies

the wave equation
(

1

c2
∂2

∂t2
− ∆

)

W = 0, ∆ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

where c denotes the speed of light in vacuum, t - the time variable; (x, z) := (x, y, z)

is the Cartesian coordinate system erected so that z = 0 describes the “grated” plane

R2 = {x = (x, y)}, and the half-space past the plane is given by z > 0. The light is

assumed to be monochromatic, of some fixed frequency ω. 3 Accordingly, the solution

of the wave equation is assumed to have the form W = e2πiωtU(x, z) where U is the

complex local amplitude. The boundary value U(x, 0) = f(x), x = (x, y) ∈ R2, models

the original image on the diffraction plane, so that the mathematical “Ansatz 1” of the

problem is

W (t,x, z) = e2πiωtU(x, z);

(

∆ +

(

2π

λ

)2)

U = 0,

U(x, z)

∣

∣

∣

∣

z=0

= f(x), x = (x, y) ∈ R2,

where λ := c
ω denotes the wave-length of the light signal. Concerning U , one needs to solve

the boundary value problem for Helmholtz equation. The Fourier method of separation

of variables is applied for this purpose:

U(x, z) =

∫

R2

f̂(y)e2πi(Ω(y)z+x·y) dy, f̂(y) =

∫

R2

f(x)e−2πiy·x dx, y = (y1, y2) ∈ R2.

3The given explanation seemingly does not apply to the effects of bands changing colors in
the experiment of Talbot, who used a radiant point of intense solar light as a source, i.e. white
light, the composition of several frequencies.



THE SCHRÖDINGER DENSITY AND THE TALBOT EFFECT 201

Since for a fixed vector y ∈ R2

(

∆ +

(

2π

λ

)2)

e2πi(Ωz+x·y) = 4π2((λ−2 − |y|2) − Ω2)e2πi(Ωz+x·y),

the basic equation for the selection of Ω = Ω(y), according to the Fourier method, is

Ω2(y) = λ−2 − |y|2.

Of course, this equation is not enough for a single-valued determination of Ω(y), and here

is “Ansatz 2” made in [4],[22]: physics of the problem suggests the following solution

Ω(y) :=
√

λ−2 − |y|2 =

√

1 − |λy|2
λ

, for |y| ≤ λ−1;

Ω(y) := i

√

|λy|2 − 1

λ
, for |y| > λ−1,

so that the eigen-functions “shall not explode” for large values of |y|, z, and on the

contrary, decay exponentially.

“Ansatz 3” consists in the substitution of U(x, z) by its paraxial approximation

(12) U(x, z) ≈ Ũ(x, z) := e2πi z
λ

∫

R2

f̂(y)eπi(−|y|2λz+2x·y) dy.

The idea of this approximation is that only the low frequency domain λ|y| ≪ 1

provides a significant input,
∫

R2

f̂(y)e2πi(Ω(y)z+x·y) dy ≈
∫

λ|y|≪1

f̂(y)e2πi(Ω(y)z+x·y) dy,

and in this domain
√

1 − |λy|2 approximately equals its two-term Taylor expansion, so

that

Ω(y) ≈ 1

λ

(

1 − λ2|y|2
2

)

.

Obviously,
∫

R2

f̂(y)eπi(−|y|2λz+2x·y) dy = ψ

(

f ;−λz
2
,x

)

,

so that the result is the paraxial approximation of the solution of the original problem

for wave equation by the solution of the Cauchy initial value problem for the Schrödinger

equation:

(13) W (t,x, z) ≈ e2πiω(t+ z
c
)ψ

(

f ;−λz
2
,x

)

.

The three optical experiments described by Talbot correspond, respectively, to the fol-

lowing three classes of periodic initial data functions:

(I) f(x, y) = f(x); (II) f(x, y) = f(x) + f(y); (III) f(x, y) = f(x)f(y),

where f(x) =
∑

n∈Z

f̂ne
2πinx

Λ , x ∈ R1,
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and Λ denotes the period of grating. The respective ψ-functions are given by

(I) ψ1(z, x) =
∑

n∈Z

f̂ne
−πizλn2

Λ2 e
2πinx

Λ ; (II) ψ2(z, x, y) = ψ1(z, x) + ψ1(z, y);

(III) ψ3(z, x, y) = ψ1(z, x)ψ1(z, y).(14)

The number zT := 2Λ2

λ equals the period, in the z-variable, of all three ψ-functions, it

is known in optics as Talbot’s distance. The lengths λ of waves of the visible light are

contained in the interval λ ∈ [4.55, 6.50]10−5 cm, while the realistic grating period Λ

in Talbot’s experiment presumably lay in the interval Λ ∈ [10−2, 10−1] cm. Therefore,

realistic values of Talbot’s distance in optical experiments are contained in the interval

from decimeters to tens of meters.

The restriction λ|y| = λ|n|
Λ ≪ 1 determines the spectral interval of adequate represen-

tation of the true solution U of the Helmholtz equation by its paraxial approximation Ũ .

This means, that either the initial data f has to be a trigonometric polynomial of degree

≪ Λ
λ , or a “sufficiently smooth” function that can be approximated by such polynomials

with a small error. The latter is an evidence in favor of “mathematical reliability” of

such approximation: the ratio Λ
λ is sufficiently big, of orders 103 – 104. The subspaces

of trigonometric polynomials of such high orders are sufficiently rich to support the phe-

nomena both in physics, and the computational experiments.

Remark 4. In the half-space R3
+ := {(x, y, z), z > 0} past Talbot’s grating plane, let

us introduce the normalized co-ordinates ξ = x
Λ , η = y

Λ , ζ = z
zT

). According to the

representations (14), and theorems 1 and 2, one could expect that the light intensity

in Talbot’s experiments exhibits special features (of being everywhere bounded, or even

small) on the following set of domains ((Nk,Mk) are arbitrary pairs of odd integers):

(I) in the first experiment, on the hyperplanes ξ +Nζ = M
2 and ζ +Nξ = M

2 ,

(II, III) in the second, and the third experiments, on the lines

ξ −M1/2

N1
=
η −M2/2

N2
= ζ; N1ξ −

M1

2
= N2η −

M2

2
= ζ;

ξ −M1/2

N1
= N2η −

M2

2
= ζ;

η −M1/2

N1
= N2ξ −

M2

2
= ζ.

It may be interesting to test whether or not these theoretical conclusions can be

confirmed by experiments.

6. Arithmetics of the density. The proof of Theorem 1. Wigner’s functions.

The next statement provides an “arithmetical explanation” of the effect of the valleys of

shadow in the Schrödinger landscape. The operator ψ “fails to copy” the initial data on

LN, M
2

and LT
N, M

2

with odd M,N , because the Gauss sums vanish on these lines. However,

for N 6= ±1, the behavior of the density on these two types of lines is different. On each

LN, M
2

, the average density is small for the initial data of all
√
δ+-families, while it is

not small on LT
N, M

2

. Here the density converges to 1 in the sense of distributions, see

theorem 1.

Lemma 1. Denote G := {y ∈ Q2, G(y) = 0} the set of zeros of the complete Gauss sums,

see also (7); V, and, respectively, VT the unions of the “valleys of the shadows”, and the
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transversal lines on the plane R2:

V :=
⋃

N,M≡1 (mod 2)

LN, M
2
, VT :=

⋃

N,M≡1 (mod 2)

LT
N, M

2
.

Then

a) G = Q2 ∩ V; b) Q2 ∩ VT $ G.

Proof. According to (7) and the definition of Q2,

G =
⋃

Q∈N

⋃

a∈Z,(a,2Q)=1

⋃

l∈Z

{

y =

(

a

2Q
,
2l + 1 −Q

2Q

)}

.

First assume that y ∈ G. To prove that y ∈ Q2 ∩V, we need to find odd numbers N and

M such that 2l+1−Q
2Q = N a

2Q + M
2 , or aN = 2l+1−(M+1)Q. Since (a, 2Q) = 1, for every

l ∈ Z there exists a unique (mod 2Q) solution N = Nl of the congruence aN ≡ 2l + 1

(mod 2Q), which is the same, that there is a unique couple of integers N = Nl and s = sl

such that Nl ∈ [0, 2Q) and aNl = 2l + 1 − 2slQ. Since a is odd, the numbers Nl and

Ml := 2sl − 1 are also odd, so that y ∈ Q2 ∩ L
Nl,

Ml
2

∈ Q2 ∩ V. Therefore, G ⊂ Q2 ∩ V.

To prove the inverse inclusion, assume that y = (a
q ,

m
q ) ∈ Q2 ∩ V. Then (a, q) = 1,

and there are such odd numbers N, M , that m
q = N a

q + M
2 , or 2m = 2Na+Mq. Since M

is odd, it follows from here that q is an even number, q = 2Q, Q ∈ N, and consequently,

m = aN + QM . Since both aN and M are odd numbers, it follows that m + Q ≡ 1

(mod 2), so that according to (7) G(y) = 0, or y ∈ G. This completes the proof of the

equality a).

To prove the inclusion b), assume that y = (a
q ,

m
q ) ∈ Q2 ∩ VT . Then (a, q) = 1, and

there are such odd numbers N, M , that a
q = N m

q + M
2 , or 2a = 2Nm+Mq. Consequently,

q is even, q = 2Q, Q ∈ N, and a = Nm+MQ. Since all three integers a,N,M are odd,

it follows that m + Q ≡ 1 (mod 2), so that according to (7), y ∈ G, which proves the

inclusion Q2 ∩ VT ⊂ G. Finally, it is easy to see that, in contrast to the equality a), the

latter inclusion is strict, i.e. Q2 ∩ VT 6= G. Indeed, consider the subset of Q2 consistent

of the rational points of the form y = ( a
2Q ,

0
2Q ) where Q is an odd natural number ≥ 3,

a an odd integer, and (a,Q) = 1. According to (7), we have G(y) = 0 for each such

point, so that y ∈ G. The assumption ( a
2Q ,

0
2Q ) ∈ VT would imply that there exist odd

numbers N, M such that a
2Q = N 0

2Q + M
2 , or a = MQ, which is in contradiction with

the condition (a,Q) = 1. This completes the proof of the lemma.

Proof of theorem 1. The density ρ(f,R2) is a bivariate periodic function, and its trace

ρ(f,L) on a line L with a rational slope is a univariate function, also periodic. The

weak limits in the claims of the theorem are constant functions. Therefore, we need to

calculate the value of the limit, as ε→ 0, of the constant term of the Fourier expansions

of ρ(f,R2), ρ(f,L) for f = fε, and prove that each non-constant term of the expansion

tends to 0.

These limits will not depend on the selection of a concrete
√
δ -family, or respectively

√

δ+ -family of the initial data functions {fε}ε>0. In the calculations below we apply our

conventional notations
√
δ,

√

δ+ to emphasize in which sense the limits are understood.
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Thus, the relations

(15) ‖
√
δ‖2

L2(T1) = 1; ‖
√
δ‖L1(T1) = 0; (̂

√
δ)n = 0

mean that for every
√
δ -family {fε}, and every fixed n ∈ Z we have, respectively,

∫ 1

0

|fε(x)|2 dx→ 1,

∫ 1

0

|fε(x)| dx→ 0,

∫ 1

0

fε(x)e
−2πinx dx→ 0, ε→ 0;

these relations are easy corollaries of the definition of
√
δ -families. We also make a natural

convention: for all non-integral α, f̂α := 0.

First of all, we have

(16)

ρ(f ; t, x) =
∑

(n,m)∈Z×Z

f̂nf̂
∗
me

2πi((n2−m2)t+(n−m)x) =
∑

(n,m)∈Z×Z

f̂n+m
2
f̂∗n−m

2

e2πi(m(nt+x)),

so that the Fourier coefficients ρ̂n,m(f,T2), (n,m) ∈ Z2, of ρ(f,R2) are given by

ρ̂0,0(f,T2) = ‖f‖2
L2(T1) − |f̂0|2; ρ̂n,0(f,T2) = 0, n ∈ Z \ {0};

ρ̂n,m(f,T2) = f̂ 1
2 ( n

m
+m)f̂

∗
1
2 ( n

m
−m), (n,m) ∈ Z × (Z \ {0}).

The claim ρ(
√
δ,R2) = 1 is a corollary from here and (15), because ρ̂0,0(

√
δ,T2) = 1 and

ρ̂n,m(
√
δ,T2) = 0, (n,m) 6= (0, 0).

Let us consider a line LN,ξ = {(t, x) : x + Nt = ξ, t ∈ R1} with a rational slope

N = A
Q , Q ∈ N1, (A,Q) = 1. Then the trace ρ(f ; LN,ξ) is a periodic function, and its

Fourier expansion is

ρ(f ; LN,ξ) = ρ(f ; t,−Nt+ ξ) ∼
∑

(ν,µ)∈Z×Z

f̂ ν+µ
2
f̂∗ν−µ

2

e2πi(µ(νt−Nt+ξ))(17)

=
∑

n∈Z

ρ̂n(f ; LN,ξ) e
2πint

Q , ρ̂n(f ; LN,ξ) =
∑

µ(νQ−A)=n

f̂ ν+µ
2
f̂∗ν−µ

2

e2πiµξ.

If n 6= 0, then the set of solutions µ, ν of the equation µ(νQ − A) = n is finite: both µ

and νQ−A have to be divisors of n. From here and (15) it follows that ρ̂n(
√
δ,LN,ξ) = 0

for n 6= 0.

Further, if N /∈ Z, then the solutions set {(µ, ν)} of the equation µ(νQ − A) = 0 is

{0} × Z, so that in this case

ρ̂0(f ; LN,ξ) = ‖f‖2
L2(T1), ρ̂0(

√
δ,LN,ξ) = 1,

whence we conclude that ρ(
√
δ,LN,ξ) = 1.

For an integer slope N , the solutions set {(µ, ν)} of µ(ν −N) = 0 is ({0} ×Z)
⋃

(Z×
{N}), and consequently

ρ̂0(f ; LN,ξ) =
∑

ν∈Z

|f̂ ν
2
|2 +

∑

µ∈Z

f̂N+µ
2
f̂∗N−µ

2

e2πiµξ − |f̂N
2
|2(18)

= ‖f‖2
L2(T1) + UN (f, ξ) − |f̂N

2
|2, Un(f, x) :=

∑

m∈Z

f̂n+m
2
f̂∗n−m

2

e2πimx.

Un(f, x) is the first of the following two analogs of Wigner’s functions (see e.g. [17],
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Section 8.4.3 (p. 357)), answering the periodic initial data:

Un(f ;x) :=

∫ 1

0

f(x+ y)f∗(x− y) e−2πiny dy,

Ũn(f ;x) :=

∫ 1

0

f(x+ y)f∗(y − x) e−2πiny dy, n ∈ Z, x ∈ R1.

A direct calculation of the Fourier coefficients of these functions shows that

(19) Ûn(f)m = f̂n+m
2
f̂∗n−m

2

, ̂̃Un(f)m = f̂n+m
2
f̂∗m−n

2

,

and consequently
∑

n

‖Un(f)‖2
L2(T1) =

∑

n

‖Ũn(f)‖2
L2(T1) = ‖f‖4

L2(T1).

Wigner’s functions are continuous, ‖Un(f)‖C(T1), ‖Ũn(f)‖C(T1) ≤ ‖f‖2
L2(T1) , and Un is

real-valued for every f ∈ L2(T1). The latter is not true for Ũn in a general case, but if f is

even, then obviously Un(f) = Ũn(f); if, on the contrary, f is odd, then Un(f) = −Ũn(f).

It is well known that Wigner’s functions are intrinsically related with the density ρ.

They appear, see (16), as profiles of the plane waves in ridge4 series representation of ρ

on R2

(20) ρ(f) =
∑

n

Un(f), Un(f) := Un(f ;nt+ x),

and simultaneously as Fourier coefficients of the expansion of ρ on the lines, parallel to

x-axis:

(21) ρ(f ; t, x) =
∑

m∈Z

Ũm(f ;mt) e2πimx.

Since
∫ 1

0

∫ 1

0

Un(f)Um(f) dtdx =

{

|f̂n
2
f̂m

2
|2, if n 6= m,

‖Un(f)‖2
L2(T1), if n = m,

it follows that the ridge series in (20) converges unconditionally in the space L2(T2).

Indeed, the double integral on the left side equals the inner product (Un,Um)L2(T2) of Un

and Um in L2(T2). Therefore, for an arbitrary subset of integers A ⊂ Z we have
∥

∥

∥

∑

n∈A

Un

∥

∥

∥

2

L2(T2)
=

∑

(n,m)∈A×A

(Un,Um)L2(T2) ≤ 2‖f‖4
L2(T1) −

∑

n∈Z

|f̂n|4.

This implies the unconditional convergence, and along with it, the following variant of

the Strichartz’ inequality5 for the L4-norm of the solution ψ on T2:

‖ρ(f)‖1/2
L2(T2) = ‖ψ(f)‖L4(T2) ≤ 21/4‖f‖L2(T1).

4In the recent literature on approximation theory, see e.g. [30], the term ridge pinpoints the
function of the type plane wave, as a tool of approximation of a general multi-variate function.
In particular, ridge series simply means an infinite sum of plane waves.

5The estimates of the integral norms of the oscillatory solutions, as functions of both space
and time variables, via the integral norms of the initial data are often called in the modern
literature Strichartz’ type inequalities.
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According to (18), the average values (Radon transformations) of ρ on the lines LN,ξ

with the integral slopes N are expressed via Wigner’s functions, too. Their limits for√
δ,

√

δ+-families are the following:

Un(
√

δ+, x) = −Un(
√

δ−) = Ũn(
√
δ, x) =

{

0, if2x /∈ Z,
(−1)2nx, if 2x ∈ Z.

(22)

Indeed,

Ũn(f, x) = e2πinx

∫ 1

0

f(y)f∗(y − 2x) e−2πiny dy.

Consider a
√
δ -family F = {fε}ε>0; then we see that if 2x /∈ Z, then Ũn(fε, x) → 0, ε→

0; on the contrary, if 2x ∈ Z, then Ũn(fε, x) → e2πinx = (−1)2nx . If F is
√

δ+ -family,

then, as mentioned above, Un(fε) = Ũn(fε); for a
√

δ− -family, Un(fε) = −Ũn(fε), and

(22) follows.

From this and from (18) we conclude that for a line LN,ξ with the integral slope N

ρ(
√

δ±, LN,ξ) = ρ̂0(
√

δ±, LN,ξ) = 1 ± ŨN (
√
δ, ξ) =

{

1, if 2ξ /∈ Z,
1 ± (−1)2Nξ, if 2ξ ∈ Z,

and to finish the proof of theorem 1, it remains to consider the weak limits on the lines

LT (0, τ) = {(t, x) : t = τ}, parallel to the x-axis. If τ is an irrational number, then

according to (21), (22) we have Ũm(
√
δ,mτ) = 0, m 6= 0; Ũ0(

√
δ, 0) = 1, and the

equality ρ(
√
δ,LT (0, τ)) = 1 follows from (21). Finally, if τ is a rational number, then (4)

is a corollary of (6), and the classical formulas (7) for the magnitudes of the Gauss sums.

But we can also derive (4), using (22) and (21):

ρ(
√
δ,LT (0, τ)) =

∑

m

Ũm(
√
δ,mτ)e2πimx =

∑

2mτ∈Z

(−1)2m2τe2πimx.

Assume that τ = a
q , a ∈ Z, q ∈ N1, (a, q) = 1. If q is odd, then 2mτ ∈ Z means that

m ≡ 0 (mod q), and in this case (−1)2m2τ = 1, so that

ρ(
√
δ,LT (0, τ)) =

∑

m

e2πimqx =
1

q

∑

n

δn
q
.

If q is even, q = 2Q, Q ∈ N1, then 2mτ ∈ Z means that m ≡ 0 (modQ). In this case

(−1)2m2τ = (−1)m2Q = (−1)mQ = eπimQ , and thus

ρ(
√
δ,LT (0, τ)) =

∑

m

e2πimQ(x+1/2) =
1

Q

∑

n

δ 1
2+ n

Q
=

1

q

∑

n

(1 + (−1)n+ q
2 )δn

q
.

This completes the proof of theorem 1, and remark 1.

7. The exponential sums with the quadratic phase. The known results concerning

the sums Wn(x), see section 3, in the generic case r = 2 are much more detailed, than for

r ≥ 3. A fundamental input in the analysis of the exponential sums with the quadratic

polynomial phase was done by G. H. Hardy and J. E. Littlewood in [15]. With the

global precision (error estimate) of order O(n−1/2), n → ∞, the asymptotic formulas

of Vinogradov’s type (10) reach out everywhere on R2. In this sense, the minor arcs for

r = 2 have been “eliminated”, see [13], or [26].
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Given a natural number ν, let us denote Q2
ν := {y ∈ Q2 : q(y) ≤ ν}, i .e., the subset

of rational points y = (a
q ,

m
q ) ∈ Q2 (recall, that this notation implies that (a, q) = 1),

such that q ≤ ν; further, let

�
2
ν(y) :=

{

y + z, |z2| ≤
1

νq
, |z1| ≤

1

2q

}

, q = q(y), y ∈ Q2
ν .

Then

(i) Wn(y + z) −G(y)Wn(z) = O

(√
q

n

)

= O

(

1√
n

)

, y + z ∈ �
2
8n(y);

(ii)
⋃

y∈Q2
8n

�
2
8n(y) = R2.(23)

The proof of (23, i) in [13], [26] followed a general scheme that originated from the

papers of Vinogradov and Van der Corput. Further, (23,ii) says that every point x on

R2 belongs to a rectangle �
2
8n(y) with q = q(y) ≤ 8n, where the asymptotic formula

(23,i) is valid for Wn(x). (23,ii) it is a corollary from the Dirichlet box principle (also

known as pigeon hole). Indeed, let x = (t, x) ∈ R2, ν ∈ N. Then there exists a rational

number y2 = a
q , (a, q) = 1 such that |z2| ≤ 1

νq , z2 := t − y2, and q ≤ ν. Once such y2
is established, we can find an integer m (in general, not co-prime with q) such that for

y1 := m
q , z1 := x− y1 we have |z1| ≤ 1

2q . Summarizing, we see that every x ∈ R2 belongs

to a rectangle �
2
n(y) where q = q(y) ≤ ν := 8n, which implies (23,ii).

The rational approximant a
q of t can be also found more “constructively”, as a conver-

gent fraction [t]+
aj

qj
, where [t] denotes the integer part of t, and

aj

qj
– the jth truncation,

aj

qj
:= [k1, . . . , kj ], j = 1, 2, . . . , of the full continued fraction of {t} = t− [t], see e.g. [18],

Ch. 10,

{t} =
1

k1 +
1

k2 + · · ·

= [k1, k2, . . . ], kj ∈ N, j = 1, 2, . . . .(24)

The natural numbers kj are known as the partial quotients of t, and the sequence of the

convergents {aj

qj
} is defined by the matrix relations

(

aj+1 aj

qj+1 qj

)

=

(

aj aj−1

qj qj−1

)(

kj 1

1 0

)

, j = 1, . . . ;

(

a1 a0

q1 q0

)

:=

(

1 0

k1 1

)

.

All fractions
aj

qj
generated by this recurrence are reduced, i.e. (aj , qj) = 1; the approxi-

mation properties with regard to the given t ∈ R1 are the following:

(25) t = [t] +
aj

qj
+

(−1)jθj

qjqj+1
,

1

2
≤ θj ≤ 1; j = 0, 1, . . .

The following lemma is true.

Lemma 2. Assume that N,M are odd integers, n a natural number, ε > 0. Denote by

L̃N,M,ε, and respectively L̃T
N,M,ε, the following stripes around the lines LN,M , LT

N,M :
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L̃N,M,ε :=

{

x = (t, x) ∈ R2, x = Nt+
M

2
+ δ, |δ| ≤ ε

}

,

L̃T
N,M,ε :=

{

x = (t, x) ∈ R2, x =
1

N

(

t− M

2

)

+ δ, |δ| ≤ ε

|N |

}

.

Then for n ≥ |N |, ε = εn := 1
32n

(26)

(i) sup
(t,x)∈L̃N,M,ε

∣

∣

∣

n
∑

ν=1

e2πi(ν2t+νx)
∣

∣

∣
≤ c

√
n, (ii) sup

(t,x)∈L̃T
N,M,ε

∣

∣

∣

n
∑

ν=1

e2πi(ν2t+νx)
∣

∣

∣
≤ c

√

|N |n.

Proof. We will derive this lemma from (23). Recall that

Wn(x) =
1

n

n
∑

ν=1

e2πi(ν2t+νx).

Let us first prove (26,i), i.e. that if n ≥ |N |, x = (t, x) ∈ L̃N,M,ε, where N,M are odd,

then |Wn(x)| ≤ c√
n

. Without loss of generality, we may assume that t is an irrational

number on (0, 1).

Further, by (23), the main terms G(y)Wn(z) only have to be estimated. In the other

words, we have to show that for a sufficiently large absolute constant c,

(27) L̃N,M,ε ⊂
⋃

y∈Q2
8n

{

y + z ∈ �
2
8n(y), |G(y)Wn(z)| ≤ c√

n

}

.

Given x = (t, x) ∈ L̃N,M,ε with an irrational t ∈ (0, 1), consider the sequence of

convergent fractions {aj

qj
} of t, see (24), and find j such that 8n ∈ [qj , qj+1). Denote

(28) q := qj , q̄ := qj+1, y2 :=
a

q
=
aj

qj
, y1 :=

m̄

q
; y := (y2, y1); z := x − y,

where the integer m̄ is determined by the condition − 1
2q ≤ x− m̄

q < 1
2q . Then x ∈ �

2
8n(y),

where q(y) = q = qj ≤ 8n, because |z1| ≤ 1
2q by the definition of m̄, and |z2| ≤ 1

qq̄ <
1

8nq .

To prove that |G(y)Wn(z)| ≤ cn−1/2, let us recall that for x = (t, x) ∈ L̃N,M,ε we

have

x = Nt+
M

2
+ δ, |δ| ≤ 1

32n
,

and consider separately two cases: a) q = q(y) is even, and b) q is odd.

In the case a) we have q = 2Q, Q ∈ N1, and
∣

∣

∣

∣

x− Na+MQ

q

∣

∣

∣

∣

≤ |N |
qq̄

+ |δ| ≤ |N |
8nq

+
1

32n
≤ 1

8q
+

1

4q
<

1

2q
,

whence it follows that m̄ = Na+MQ. Consequently, in the case a) the point y, defined

by (28), belongs to the line LN,M . On this line, according to lemma 1, all Gauss sums

G(y) vanish, so that G(y)Wn(z) = 0, which completes the consideration of the case a).

In the case b) the denominator q is an odd number, and therefore, the magnitude of

z1 is estimated from below as |z1| ≥ 1
8q , because
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|z1| = min
m∈Z

∣

∣

∣

∣

x− m

q

∣

∣

∣

∣

= min
m∈Z

∣

∣

∣

∣

Nt+
M

2
+ δ − m

q

∣

∣

∣

∣

≥ min
m∈Z

∣

∣

∣

∣

1

2
− m

q

∣

∣

∣

∣

−
( |N |
qq̄

+ |δ|
)

≥ 1

2q
−

(

1

8q
+

1

4q

)

≥ 1

8q
.

Therefore, by (11), the oscillatory integral Wn(z) satisfies the estimate

(29) |Wn(z)| ≤ c
√

|z2|n2 + |z1|n
≤ c

√
q√
n
,

and we have |G(y)| = 1√
q . Thus, |G(y)Wn(z)| ≤ c√

n
, which completes the proof of (27),

and (26, i).

To prove the second part of the lemma, i.e., the estimate (26,ii), it is sufficient to

establish the following modification of (27):

(30) L̃T
N,M,ε ⊂

⋃

y∈Q2
8n

{

y + z ∈ �
2
8n(y), |G(y)Wn(z)| ≤ c

√

|N |√
n

}

.

For x = (t, x) ∈ L̃T
N,M,ε with an irrational t, let us modify the rational point y in (28)

by letting y2 = a
q := [t] +

aj

qj
, where j is determined as above, i.e., by the condition

8n ∈ [qj , qj+1), and y1 := m̄
q , also as above, by the condition − 1

2q ≤ x − m̄
q < 1

2q . Then

x ∈ �
2
8n(y), and it follows from the definition of the stripe L̃T

N,M,ε that

t =
a

q
+

θ

qq̄
, |θ| ≤ 1, x =

2a− qM

2qN
+

θ

Nqq̄
+ δ, |δ| ≤ 1

32n|N | .

Let

ζ := min
m∈Z

∣

∣

∣

∣

2a− qM

2qN
− m

q

∣

∣

∣

∣

,

and denote m̃ the integer, for which this minimum is attained; let ỹ := (a
q ,

m̃
q ).

There are two possibilities: either a) ζ = 0, or b) ζ ≥ 1
2q|N | .

Let us first consider the case a). In this case, q is necessarily an even number, i.e.

q = 2Q, and we have a = QM +Nm̃. All three numbers a,M,N are odd, so that if Q is

even, then m̃ is odd; on the contrary, if Q is odd, then m̃ is even. Anyway, in the case a)

Q − m̃ ≡ 1 (mod 2), and according to lemma 1 G(ỹ) = 0. It is easy to see that m̃ = m̄,

i.e. ỹ = y, because
∣

∣

∣

∣

x− m̃

q

∣

∣

∣

∣

≤ ζ +
1

|N |qq̄ +
1

32n|N | ≤
1

4q
.

This means, that in the case a) the point y belongs to the transversal line LT
N,M . This

completes consideration of the case a), because G(y)Wn(z) = 0.

In the case b), the magnitude of z1 is estimated from below as follows:

|z1| ≥ ζ −
(

1

|N |qq̄ +
1

32n|N |

)

≥ 1

|N |

(

1

2q
− 1

4q

)

≥ 1

4|N |q .

Consequently, by (29), the oscillatory integral Wn in the case b) satisfies the estimate

|Wn(z)| ≤ c
√

|N |q
n , and since |G(y)| ≤

√

2
q , we see that in this case |G(y)Wn(z)| ≤

c
√

|N |
n , which completes the proof of the lemma.
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For ε := 1
2n we have

ψ(wε; t, x) =
1√
2n

∑

|ν|≤n

e2πi(ν2t+νx) =

√

n

2

(

Wn(t, x) +Wn(t,−x) − 1

n

)

.

Thus, the claim of theorem 2 concerning boundedness of the density ρ(wε; t, x) on the

lines LN,M ,LT
N,M with odd N,M is a corollary from lemma 4.

Remark 3 to theorem 2 is also a corollary from the asymptotic formula (23). This

statement is of the type of Ω-theorems, established by Hardy and Littlewood in [15], and

we do not provide the detailed proof here. The set

Ξ = {ξ = [k1, k2, . . . ]; lim sup
j→∞

kj = ∞},

i.e., the collection of all ξ with unbounded partial quotients, see (24), provides the exact

description of the “bad” values of the parameter ξ.

8. Hilbert transforms. Global boundedness, self-similarity. The following results

concerning discrete oscillatory Hilbert transforms with the algebraic polynomial phase

were proved by Arkhipov and the author in [2] on the base of Vinogradov’s method of

exponential sums:

(i) sup
n∈N1

sup
x∈Rr

|Hn(x)| <∞, Hn(x) :=
∑

1≤|ν|≤n

e2πiP (x,ν)

2πiν
,(31)

(ii) ∀x ∈ Rr, ∃H(x) := lim
n→∞

Hn(x) = p.v.
∑

ν∈Z\{0}

e2πiP (x,ν)

2πiν
.

Independently and somewhat later the global boundedness result was proved by E. M.

Stein and S. Wainger, see [34]. Let us note that in a much earlier paper [33] Stein and

Wainger established boundedness of the integral analogs of H, i.e.

∀r ∈ N : ‖H‖L∞(Rr) <∞, H(x) := p.v.

∫

R1

e2πiP (x,ν)

2πiν
dν.

The function H(x) is self-similar which can be expressed, see [28], by the following

local incremental relations, see also (10):

(32) (i) H(z) = H(z)+o(1); (ii) H(y+z)−H(y) = G(y)H(z)+o(1), z → 0, y ∈ Qr,

and for y ∈ Qr the value of H(y) can be calculated as a finite discrete Hilbert transfor-

mation, which is an analog of the complete rational sum G(y):

H(y) =
1

2qi

q−1
∑

n=1

e2πiP (y,n) cot
πn

q
.

Obviously, in (32) the complete rational sums again appear as the scaling factors,

while the pattern is represented by the integral Hilbert transformation H.

The author’s original goal of consideration of the transforms HN was P. L. Ul’yanov’s

[36] problem concerning the so-called spectra of uniform convergence, see [28]. The initial

result [23] was the following estimate (“à la H. Weyl”, cf. [38]), of the finite transforms
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HN , uniform in the coefficients of the algebraic polynomial in the exponent:

‖Hn‖L∞(Rr) = O((lnn)1−εr ), n→ ∞, εr = 21−r.

This estimate was sufficient to solve the problem raised by Ul’yanov in [36]. Namely, con-

sider an algebraic polynomial Q of degree r ≥ 1 whose coefficients are natural numbers.

Denote by C(Q,T1) the subspace of continuous periodic functions C(T1) whose Fourier

coefficients vanish outside of the polynomial sequence Q := {Q(n)}n∈Z. Ul’yanov asked

whether or not among polynomial sequences Q of degree r ≥ 2 there exists a spectrum

of uniform convergence. In other words, does there exist a polynomial Q such that the

Fourier series converges uniformly for all functions of the subspace C(Q,T1)? It follows

from the above estimate that the answer to this problem is in the negative, and the

classical result of P. du Bois Reymond, see e.g. [40], Ch. 8, on the existence of a contin-

uous function whose Fourier series diverges at a point, can be extended to all subspaces

C(Q,T1). For more details, the reader is referred to [23], or to the review paper [28].

After the more refined result (31) was obtained, Z. Ciesielski drew the author’s at-

tention to the possible applications in the study of the properties of the solutions of

Schrödinger type equations.

A corollary of (31) is the global boundedness condition for V -extensions. Denote by

BV(T1) the space of univariate periodic functions, of period = 1, whose total variation in

the usual sense is bounded on [0, 1), with the norm ‖f‖BV := var(f, [0, 1)) + |f(0)|. Then

V : BV(T1) → L∞(Rr) in the following sense:

sup
n∈N1

‖Vn(f ; ·)‖L∞(Rr) ≤ c‖f‖BV , Vn(f ;x) :=
∑

|ν|≤n

f̂νe
2πiP (x,ν);

∀f ∈ BV(T1), ∀x ∈ Rr ∃ lim
n→∞

Vn(f ;x) := p.v.
∑

ν∈Z

f̂νe
2πiP (x,ν).

A further corollary is the existence of generalized solutions of the Cauchy initial data

problem for every Schrödinger type equation with the constant coefficients in the class of

regular and everywhere bounded functions. Thus, assume that P is a univariate algebraic

polynomial with the real coefficients, and consider the Cauchy initial value problem

1

2πi

∂Ψ

∂t
= P

(

1

2πi

∂

∂x

)

Ψ, Ψ(t, x)

∣

∣

∣

∣

t=0

= f(x).

If f ∈ BV(T1), then the generalized solution of this problem

Ψ = Ψ(f ;P ; t, x) = p.v.
∑

n∈Z

f̂ne
2πi(tP (n)+nx)

is a regular and everywhere bounded function.

For r = 2, the result H ∈ L∞(T2) is equivalent to the global boundedness of the

solution

ψ(t, x) = p.v.
∑

n∈Z\{0}

e2πi(n2t+nx)

2πin
= H(t, x)



212 K. I. OSKOLKOV

of the problem

∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(t, x)

∣

∣

∣

∣

t=0

=
1

2
− {x} = p.v.

∑

n∈Z\{0}

e2πinx

2πin
=

∑

n∈N1

sin 2πnx

πn
.

If the initial data function is the window function (Ronchi’s grating), f(x) = 1̃ε(x), see

(2), then

ψ(1̃ε, t, x) =
1√
ε

∑

n∈Z

sinπnε

πn
e2πi(n2t+nx) =

√
ε+

H(t, x+ ε/2) −H(t, x− ε/2)√
ε

.(33)

Therefore, the first conclusion from H ∈ L∞(T2) is that for each fixed ε > 0 the solution

ψ(1̃ε) is an everywhere bounded function on R2, and for the corresponding density we

have ‖ρ(1̃ε)‖L∞(R2) = O(ε−1), ε → 0. Certainly, this global estimate is not enough for

the proof of theorem 2, which is an essentially stronger estimate ‖ρ(1̃ε)‖L∞(L) = O(1)

on the lines L = LN, M
2

or L = LT
N, M

2

with odd N,M . According to (33), the following

lemma is sufficient.

Lemma 3. Assume that N,M are odd integers, ε ∈ (0, 1
|N | ). Then

sup
(t,x)∈L

N, M
2

|H(t, x+ ε) −H(t, x− ε)| ≤ c
√
ε ;

sup
(t,x)∈LT

N, M
2

|H(t, x+ ε) −H(t, x− ε)| ≤ c
√

|N |ε.

We only outline the proof. For H(x) = H(t, x) more precise estimates are known, see

[26], [28], than the general self-similarity relation (32). We have

H(t, x) = p.v.

∫

R1

e2πi(n2t+nx)

2πin
dn = e

πi
4

∫ x√
2t

0

e−πiξ2

dξ, t > 0,

i.e. the integral Hilbert transform is expressed by the incomplete Fresnel’s integral (if

t < 0, one can find the value of H using a general relation H(−x) = H∗(x)). Further,

the following estimates are valid in the neighborhood of a rational point y = (a
q ,

m
q ) ∈

Q2, q = q(y),

H(y + z) −H(y + z̃) = G(y)(H(z) −H(z̃)) +O(
√
q(

√

|z2| + |z̃2| + |z1 − z̃1|)),(34)

y + z,y + z̃ ∈ �̃
2(y), �̃

2(y) :=

{

y + z, |z2| ≤
10

q2
; |z1| ≤

1

2q

}

.

Lemma 3 is deduced from these relations by the arguments close to the proof of lemma

2. The main difference is that instead of (29), here we utilize the following estimate of

the differences of the Fresnel integral H:
∣

∣

∣

∣

∫ b

a

eπiξ2

dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

d(eπiξ2

)

2πiξ
dξ

∣

∣

∣

∣

≤ 1

πa
, 1 ≤ a ≤ b;

|H(z2, z̃1) −H(z2, z1)| ≤ cmin

(

1,

√

|z2|
z1

)

, 0 ≤ z1 ≤ z̃1.
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9. Weak quadratic variation, local properties of the solutions. Relation (34)

was utilized in [26] to establish that the Hilbert transform H(t, x), as a function of the

variable x for fixed t, is of bounded weak quadratic variation (weak 2-variation) on the

period [0, 1), and this property holds uniformly in t:

(35) sup
t∈R1

‖H(t, ·)‖WV2(T1) <∞.

For a fixed number p ≥ 1, the definitions of the weak p-variation, and the corre-

sponding norm ‖ · ‖WVp(T1) of a (bounded) periodic function h : T1 → C, are the

following. For a given N ∈ N, denote by CN (T1) the set of all periodic piecewise constant

functions with N intervals of constancy on T1, i.e., g ∈ CN if there exist N intervals

Ij = [aj , aj+1), j = 1, . . . , N, such that aN+1 − a1 = 1, and the value of g is constant on

each Ij . Further, denote

σN (h) := inf
g∈CN (T1)

‖h− g‖L∞(T1)

the value of the best N -term non-linear approximation of h in L∞ by piecewise con-

stant functions. We say that h is of bounded weak p-variation6 on T1, if σN (h) =

O(N−1/p), N → ∞. Let wvarp(h,T1) := supN∈N N
1/pσN (h), and denote by WVp(T1)

the space of all functions h of bounded weak p-variation on T1, with the norm

‖h‖WVp(T1) := wvarp(h,T1) + |f(0)|.
A corollary of (35) is the variational property of the solution operator ψ of (1):

sup
t∈R1

‖ψ(f ; t, ·)‖WV2(T1) ≤ c‖f‖BV(T1).

Let us note, that it is not possible to improve the above variational result essentially: one

cannot take the strong quadratic variation (in the sense of N. Wiener) instead of its weak

version, as it was defined above, see [26].

Below are listed some other properties of the functionH(x, t) and the solution ψ(f ; t, x)

(we assume that f ∈ BV(T1)), see [28], or [24], p. 222.

A) If t is a fixed irrational number, then the solution ψ(f ; t, x) is a continuous function

of the variable x; the function H(x) = H(t, x) is continuous, but not differentiable for

almost all x. H is discontinuous at all rational points y ∈ Q2 where G(y) 6= 0.

B) If the sequence of the partial quotients {kj} of the continued fraction (24), is bounded

(in particular, if t is a quadratic irrationality, like t =
√

2) then the solution ψ satisfies

the Lipschitz-Hölder condition of order 1/2, i.e.

ω(ψ(f ; t, ·), δ) = O(δ1/2), δ → 0; ω(h(·), δ) := sup
|x−y|≤δ

|h(x) − h(y)|, δ > 0.

For almost every fixed t, the following estimate of the uniform modulus of continuity of

the solution is true:

ω(ψ(f ; t, ·), δ) = O(δ1/2| ln δ|1/4+ε), ∀ε > 0, δ → 0.

6In [26], another definition of the weak p-variation was used, namely, via counting “large”
oscillations of h over all arbitrary partitions of the period. However, the alternative definition is
equivalent to the given above.
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C) The solution ψ(f ; t, x) is continuous on every line, non-parallel to the x-axis, and in

particular, ψ is a continuous function of the variable t for each fixed x.

Remark 5. The latter property means that for the initial data of the class BV(T1), the

time-evolution described by (1) is continuous. In this sense, ψ behaves better than the

solution u of the linearized KdV-equation (9). The solution operator u of (9) transfers

one singularity of the initial data f(x) = 1
2 −{x} on T1 to a countable everywhere dense

set of singularities (jumps) of the solution

u(f, t, 0) = A(t) =
∑

n∈N1

sin 2πn3t

πn

as a function of t.

10. An application to the incomplete Gauss sums. Let q ∈ N, a ∈ Z, (a, q) = 1,

and let I be an interval on R1 whose length satisfies |I| < q − 1. Then the expression

S

(

a

q
, I

)

:=
∑

n∈I

e
2πian2

q

is called the incomplete Gauss sum, corresponding to the parameter t = a
q and the

interval I.

The incomplete Gauss sums satisfy the estimate

(36) sup
|I|≤q−1

∣

∣

∣

∣

S

(

a

q
, I

)∣

∣

∣

∣

≤ c
√
q.

This estimate is essentially due to G.H. Hardy and J. E. Littlewood [15], although it has

not been explicitly mentioned by the authors. E.C. Titchmarsh included this estimate

into the comments concerning [15], see [16], v. 1, p. 113 – 114; see also [13].

As a matter of fact, the estimate (36) is equivalent to the statement H ∈ L∞(T2).

Moreover, H(t, x) is a generating function, it“encodes” all possible incomplete Gauss

sums, see [26].

In this relation, it may be interesting to recall a comment made by S. Chowla, see

[9], v. 1, pp. 426 –428. This paper discusses the unboundedness problem for the sums
∑r

1 e
iαn2 sin nβ

n . A footnote on the first page mentions that the formulation of the latter

problem is due to H. Davenport and H. Heilbronn. Secondly, it is remarked that the

problem has been solved in the negative by Dr. Spaček of Prague. The latter amounts

to the statement that indeed H ∈ L∞(T2). However, the author of the present paper

did not succeed in locating the publications by Davenport, Heilbronn and Spaček on this

issue.

Utilizing the weak quadratic variation result (35), it is possible to complement the esti-

mate (36) as follows, cf. [26]. If {Ij} is an arbitrary collection of pairwise non-intersecting

intervals on [1, q], then

card

{∣

∣

∣

∣

S

(

a

q
, Ij

)∣

∣

∣

∣

≥ ε
√
q

}

≤ cε−2, ε > 0,

where card{·} denotes the number of elements of a (finite) set {·}, and c is an absolute
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positive constant. In particular

∑

j

∣

∣

∣

∣

S

(

a

q
, Ij

)
∣

∣

∣

∣

α

≤ cαq
α/2, α > 2,

where the factor cα depends only on α, and is finite for α > 2.

11. Some functional identities, and inequalities. The “imaginary heat transfer

kernel”

Γ(t, x) = p.v.

∫

R1

eπi(y2t+2yx) dy =

√

i

t
e−

πix2

t , t 6= 0,
√
i := e

πi
4

is the Green function for the Cauchy problem

(37)
∂ϕ

∂t
=

1

4πi

∂2ϕ

∂x2
, ϕ(f ; t, x)

∣

∣

∣

∣

t=0

= f(x) =

∫

R1

f̂(y)e2πiyx dy

with a general, not necessarily periodic, initial data f ; f̂ denotes the Fourier transform of

f on R1, and both f, f̂ can be understood in generalized sense, as tempered distributions.

Comparing two representations of the solution operator, via the convolution of f with

the Green function Γ, and the direct, via the Fourier separation of variables, one obtains,

cf. [27], the following general functional identity

(38) ϕ(f ; t, x) =

√

i

t
e−

πix2

t ϕ

(

f̂ ;−1

t
,−x

t

)

,
√
i := e

πi
4 .

This identity relates the solution ϕ(f̂) of the problem (37) with the solution of the same

problem, but posed for the Fourier transform f̂ as the initial data. It is of the well-known

type, of course, namely, a variant of the classical functional equation for the Jacobi elliptic

ϑ-function. If we take the periodic delta-function f =
∑

n∈Z δn as the initial data, then

f̂ ≡ f (the Poisson summation formula), and we obtain from (38) the following particular

functional identity

(39) Θ(t, x) =

√

i

t
e−

πix2

t Θ

(

−1

t
,−x

t

)

, Θ(t, x) :=
∑

n∈Z

eπi(n2t+2nx), t 6= 0.

This identity is meaningful only as a relation between two distributions, or generalized

functions. For fixed rational values of t = a
q , Θ as a function of x is “ atomic”, i.e. the

sum of Dirac’s δ-functions with the complex coefficients. In fact, (39) is equivalent to

the well-known identity of Genocchi and Schaar (see [14], pp. 226 – 227) for the bisected

Gauss sums
√

1

q

q
∑

n=1

e
πian2

q =

√

i

a

a
∑

m=1

e−
πiqn2

a , a, q ∈ N1, (a, q) = 1, a− q ≡ 1 (mod 2).

An integration of both sides of (39) in the variable x results in a pointwise functional

identity for the values of the function

h(t, x) := H

(

t

2
, x

)

= p.v.
∑

n∈Z\{0}

eπi(n2t+2nx)

2πin
.
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As a conclusion, it was shown in [27] that the following functional inequality is valid for

the function h:

(40) |h(t, x)| ≤
√
t

∣

∣

∣

∣

h

(

1

t
,
x

t

)
∣

∣

∣

∣

+ c, (t, x) ∈ �0 := (0, 1) ×
[

−1

2
,
1

2

]

,

where c is an absolute constant. One has h(t+ 1, x) ≡ h(t, x+ 1/2); h(t, x+ 1) ≡ h(t, x).

Therefore, representing 1
t as 1

t =
[

1
t

]

+ τ, τ :=
{

1
t

}

, one can iterate (40), keeping the

new variables (τ, ξ) under control, i.e. in the rectangle �0. This “dynamical process”

of iterations of (40) results in an alternative proof that H ∈ L∞(R2), and let us note

that in this approach, almost all number-theoretical complications are eliminated. Let us

also note that the idea of utilizing iterations of functional identities, or the approximate

identities in the study of Θ appears in many places in the papers of Hardy and Littlewood

[14], [15]. In particular, they established the following approximate functional equation

for the partial sums of Θ:

Θn(t, x) =

√

i

t
e−

πix2

t Θ∗
nt

(

1

t
,
x

t

)

+O

(

1√
t

)

, Θn(t, x) :=
∑

1≤ν≤n

e2πi(ν2t+2nx).

Finally, let us note that the density ρ(f) also satisfies the functional equation

ρ(f, t, x) =
1

2|t|ρ
(

f̂ ,− 1

2t
,− x

2t

)

which is the corollary of (38).

However, it seems more interesting to look on the density as the trace of the solution

R(t, x, y)|y=0 of the Cauchy initial value problem of the following bivariate Schrödinger

type equation:

(41)
∂R

∂t
=

1

2πi

∂2R

∂x∂y
, R(F, t, x, y)

∣

∣

∣

∣

t=0

= F (x, y) := f(x+ y)f∗(x− y).

The solution R of this problem for a general F via the Fourier method of separation of

variables is given by the double oscillatory integral (or sum, if the initial data function

F is bi-periodic) with the hyperbolic phase

R(F, t, x, y) =

∫

R2

F̂ (ξ, η)e2πi(ξηt+ξx+ηy) dξdη, F̂ (ξ, η) =

∫

R2

F (x, y)e−2πi(ξx+ηy) dxdy,

and the Green function is

G(t, x, y) =
e−

2πixy
t

|t| .

The analog of the functional identity (38) for the solution operator R is the following:

R(F, (t, x, y)) =
e−

2πixy
t

|t| R

(

F̂ ,−1

t
(1, y, x)

)

.

If the bivariate initial data function F is periodic in both variables x, y, of period = 1,

the (generalized) solution of the problem (41) is represented by the double trigonometric

series with the hyperbolic phase

R(F, t, x, y) =
∑

(n,m)∈Z2

F̂n,m e2πi(nmt+nx+my).
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Not too much is known concerning the properties of the sums of such series, nor their

convergence in non-trivial cases. That the sums of such series are self-similar, has been

demonstrated above, by the elaboration of the case of the initial data F of the type

F (x, y) = f(x+ y)f∗(x− y), F̂n,m = f̂n+m
2
f̂∗n−m

2

,

and the trace of the solution R(f, t, x, y)|y=0 is the density function ρ(f, t, x). St. Jaffard

[20] studied the convergence, and the multi-fractal properties of the sums, of an interesting

class of Davenport expansions. The latter are the series of the type
∑

n an({nt} − 1/2),

where as above, we keep the notation {·} for the fractional part function. Such series first

appeared in the works of H. Davenport [11], [12]. One can also look on the Davenport

expansions as the traces R(t, x, y)|x=y=0 of the solution R of the Cauchy problem (41)

for the initial data function F of the separable type

F (x, y) = A(x)

(

{y} − 1

2

)

, A(x) :=
∑

n

ane
2πinx, F̂n,m =

an

2πim
, m 6= 0.

In a recent paper [29], the author studied the convergence of the double trigonometric

series

C1(t) :=
∑

(n,m)∈N2

sin 2πnmt

πnm
, C2(t) :=

∑

(n,m)∈N2

cos 2πnmt

πnm
.

These series are also traces of the R-function. The convergence sets, in a rather wide

understanding of the summation process over expanding families of the domains on N2,

coincides, respectively, with the convergence sets of the univariate series

Ξ1(t) :=

∞
∑

j=0

(−1)j ln qj+1

qj
, Ξ2(t) :=

∞
∑

j=0

ln2 qj+1

qj
,

where qj = qj(t) denotes the denominator of the jth convergent fraction
aj

qj
of a given real

t, see (24). Such recursive series, defined by the continued fraction of t, were introduced

by J. R. Wilton [39]. Wilton established in terms of Ξ1, Ξ2 the full characterization of

the convergence sets of the series

∞
∑

n=1

d(n) sin 2πnt

πn
,

∞
∑

n=1

d(n) cos 2πnt

πn
,

where d(n) =
∑

m|n 1 denotes the divisor function. The latter univariate series correspond

to the summation of the the double series C1, C2 over expanding families of hyperbolic

crosses on N2. A further development of Wilton’s result is contained in a recent paper of

R. de la Bretèche and G. Tenenbaum [7]. The author of the present paper is indebted to

G. Tenenbaum for bringing up the reference [39].
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[32] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987),

699–715.

[33] E. M. Stein and S. Wainger. The estimation of an integral arising in multiplier transfor-

mations, Studia Math. 35 (1970), 101–104.

[34] E. M. Stein and S. Wainger, Discrete analogs of singular Radon transforms, Bull. Amer.

Math. Soc. 23 (1990), 537–544.

[35] W. H. F. Talbot, Facts relating to optical sciences. IV, Philosophical Magazine 9 (1838),

401–407.

[36] P. L. Ul’yanov, Some problems in the theory of orthogonal and biorthogonal series, Izv.

Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekhn. Mat. Nauk (1965), no. 6, 11–13.

[37] I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory, 2nd ed., Nauka,

Moscow, 1980; English transl. in his Selected Works, Springer-Verlag, 1985.
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