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Abstract. We present three new identities in law for quadratic functionals of conditioned bi-

variate Gaussian processes. In particular, our results provide a two-parameter generalization of

a celebrated identity in law, involving the path variance of a Brownian bridge, due to Wat-

son (1961). The proof is based on ideas from a recent note by J.-R. Pycke (2005) and on the

stochastic Fubini theorem for general Gaussian measures proved in Deheuvels et al. (2004).

1. Introduction. Let b(s), s ∈ [0, 1], be a standard Brownian bridge on [0, 1], from 0

to 0, and let b1 and b2 be two independent copies of b. The aim of this note is to prove

several bivariate generalizations of the following identity in law for the path variance of b,
∫ 1

0

(

b(s) −
∫ 1

0

b(u)du

)2

ds
law
=

1

4

∫ 1

0

[b1(s)
2 + b2(s)

2]ds, (1)

known as Watson’s (duplication) identity (see [12]; the reader is also referred to [9] for

a detailed probabilistic discussion of (1)). More specifically, our aim is to establish a

result analogous to (1) for the path variance of a bivariate tied-down Brownian bridge B0

on [0, 1]2, i.e. a process having the law of a standard Brownian sheet W conditioned to
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vanish on the edges of the square [0, 1]2. As discussed below, our bivariate generalizations

of (1) involve four different types of “bridges” naturally attached to a given Brownian

sheet W. These four processes, along with the laws of their quadratic functionals, have

been recently studied in [1].

The proof of our main result uses extensively the general stochastic Fubini theorem,

for quadratic functionals of Gaussian processes, proved in [1] (but see also [3]), and has

been inspired by the strikingly simple proof of Watson’s identity given in [6] (see also

the discussion contained in [7]). Such a proof is mainly based on a decomposition of

the path of the random function t 7→ b(t) into the orthogonal sum of its symmetric and

antisymmetric parts, around the value t = 1/2. We will see how this kind of decomposition

can be naturally extended in the framework of bivariate functions.

The present paper is organized as follows. In Section 2 we introduce some notation.

In Section 3, we state a version of the stochastic Fubini Theorem which is well adapted

to the framework of this paper and we provide an alternative proof of such a result,

based on the calculation of cumulants for double Wiener integrals. In Section 4 the main

Theorem is stated and proved. Eventually, in Section 5 we apply our results to calculate:

(a) the explicit Laplace transform of some quadratic functionals of bivariate Gaussian

processes, and (b) the explicit Fourier transform of some double stochastic integrals with

respect to conditioned bivariate processes. This completes some of the results obtained

in [1] and [4].

2. General notation. For the rest of the paper, we will study Gaussian processes which

may be expressed as suitable transformations of a standard Brownian motion or of a

standard Brownian sheet. In particular, we will adopt the following notation:

– W = {W (t) : t ∈ [0, 1]} is a standard Brownian motion on [0, 1], initialized at 0;

– b = {b(t) : t ∈ [0, 1]} is a standard Brownian bridge on [0, 1], from 0 to 0;

– W ={W(t1, t2) : (t1, t2) ∈ [0, 1]2} is a standard Brownian sheet on [0, 1]2 vanishing

on the axes, that is, W is a centered Gaussian process such that, for every (t1, t2),

(s1, s2) ∈ [0, 1]2,

E[W(t1, t2)W(s1, s2)] = (t1 ∧ s1) × (t2 ∧ s2);

– B(W) = {B(W)(t1, t2) : (t1, t2) ∈ [0, 1]2} is the canonical bivariate Brownian bridge

associated to W, i.e.

B(W)(t1, t2) = W(t1, t2) − t1t2W(1, 1);

– B
(W)
0 = {B(W)

0 (t1, t2) : (t1, t2) ∈ [0, 1]2} is the canonical bivariate tied down Brown-

ian bridge associated to W, i.e.

B
(W)
0 (t1, t2) = W(t1, t2) − t1W(1, t2) − t2W(t1, 1) + t1t2W(1, 1);

– K(W,i) = {K(W,i)(t1, t2) : (t1, t2) ∈ [0, 1]2}, i = 1, 2, are the two canonical Kiefer

fields (or asymmetric bivariate bridges) associated to W, i.e.

K(W,1)(t1, t2) = W(t1, t2) − t1W(1, t2),

K(W,2)(t1, t2) = W(t1, t2) − t2W(t1, 1).
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We assume that all the previous processes are defined on the same probability space

(Ω,F , P).

Remarks. (i) Conditionally on the event {W(1, 1) = 0}, W is distributed as the un-

conditioned process B(W). Moreover, for every (t1, t2), (s1, s2) ∈ [0, 1]2,

E[B(W)(t1, t2)B
(W)(s1, s2)] = (t1 ∧ s1) × (t2 ∧ s2) − t1s1t2s2. (2)

(ii) Conditionally on the event {W(1, t) = W(t, 1) = 0, ∀t ∈ [0, 1]}, W is distributed

as the unconditioned process B
(W)
0 . In particular, for (t1, t2), (s1, s2) ∈ [0, 1]2,

E[B
(W)
0 (t1, t2)B

(W)
0 (s1, s2)] = E[b(t1)b(s1)] × E[b(t2)b(s2)] (3)

= (t1 ∧ s1 − t1s1) × (t2 ∧ s2 − t2s2).

(iii) Conditionally on {W(1, t) = 0, ∀t ∈ [0, 1]}, W is distributed as the unconditioned

process K(W,1), and moreover, for (t1, t2), (s1, s2) ∈ [0, 1]2,

E[K(W,1)(t1, t2)K
(W,1)(s1, s2)] = E[b(t1)b(s1)] × E[W (t2)W (s2)] (4)

= (t1 ∧ s1 − t1s1) × (t2 ∧ s2).

(iv) Conditionally on {W(t, 1) = 0, ∀t ∈ [0, 1]}, W is distributed as the unconditioned

process K(W,2), and moreover, for (t1, t2), (s1, s2) ∈ [0, 1]2,

E[K(W,2)(t1, t2)K
(W,2)(s1, s2)] = E[W (t1)W (s1)] × E[b(t2)b(s2)] (5)

= (t1 ∧ s1) × (t2 ∧ s2 − t2s2).

3. Stochastic Fubini identities. The following stochastic Fubini identity (8) will be

useful for the proof of our main results. As shown in [3] and [1], stochastic Fubini identities

for general Gaussian measures can be easily proved by means of a Laplace transform

argument. Here, we shall present an alternative proof, which is based on the so called

diagram formulae (see e.g. [11]) for the cumulants of double Wiener integrals. Note that,

in what follows, we will write dλm, m ≥ 1, to indicate Lebesgue measure on ℜm.

Theorem 1 (Stochastic Fubini Theorem). Under the above assumptions and notation,

for every φ ∈ L2([0, 1]4, dλ4) there exist two measurable random functions
{

∫

[0,1]2
φ(t1, t2, x1, x2)W(dx1, dx2) : (t1, t2) ∈ [0, 1]2

}

(6)

and
{

∫

[0,1]2
φ(x1, x2, t1, t2)W(dx1, dx2) : (t1, t2) ∈ [0, 1]2

}

. (7)

Moreover, the following distributional identity holds:

∫

[0,1]2

[
∫

[0,1]2
φ(t1, t2, x1, x2)W(dx1, dx2)

]2

dt1dt2

law
=

∫

[0,1]2

[
∫

[0,1]2
φ(x1, x2, t1, t2)W(dx1, dx2)

]2

dt1dt2. (8)
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Proof. The existence of the two measurable random functions (6) and (7) follows from

standard arguments. To obtain (8), start by defining the two kernels (contractions) on

L2([0, 1]4)

Φ1(t1, t2; s1, s2) =

∫

[0,1]2
dx1dx2φ(x1, x2, t1, t2)φ(x1, x2, s1, s2),

Φ2(t1, t2; s1, s2) =

∫

[0,1]2
dx1dx2φ(t1, t2, x1, x2)φ(s1, s2, x1, x2).

Then, a simple application of the multiplication formula for Wiener integrals (see for

instance [2, p. 211]) shows that

∫

[0,1]2

[
∫

[0,1]2
φ(t1, t2, x1, x2)W(dx1, dx2)

]2

dt1dt2 = ‖φ‖2
+ IW

2 (Φ1),

∫

[0,1]2

[
∫

[0,1]2
φ(x1, x2, t1, t2)W(dx1, dx2)

]2

dt1dt2 = ‖φ‖2
+ IW

2 (Φ2),

(9)

where IW
2 (·) stands for a standard double Wiener integral with respect to W (see again

[2]). Now define χm(Y ), m ≥ 1, to be the m-th cumulant of a given real valued random

variable Y (see e.g. [11]). We recall that the law of a double Wiener integral is determined

by its cumulants (see e.g. [10]). Moreover, we can apply the well known diagram formulae

for cumulants of multiple stochastic integrals (as presented, for instance, in [8, Proposition

9 and Corollary 1]) to obtain that for every m ≥ 2 there exists a combinatorial coefficient

cm > 0 (independent of φ) such that

χm(IW

2 (Φ1)) = cm

∫

[0,1]2m

(dλ2)⊗m Φ1(x
(1)
1 , x

(1)
2 ;x

(2)
1 , x

(2)
2 )

×Φ1(x
(2)
1 , x

(2)
2 ;x

(3)
1 , x

(3)
2 ) × · · · × Φ1(x

(m)
1 , x

(m)
2 ;x

(1)
1 , x

(1)
2 )

= cm

∫

[0,1]2m

(dλ2)⊗m Φ2(x
(1)
1 , x

(1)
2 ;x

(2)
1 , x

(2)
2 )

×Φ2(x
(2)
1 , x

(2)
2 ;x

(3)
1 , x

(3)
2 ) × · · · × Φ2(x

(m)
1 , x

(m)
2 ;x

(1)
1 , x

(1)
2 )

= χm(IW

2 (Φ2)), (10)

where the second equality can be proved by using a standard (deterministic) Fubini

theorem, as well as the definition of Φ1 and Φ2. Since (10) holds for every m, we obtain

that IW

2 (Φ1)
law
= IW

2 (Φ2), and the proof of (8) is therefore concluded, due to (9).

As shown in [1], by specializing (8) to the kernels

φ(1)(t1, t2;x1, x2) = 1[0,t1](x1)1[0,t2](x2) − t1t2,

φ(2)(t1, t2;x1, x2) = 1[0,t1](x1)1[0,t2](x2) − t11[0,t2](x2) − t21[0,t1](x1) + t1t2,

φ(3)(t1, t2;x1, x2) = 1[0,t1](x1)1[0,t2](x2) − t11[0,t2](x2),

φ(4)(t1, t2;x1, x2) = 1[0,t1](x1)1[0,t2](x2) − t21[0,t1](x1),

we obtain the following
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Corollary 2. Let the above notation and assumptions hold. Then,
∫

[0,1]2
B(W)(t1, t2)

2dt1dt2
law
=

∫

[0,1]2

[

W(t1, t2) −
∫

[0,1]2
W(u1, u2)du1du2

]2

dt1dt2, (11)

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2
law
=

∫

[0,1]2

[

W(t1, t2) −
∫

[0,1]

W(t1, u2)du2

−
∫

[0,1]

W(u1, t2)du1 +

∫

[0,1]2
W(u1, u2)du1du2

]2

dt1dt2, (12)

∫

[0,1]2
K(W,1)(t1, t2)

2dt1dt2
law
=

∫

[0,1]2

[

W(t1, t2) −
∫

[0,1]

W(u1, t2)du1

]2

dt1dt2, (13)

∫

[0,1]2
K(W,2)(t1, t2)

2dt1dt2
law
=

∫

[0,1]2

[

W(t1, t2) −
∫

[0,1]

W(t1, u2)du2

]2

dt1dt2. (14)

4. Bivariate Watson’s identities

4.1. Main results. The next Theorem, which contains the announced bivariate versions

of Watson’s duplication identity (1), is the main result of the section. Note that each

of the three parts of the statement involves a different notion of path variance for the

process B
(W)
0 .

Theorem 3. Let W be a standard Brownian sheet on [0, 1]2, and let Wi, i = 1, 2, 3, 4,

be four independent copies of W. Then,

1.
∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2)du1du2

]2

dt1dt2

law
=

1

16

∫

[0,1]2
[B(W1)(t1,t2)

2+K(W2,1)(t1,t2)
2+K(W3,2)(t1,t2)

2+B
(W4)
0 (t1,t2)

2]dt1dt2.

2.
∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2)du2

]2

dt1dt2

law
=

1

4

∫

[0,1]2
[B

(W1)
0 (t1, t2)

2 + B
(W2)
0 (t1, t2)

2]dt1dt2.

3.
∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2)du2

−
∫ 1

0

B
(W)
0 (u1, t2)du1 +

∫

[0,1]2
B

(W)
0 (u1, u2)du1du2

]2

dt1dt2

law
=

1

16

∫

[0,1]2

4
∑

i=1

B
(Wi)
0 (t1, t2)

2dt1dt2.
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As anticipated, our proof of the above results is inspired by a proof of (1) recently

given by J.-R. Pycke in [6], where the author uses a decomposition of the elements of

L2([0, 1], dx) = L2([0, 1]) into the orthogonal sum of a symmetric and an antisymmetric

function, around the value x = 1/2. Before proving Theorem 3, we shall discuss in some

detail the content of [6].

To this end, define for any f ∈ L2([0, 1]) the two operators

Sf(x) =
1

2
(f(x) + f(1 − x)) and Af(x) =

1

2
(f(x) − f(1 − x)), x ∈ [0, 1],

and observe that f(x) = (A + S)f(x), Sf(x) = Sf(1 − x) and Af(x) = −Af(1 − x).

Moreover, for any f, g ∈ L2([0, 1]),
∫ 1

0

Af(x)Sg(x)dx = 0. (15)

Note also that if f is constant, then Sf = f and Af = 0.

Remark. Let Hs be the closed subspace of L2([0, 1]) generated by functions f satisfying

f(x) = f(1− x) for almost every x, and let Ha be the subspace generated by functions g

such that g(x) = −g(1 − x) for almost every x. Then, (15) implies that Hs ⊥ Ha, where

⊥ indicates orthogonality in L2([0, 1]), and also L2([0, 1]) = Hs ⊕Ha. Moreover for every

f ∈ L2([0, 1]), Sf and Af equal, respectively, the orthogonal projection of f on Hs, and

the orthogonal projection of f on Ha.

The next Lemma is proved in [6], and is based on a simple computation of covariances.

Lemma 4. Let b be a standard Brownian bridge on [0, 1], from 0 to 0. Then, the two

processes

Ab =

{

Ab(t) : t ∈
[

0,
1

2

]}

and Sb =

{

Sb(t) : t ∈
[

0,
1

2

]}

are stochastically independent, and moreover

Ab
law
=

{

b(2t)

2
: t ∈

[

0,
1

2

]}

and Sb
law
=

{

W (2t)

2
: t ∈

[

0,
1

2

]}

. (16)

Lemma 4 yields an immediate proof of Watson’s duplication identity (1). As a matter

of fact, one can write, due to (15) and symmetry,
∫ 1

0

(

b(s) −
∫ 1

0

b(u)du

)2

= 2

∫ 1

2

0

[(

Sb(t) − 2

∫ 1

2

0

Sb(u)du

)2

+ (Ab(t))2
]

dt,

and then use the relations

2

∫ 1

2

0

(Ab(t))2dt
law
=

1

2

∫ 1

2

0

b(2t)2dt =
1

4

∫ 1

0

b(v)2dv

where the identity in law stems from the first part of (16), and

2

∫ 1

2

0

(

Sb(t) − 2

∫ 1

2

0

Sb(u)du

)2

dt
law
=

1

2

∫ 1

2

0

(

W (2t) − 2

∫ 1

2

0

W (2u)du

)2

dt

=
1

4

∫ 1

0

(

W (v) −
∫ 1

0

W (z)dz

)2

dv
law
=

1

4

∫ 1

0

b(v)2dv
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where the first identity in law derives again from (16), and the second follows from a

stochastic Fubini identity such as the one proved e.g. in [3].

In the next subsection we show that the content of Lemma 4 provides some key

elements to achieve the proof of Theorem 3.

4.2. Proof of Theorem 3. To prove Theorem 3 we start by defining, for every function

F on [0, 1]2, the four operators

S1F (x1, x2) =
1

2
[F (x1, x2) + F (1 − x1, x2)],

S2F (x1, x2) =
1

2
[F (x1, x2) + F (x1, 1 − x2)],

A1F (x1, x2) =
1

2
[F (x1, x2) − F (1 − x1, x2)],

A2F (x1, x2) =
1

2
[F (x1, x2) − F (x1, 1 − x2)],

(17)

where (x1, x2) ∈ [0, 1]2, as well as

T (1)F (x1, x2) = S1S2F (x1, x2) = S2S1F (x1, x2),

T (2)F (x1, x2) = S1A2F (x1, x2) = A2S1F (x1, x2),

T (3)F (x1, x2) = A1S2F (x1, x2) = S2A1F (x1, x2),

T (4)F (x1, x2) = A1A2F (x1, x2) = A2A1F (x1, x2).

(18)

Note that F =
∑

i=1,...,4 T (i)F , and also note the following symmetric and antisym-

metric properties: for every (x1, x2) ∈ [0, 1]2,

T (1)F (x1, x2) = T (1)F (1 − x1, x2) = T (1)F (x1, 1 − x2),

T (2)F (x1, x2) = T (2)F (1 − x1, x2) = −T (2)F (x1, 1 − x2),

T (3)F (x1, x2) = −T (3)F (1 − x1, x2) = T (3)F (x1, 1 − x2),

T (4)F (x1, x2) = −T (4)F (1 − x1, x2) = −T (4)F (x1, 1 − x2).

This implies that, if F is constant, then T (1)F = F , and T (i)F = 0 for each i =

2, 3, 4. By using (15) we have moreover that, for i 6= j and F,G ∈ L2([0, 1]2, dx1dx2) =

L2([0, 1]2),
∫

[0,1]2
T (i)F (x1, x2)T

(j)G(x1, x2)dx1dx2 = 0,

so that
∫

[0,1]2
F (x1, x2)

2dx1dx2 = 4

4
∑

i=1

∫

[0, 1

2
]2

T (i)F (x1, x2)
2dx1dx2. (19)

Remark. Let us introduce four closed subspaces of L2([0, 1]2): (i) H(1) is the space

generated by functions that are symmetric around the two axes x1 = 1/2 and x2 = 1/2;

(ii) H(2) is the space generated by functions that are symmetric around the axis x1 = 1/2

and antisymmetric around x2 = 1/2; (iii) H(3) is the space generated by functions F that

are antisymmetric around x1 = 1/2 and symmetric around x2 = 1/2; (iv) H(4) is the

space generated by functions F that are antisymmetric around the two axes x1 = 1/2
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and x2 = 1/2. Then, the above relations imply that such spaces are mutually orthogonal

in L2([0, 1]2), and L2([0, 1]2) = ⊕iH
(i). Moreover, for i = 1, ..., 4, T (i), as defined in (18),

coincides with the orthogonal projection operator on H(i). To conclude, observe that, by

using standard tensor product notation

H(1) = Hs ⊗ Hs, H(2) = Hs ⊗ Ha,

H(3) = Ha ⊗ Hs, H(4) = Ha ⊗ Ha,

so that L2([0, 1]2) = (Hs ⊕ Ha) ⊗ (Hs ⊕ Ha), where the spaces Hs, Ha ⊂ L2([0, 1]) have

been defined in the previous subsection.

4.3. Proof of part 1. An easy calculation of covariances, based on the product formula

(3) and Lemma 4, implies that the two bivariate processes

{A1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]}

and {S1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]}

are stochastically independent, and an analogous conclusion holds for the two processes

{A2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]}

and {S2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]}.

This entails immediately that the four (jointly) Gaussian processes

{T (i)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2}, i = 1, ..., 4,

are mutually independent. Now, by applying (19) to the random continuous function

(t1, t2) 7→ B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2)du1du2

we obtain, thanks to symmetry,

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
du1du2B

(W)
0 (u1, u2)

]2

dt1dt2

= 4

∫

[0, 1

2
]2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1

2
]2

T (1)B
(W)
0 (u1, u2)du1du2

]2

dt1dt2

+ 4
4

∑

i=2

∫

[0, 1

2
]2

T (i)B
(W)
0 (t1, t2)

2dt1dt2.

Since for any Brownian sheet W

K(W,1)(t2, t1)
law
= K(W,2)(t1, t2)

where the identity holds for the two processes as a whole, the proof of Theorem 3 is

achieved once the following three identities in law are shown,

4

∫

[0, 1

2
]2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1

2
]2

T (1)B
(W)
0 (u1, u2)du1du2

]2

dt1dt2

law
=

1

16

∫

[0,1]2
B(W)(t1, t2)

2dt1dt2, (20)
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4

∫

[0, 1

2
]2

T (2)B
(W)
0 (t1, t2)

2dt1dt2
law
=

1

16

∫

[0,1]2
K(W,1)(t1, t2)

2dt1dt2,

law
= 4

∫

[0, 1

2
]2

T (3)B
(W)
0 (t1, t2)

2dt1dt2, (21)

4

∫

[0, 1

2
]2

T (4)B
(W)
0 (t1, t2)

2dt1dt2
law
=

1

16

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2. (22)

To prove (20), just observe that Lemma 4 and (5) entail

{S1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]}

law
= {2− 1

2 K(W,2)(t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]} (23)

and therefore

{T (1)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2} law

= {2−1W(t1, t2) : (t1, t2) ∈ [0, 1/2]2} (24)

so that

4

∫

[0, 1

2
]2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1

2
]2

T (1)B
(W)
0 (u1, u2)du1du2

]2

dt1dt2

law
=

∫

[0, 1

2
]2

[

W(t1, t2) − 4

∫

[0, 1

2
]2

W(u1, u2)du1du2

]2

dt1dt2

law
=

1

4

∫

[0, 1

2
]2

[

W(2t1, 2t2) − 4

∫

[0, 1

2
]2

W(2u1, 2u2)du1du2

]2

dt1dt2

=
1

16

∫

[0,1]2

[

W(s1, s2) −
∫

[0,1]2
W(v1, v2)dv1dv2

]2

ds1ds2

law
=

1

16

∫

[0,1]2
B(W)(s1, s2)

2ds1ds2

where the last equality is a consequence of a stochastic Fubini theorem, and namely of

relation (11) in the statement of Corollary 2.

To prove (21), we use (23), (5) and Lemma 4 to obtain that

{T (2)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2} law

= {2− 3

2 K(W,2)(t1, 2t2) : (t1, t2) ∈ [0, 1/2]2}
and eventually

4

∫

[0, 1

2
]2

T (2)B
(W)
0 (t1, t2)

2dt1dt2
law
=

1

2

∫

[0, 1

2
]2

K(W,2)(t1, 2t2)
2dt1dt2

law
=

1

4

∫

[0, 1

2
]2

K(W,2)(2t1, 2t2)
2dt1dt2 =

1

16

∫

[0,1]2
K(W,2)(u1, u2)

2du1du2.

The case of T (3) can be treated analogously by using (4). To conclude, we note that

{A1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]}

law
= {2−1B

(W)
0 (2t1, t2) : (t1, t2) ∈ [0, 1/2] × [0, 1]}
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and therefore

{T (4)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2} law

= {2−2B
(W)
0 (2t1, 2t2) : (t1, t2) ∈ [0, 1/2]2},

so that

4

∫

[0, 1

2
]2

T (4)B
(W)
0 (t1, t2)

2dt1dt2
law
=

1

4

∫

[0, 1

2
]2

B
(W)
0 (2t1, 2t2)

2dt1dt2

=
1

16

∫

[0,1]2
B

(W)
0 (u1, u2)

2du1du2.

4.4. Proof of part 2. We write

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2)du2

= S2B
(W)
0 (t1, t2) −

∫ 1

0

S2B
(W)
0 (t1, u2)du2 + A2B

(W)
0 (t1, t2),

where the operators S2 and A2 are defined in (17). Since S2 = T (1) + T (3) and A2 =

T (2) + T (4), we can use orthogonality and symmetry to obtain

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2)du2

]2

dt1dt2

=

∫

[0,1]2

[

S2B
(W)
0 (t1, t2) −

∫ 1

0

S2B
(W)
0 (t1, u2)du2

]2

dt1dt2

+

∫

[0,1]2
A2B

(W)
0 (t1, t2)

2dt1dt2

= 2

∫

[0,1]×[0,1/2]

[

S2B
(W)
0 (t1, t2) − 2

∫ 1

2

0

S2B
(W)
0 (t1, u2)du2

]2

dt1dt2

+ 2

∫

[0,1]×[0,1/2]

A2B
(W)
0 (t1, t2)

2dt1dt2.

We already know that the restrictions to [0, 1]× [0, 1/2] of the two processes S2B
(W)
0

and A2B
(W)
0 are stochastically independent. Moreover Lemma 4 and (4) imply the two

relations

{S2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]}

law
= {2− 1

2 K(W,1)(t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]},
{A2B

(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]}

law
= {2−1B

(W)
0 (t1, 2t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]}. (25)

As a consequence, we obtain

2

∫

[0,1]×[0,1/2]

A2B
(W)
0 (t1, t2)

2dt1dt2
law
=

1

2

∫

[0,1]×[0,1/2]

B
(W)
0 (t1, 2t2)

2dt1dt2

=
1

4

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2.
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To conclude the proof, use the first part of (25) and scaling to obtain

2

∫

[0,1]×[0,1/2]

[

S2B
(W)
0 (t1, t2) − 2

∫ 1

2

0

S2B
(W)
0 (t1, u2)du2

]2

dt1dt2

law
=

1

2

∫

[0,1]×[0,1/2]

[

K(W,1)(t1, 2t2) − 2

∫ 1

2

0

K(W,1)(t1, 2u2)du2

]2

dt1dt2

=
1

4

∫

[0,1]2

[

K(W,1)(t1, t2) −
∫ 1

0

K(W,1)(t1, u2)du2

]2

dt1dt2.

Now define {λi, fi : i ≥ 1} and {γi, gi : i ≥ 1} to be the sequences of eigenvalues and

eigenfunctions of the Hilbert-Schmidt operators associated to the covariance function,

respectively of t 7→ b(t), and of

t 7→ Z(t) := W (t) −
∫ 1

0

W (z)dz.

It is well known (see e.g. [5]) that there exist two sequences {ξi : i ≥ 1} and {ζi : i ≥ 1}
of i.i.d. standard Gaussian random variables such that the Karhunen-Loève expansions

of b and Z are respectively given by

b(t) =
∑

i≥1

ξi

√

λifi(t) and Z(t) =
∑

i≥1

ζi
√

γigi(t),

and moreover (see [3]) γi = λi for every i ≥ 1. Since (4) implies that, for every (t1, t2),

(s1, s2) ∈ [0, 1]2,

E

[(

K(W,1)(t1, t2) −
∫ 1

0

K(W,1)(t1, u2)du2

)(

K(W,1)(s1, s2) −
∫ 1

0

K(W,1)(s1, u2)du2

)]

= E[b(t1)b(s1)] × E

[(

W (t2) −
∫ 1

0

W (z)dz

)(

W (s2) −
∫ 1

0

W (z)dz

)]

we conclude immediately (by using, for instance, [1, Lemma 4.1]) that the Karhunen-

Loève expansion of the bivariate Gaussian process

Z(s, t) = K(W,1)(s, t) −
∫ 1

0

K(W,1)(s, u)du

is given by

Z(s, t) =
∑

i,j≥1

√

λiλjθijfi(s)gi(t),

where {θij : i, j ≥ 1} is an array of i.i.d. standard Gaussian random variables. This last

relation entails that

1

4

∫

[0,1]2

[

K(W,1)(t1, t2) −
∫ 1

0

K(W,1)(t1, u2)du2

]2

dt1dt2

=
1

4

∑

i≥1

λi

∑

j≥1

λjθ
2
ij

law
=

1

4

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2. (26)
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To justify the last equality in law, just observe that, thanks again to [1, Lemma 4.1]

and formula (3), the Karhunen-Loève expansion of B0 is given by
∑

i,j≥1

√

λiλjηijgi(s)gi(t)

where {ηij : i, j ≥ 1} is an array of i.i.d. standard Gaussian random variables (the reader

is referred to [1] for a detailed discussion of Karhunen-Loève expansions for bivariate

Gaussian processes).

4.5. Proof of part 3. We first observe that

0 = T (2)

∫ 1

0

B
(W)
0 (t1, u2)du2 = T (4)

∫ 1

0

B
(W)
0 (t1, u2)du2

= T (3)

∫ 1

0

B
(W)
0 (u1, t2)du1 = T (4)

∫ 1

0

B
(W)
0 (u1, t2)du1

= T (i)

∫ 1

0

B
(W)
0 (u1, u2)du1du2, i = 2, 3, 4,

and

T (i)

∫ 1

0

B
(W)
0 (u1, t2)du1 =

∫ 1

0

T (i)B
(W)
0 (u1, t2)du1, i = 1, 2,

T (j)

∫ 1

0

B
(W)
0 (t1, u2)du2 =

∫ 1

0

T (j)B
(W)
0 (t1, u2)du2, j = 1, 3.

As a consequence, by orthogonality and symmetry,

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2)du2

−
∫ 1

0

B
(W)
0 (u1, t2)du1 +

∫

[0, 1

2
]2

B
(W)
0 (u1, u2)du1du2

]2

dt1dt2

= 4

∫

[0, 1

2
]2

[

T (1)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (1)B
(W)
0 (t1, u2)du2

− 2

∫ 1

2

0

T (1)B
(W)
0 (u1, t2)du1 + 4

∫

[0, 1

2
]2

T (1)B
(W)
0 (u1, u2)du1du2

]2

dt1dt2

+ 4

∫

[0, 1

2
]2

[

T (2)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (2)B
(W)
0 (u1, t2)du1

]2

dt1dt2

+ 4

∫

[0, 1

2
]2

[

T (3)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (3)B
(W)
0 (t1, u2)du2

]2

dt1dt2

+ 4

∫

[0, 1

2
]2

[

T (4)B
(W)
0 (t1, t2)

]2

dt1dt2

def
= Q1 + Q2 + Q3 + Q4.
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Since we know, thanks to the previous discussion, that the Qi’s are mutually inde-

pendent, it is now sufficient to show that, for i = 1, ..., 4,

Qi
law
=

1

16

∫

[0,1]2
B

(Wi)
0 (t1, t2)

2dt1dt2. (27)

We start with Q2 (by symmetry, the case of Q3 is handled analogously), and recall

that we have already proved that

Qi
law
=

1

4

∫

[0, 1

2
]2

[

K(W,2)(2t1, 2t2) − 2

∫ 1

2

0

K(W,2)(2u1, 2t2)du1

]2

dt1dt2

=
1

16

∫

[0,1]2

[

K(W,2)(v1, v2) −
∫ 1

0

K(W,2)(z, v2)dz

]2

dv1dv2

so that (27) in the case i = 2, 3 derives immediately from (26). Since we have proved (27)

for i = 4 (to obtain part 1 of Theorem 3) we are now left with the case i = 1.

To see that (27) holds also in this case, use (24) to write, after a standard change of

variables,

Q1
law
=

1

16

∫

[0,1]2

[

W(t1, t2) −
∫ 1

0

W(t1, u2)du2

−
∫ 1

0

W(u1, t2)du1 +

∫

[0,1]2
W(u1, u2)du1du2

]2

dt1dt2

and then apply relation (12) in Corollary 2.

Remark. Note that the techniques used for the proof of Therorem 3 could be also applied

to the case of general n-variate Gaussian processes, for n > 2.

5. Application: Fourier transforms of double Wiener integrals with respect

to conditioned Gaussian processes. Let the above notation hold, and let W1 and

W2 be two independent Brownian sheets. In this section, we are interested in finding the

explicit Fourier transform of the three double Wiener integrals

I =

∫

[0,1]2
B

(W1)
0 (t1, t2)B

(W2)(dt1, dt2)

=

∫

[0,1]2
[B

(W1)
0 (t1, t2) −

∫

[0,1]2
B

(W1)
0 (u1, u2)du1du2]B

(W2)(dt1, dt2);

J =

∫

[0,1]2
B

(W1)
0 (t1, t2)K

(W2,2)(dt1, dt2)

=

∫

[0,1]2
[B

(W1)
0 (t1, t2) −

∫

[0,1]2
B

(W1)
0 (t1, u2)du2]K

(W2,2)(dt1, dt2);

Y =

∫

[0,1]2
B

(W1)
0 (t1, t2)B

(W2)
0 (dt1, dt2)

=

∫

[0,1]2
[B

(W1)
0 (t1, t2) −

∫ 1

0

B
(W1)
0 (t1, u2)du2

−
∫ 1

0

B
(W1)
0 (u1, t2)du1 +

∫

[0,1]2
B

(W1)
0 (u1, u2)du1du2]B

(W2)
0 (dt1, dt2).
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We shall show that such computations can be made by means of Theorem 3. To this

end, we introduce some notation borrowed from [1]: for every a ∈ C,

1. C(a) =

∞
∏

j=1

cosh

(

a

jπ

)

;

2. Codd(a) =

∞
∏

j=0

cosh

[

a

(2j + 1)π

]

;

3. Ceven(a) =

∞
∏

j=1

cosh

[

a

2jπ

]

= C

(

a

2

)

;

4. S(a) =

∞
∏

j=1

[

πj sinh

(

a

πj

)

/a

]

;

5. Seven(a) =

∞
∏

j=1

[

π2j sinh

(

a

π2j

)

/a

]

= S(a/2);

6. Sodd(a) =
∞
∏

j=1

[

π(2j − 1) sinh

(

a

π(2j − 1)

)

/a

]

= C(a/2);

7. T (a) =
∞
∑

j=0

{

tanh

(

2a

(2j + 1)π

)

[(2j + 1)π]−1

}

.

Moreover, we recall the following result:

Proposition 5 (see [1, Proposition 4.1]). For every u ∈ ℜ

(i) E

[

exp

(

−u2

2

∫

[0,1]2
B(W)(s, t)2dsdt

)]

=

(

Codd(2u)
4T (u)

u

)− 1

2

;

(ii) E

[

exp

(

−u2

2

∫

[0,1]2
B

(W)
0 (s, t)2dsdt

)]

= {S(u)}− 1

2 ;

(iii) E

[

exp

(

−u2

2

∫

[0,1]2
K(W,1)(s, t)2dsdt

)]

= {Sodd(2u)}− 1

2 .

Then, we have

Theorem 6. Under the above assumptions and notation, for every u ∈ ℜ

1.

E[exp(iuI)]

= E

[

exp

(

−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2)du1du2

]2

dt1dt2

)]

=

{

Codd

(

u

2

)

16T (u/4)

u
× S

(

u

4

)}− 1

2

× Sodd

(

u

2

)

, (28)
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2.

E[exp(iuJ)]

= E

[

exp

(

−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (t1, u2)du2

]2

dt1dt2

)]

=

{

S

(

u

2

)}−1

, (29)

3.

E[exp(iuY)]

= E

{

exp

(
∫

[0,1]2

[

B
(W1)
0 (t1, t2) −

∫ 1

0

B
(W1)
0 (t1, u2)du2

. −
∫ 1

0

B
(W1)
0 (u1, t2)du1 +

∫

[0,1]2
B

(W1)
0 (u1, u2)du1du2

]2

dt1dt2

)}

=

{

S

(

u

4

)}−2

, (30)

Proof. The first equality in (28) follows from conditioning and independence. To obtain

the second just recall that Theorem 3 implies that

E

[

exp

(

−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2)du1du2

]2

dt1dt2

)]

= E

[

exp

(

− (u/4)2

2

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2

)]

× E

[

exp

(

− (u/4)2

2

∫

[0,1]2
B(W)(t1, t2)

2dt1dt2

)]

× E

[

exp

(

− (u/4)2

2

∫

[0,1]2
K(W,1)(t1, t2)

2dt1dt2

)]2

,

and the conclusion follows from Proposition 5. Likewise,

E

[

exp

(

−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (t1, u2)du2

]2

dt1dt2

)]

= E

[

exp

(

− (u/2)2

2

∫

[0,1]2
B

(W)
0 (t1, t2)

2dt1dt2

)]2

,

so that the proof is completed with another application of Proposition 5. Formula (30)

is proved in exactly the same way.

As pointed out in the Introduction, Theorem 6 extends part of the results contained

in [1, Section 4] and [4].

Acknowledgements. The authors thank J.-R. Pycke for showing them the paper [6]
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