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Abstract. We give a state-of-the-art survey of investigations concerning multivariate polynomial
inequalities. A satisfactory theory of such inequalities has been developed due to applications
of both the Gabrielov-Hironaka-t.ojasiewicz subanalytic geometry and pluripotential methods
based on the complex Monge-Ampére operator. Such an approach permits one to study var-
ious inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets
of R™ or C™ but also their versions for pieces of semialgebraic sets or other "small" subsets

of R™ (C™).

I. Global polynomial inequalities. Multivariate polynomial inequalities are closely
related to the Siciak extremal function associated with a compact subset E of C™,

Dp(z) = sup{|p(z)|'/ I8 P},

where p: C"™ — C is a nonconstant polynomial with sup |p|(E) < 1, z € C". Siciak’s
function establishes an important link between polynomial approximation in several vari-
ables and pluripotential theory. This yields its numerous applications in complex and real
analysis. It is known (Zakharyuta 1976, Siciak 1981) that

log ®p(z) = Ve(z) :=sup{u(z) : uwe€ L(C"), u<0on E},
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where L(C") = {u € PSH(C") : u(z) —log|z| < O(1) as |z| — oo} is the Lelong class
of plurisubharmonic functions with logarithmic growth at infinity. If £ is nonpluripolar
(i.e. there is no plurisubharmonic function u such that £ C {u(z) = —oo}), then the
plurisubharmonic function

Vi(z) = limsup Vg(w)

w—z
is the unique function in the class £(C™) which vanishes on E except perhaps for a
pluripolar subset and satisfies the complezx Monge-Ampére equation (dd“VE)™ = 0 in
C™ \ E (Bedford and Taylor 1982). If n = 1, the Monge-Ampére equation reduces to
the classical Laplace equation. For this reason, the function V} is considered as a natural
counterpart of the classical Green function with logarithmic pole at infinity and it is
called the pluricomplex Green function associated with E.
By the definition of ® g one has

p(2)] < sup [p|(E) [@p(2)]"# 7, 2 €C",

for each polynomial p € C[z], which is a Bernstein-Walsh type inequality. Therefore
the crucial point for applications is to establish the continuity of @z in C", which is
equivalent, by Zakharyuta 1976 and Siciak 1983, to the following property

(B-W) For each b > 1 there exists a neighbourhood U of E and a constant M > 0 such
that

sup |p|(U) < Mb¥e Psup |p|(E) for each polynomial p € Cl[z].
In such a case the set FE is said to be plurireqular or else L-reqular.
Let us notice the following useful result:

ANALYTIC ACCESSIBILITY CRITERION (Sadullaev 1980, Plesniak 1980, 1984a, 1984b,
Cegrell 1985). Given a € E, suppose there exists an analytic map h : [0,1] — E such
that h(0) = a. If for each t € (0,1] the function ®g is continuous at h(t) then ®g is also
continuous at a.

L-regularity is invariant under nondegenerate holomorphic maps:

THEOREM (Plesniak 1978, Klimek 1981,1982, Sadullaev 1981, Nguyen Thanh Van and
Plesniak 1984). If E is a compact, polynomially conver L-regular subset of C™ and
h: U — C™ (m < n), where U is an open neighbourhood of E, is a nondegenerate

holomorphic map (i.e. ranky f = m for every connected component V. of U such that
VNE#0), then the set h(E) is also L-regular (in C™).

The analytic accessibility criterion via techniques of subanalytic geometry permits one
to show that

THEOREM (Plesniak 1984b). If E is a compact set in C™ that is subanalytic as a subset
of R?", and if int E is dense in E then E is (locally) L-regular at every point a € E.

This result is also valid for definable sets in some polynomially bounded o-minimal
structures which are essential generalizations of subanalytic geometry (Plesniak 2003,
Pierzchata 2005). Let us recall that a subset E of R™ is said to be semianalytic if for each
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point z € R™ one can find a neighbourhood U of z and a finite number of real analytic
functions f;; and g;; defined in U, such that

EﬂU:Uﬂ{fij > 0,gi; = 0}.
i g

The projection of a semianalytic set need not be semianalytic (Lojasiewicz 1964). The
class of sets obtained by enlarging that of semianalytic sets to include images under the
projections has been called the class of subanalytic sets. More precisely, a subset E of R™
is said to be subanalytic if for each point x € R™ there exists an open neighbourhood U
of = such that E N U is the projection of a bounded semianalytic set A in R*t™, where
m > 0. If n > 3, the class of subanalytic sets is essentially larger than that of semianalytic
sets, the classes being identical if n < 2.

The result about the L-regularity of subanalytic sets can be significantly strengthened
with the aid of the Hironaka Rectilinearization Theorem and fojasiewicz’s Inequality, viz.

THEOREM (Pawlucki and Plesniak 1986). IfU is a non-void bounded open subanalytic set
in R™ then the extremal function ®p, with E = U, has the following Hélder Continuity
Property

(HCP) Dp(z) <14+ Ad™, ifdist(z,E) <6 <1,
where the positive constants A and m depend only on the set E.

Actually, the last statement remains valid for an essentially larger family of uniformly
polynomially cuspidal subsets of R" (see Pawlucki and Plesniak 1986).

DEFINITION. A subset E of R™ is said to be uniformly polynomially cuspidal (briefly,
UPC) if one can choose constants M > 0,m > 1 and d € N, and a mapping h :
E x [0,1] — E such that for each z € E, h(x,1) = z, h(z,-) is a polynomial map of
degree < d and

dist(h(z,t),R"\ E) > M(1—-t)™

for (z,t) € E x [0,1].

Let us notice that some new examples of UPC sets have been recently found by
Pierzchata (2005) in o-minimal structures generated by certain Denjoy-Carleman quasi-
analytic functions.

By the Cauchy Integral Formula, the (HCP) property of ®g yields the following
Markov Inequality:

For any polynomial P € Clz], one has

(MTI) |gradient P(z)| < M(deg P)" sup |P|(E)
for z € E with some positive constants M and r that do not depend on P.
Markov’s Inequality, alongside the Bernstein-Walsh Inequality, is one of the funda-

mental tools of the Constructive Function Theory. Combined with Jackson’s Theorem, it
permits one to characterize C'*° functions on compact subsets of R".

THEOREM (Pawlucki and Plesniak 1986, Plesniak 1990). If a compact set E in R™ is C*
determining (i.e. for every f € C*(E), if f =0 on E then for each a« € N§, D*f =0

on E) then the following statements are equivalent:
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(i) E admits Markov’s Inequality (MI);

(ii) (Bernstein’s Theorem) For every function f : E — R, if the sequence {distg(f,Px)}
is rapidly decreasing (i.e. for each s > 0, k*distg(f,Px) — 0 as k — o0), then f
extends to a C*° function f in R™.

Let us also recall an important application of (MI) in differential analysis. This is a
relatively simple construction of a continuous linear operator extending Whitney jets of
C* functions from a compact subset of R™ that preserves (MI), to the whole space R™.

THEOREM (Pawlucki and Plesniak 1988). Let E be a Markov compact subset of R™. Then
there exists a continuous linear operator

L:C>®(E)— C*[R")
such that L fip = f for each f € C*°(E). Moreover, such an operator can be defined by

o0
Lf =wlif+ Y ue(Leiaf = Lef),
k=1
where Ly f is a Lagrange interpolation polynomial of f of degree k with nodes at Fekete-
Leja extremal points of E and uy are appropriately chosen C*° cut-off functions whose
germs on E are equal to 1.

Here C*(E) := {f: E — R; 3g € C*(R"), gjg = [} is given the usual quotient
topology of C>*(R™)/{f € C*(R"); f=0on E}.

(For another construction of an extension operator see Zeriahi 1993.) Actually, Mar-
kov’s property of E is equivalent to the existence of the extension operator L, if the space
C>*(E) is endowed with Jackson’s topology defined by the seminorms ||f||g, ||f|lz +
supy, k*dist(f,Px), s =1,2,... (Plesniak 1990). The open problem of whether the same
holds true for C*°(E) equipped with the standard topology was solved in the negative by
Goncharov 1996, who constructed a non-Markov compact subset E of R that admits the
existence of a continuous linear operator extending C'*° functions from E to the whole
space R.

For a Markov compact subset E of R™, one can also construct a continuous linear
operator extending jets of ultradifferentiable functions on E to the whole space R” with
control of the loss of regularity (see Plesniak and Skiba 1990, Plesniak 1994, Beaugendre
2001).

Another natural domain yielding examples of L-regular and HC P-sets is complex
dynamics. Given a polynomial mapping P : C" — C", we define the Lojasiewicz exponent
of P (at c0) to be the number

}(P) := sup {5; timint 2 S o}.

|zl—o0  |2]°
The set Jp given by the formula
Jp :={2€C": {P’(2)};en, is bounded}

is said to be the filled-in Julia set associated with the polynomial mapping P. Filled-in
Julia sets in C™ arising from iterations of polynomial maps with f.ojasiewicz’s exponent



MULTIVARIATE POLYNOMIAL INEQUALITIES 255

strictly greater than 1 are L-regular (Klimek 1995, 1999). Actually, Klimek’s sets have
the (HCP) property (Kosek 1997, 1998).

I1. Polynomial inequalities on lower dimensional sets. In recent years, Markov and
Bernstein type inequalities have been intensively investigated on algebraic subvarieties
of R" (Fefferman and Narasimhan, Roytwarf and Yomdin, Bos, Levenberg, Milman and
Taylor, Brudnyi, Baran and Plesniak, Gendre, Kosek, Comte and Yomdin, Erdélyi and
Kroo, Kroo and Szabados). The notion of Siciak’s extremal function extends naturally to
compact subsets of analytic sets in C" (Sadullaev 1983, Zeriahi 1987, 1991, 1996, 2000).
We have the following beautiful characterization of algebraicity of analytic subsets of C™.

THEOREM (Sadullaev 1983). An analytic subset A of C" is algebraic if and only if the
extremal function ®g is locally bounded on A for some (and hence for each) nonpluripolar
compact subset E of A.

Sadullaev’s criterion is crucial for the study of polynomial inequalities (of Bernstein-
Walsh, Markov or van der Corput-Schaake type) on algebraic sets (Baran and Plesniak
2000a). It also plays a fundamental role in characterizing compact pieces of an algebraic
variety in C” in terms of tangential Markov, Bernstein or van der Corput-Schaake in-
equalities (Bos, Levenberg and Taylor 1995, Bos, Levenberg, Milman and Taylor 1995,
Baran and Plesniak 1997, 2000a, 2000b). Let us add that the techniques developed by
Baran and Plesniak 2000 are based on fine bounds for Siciak’s extremal function associ-
ated with a ball in R™ which are due to Baran 1988, 1992, 1998. The tangential Markov
inequality with exponent 1 characterizes the property of a compact subset K of RV to
be a piece of an algebraic variety. More precisely, we have

THEOREM (Baran and Plesniak 2000b). Let K be a compact subset of RY admitting an
analytic parametrization ¢ of order M (1 < M < N). Then the Zariski dimension of K
18 M iff there exists a constant C' > 0 such that

| D110y P ()| < C(deg P)|[P| x
for x € K and for every polynomial P € Clxy,...,xn], where T(t,v) = D,¢(t), the

derivative of ¢ in direction v.

If K is a smooth compact subvariety of RY of dimension M, 1 < M < N, the above
theorem was earlier proved by Bos, Levenberg, Milman and Taylor 1995.

If E is a polynomially convex, HCP compact subset of C™ with HCP-exponent m
and f is a nondegenerate analytic map defined in an open neighborhood of F, with values
in an algebraic subset M of C"V of dimension M, 1 < M < N, then we have

THEOREM (Baran and Plesniak 2000a). There ezxists a constant C > 0 such that for
every polynomial Q € Clzy,...,zn]| we have

D1ty QU] < Crd™ [ Q 4p),
where t € E and T(t,v) = D, f(t), the derivative of f in direction v.

COROLLARY. Let f be a polynomial map from R to R™ with

fit) =0 -1 (1+)=Q(),
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where @ is a polynomial map from R to R™, Q(t) # 0 on [—1,1]. Let @ = max (s1, $2).
Then there exists a constant A > 0 such that for any polynomial P € Rlzy,...,xz,] of
degree d we have

Dz, P(x)| < Ad***||P||y, forze N = f([-1,1])
with Dz, P(z) = Diqwy/leewn P (@), == f(1).
EXAMPLE. Let m and [, where m > [ > 2, be two relatively prime natural numbers. Let
F) = (5% (55H)™)- Then
N=f([-1,1]) = {(z,y) € R*: 0< 2,y <1and 2™ =y'}.
Since in this case a = [ — 1, by the above corollary we get

D1, ., P(,y)] < Ad”|| Pl

for any polynomial P € R[z,y] of degree d. (See also Bos-Levenberg-Milman-Taylor 1998,
Gendre 1998.)

On the other hand, Bos, Levenberg, Milman and Taylor (1995) gave an example of
an analytic function f : [0,1] — R such that f([0,1]) does not admit a tangential
Markov inequality with any finite exponent. Therefore one could conjecture that such an
inequality holds iff f(]0,1]) is a piece of an algebraic variety. This was disproved by a
recent result of Bos, Brudnyi, Levenberg and Totik 2003:

THEOREM. Given a polynomial T € R[x], for any interval [a,b] C R, there exists a
constant C' > 0 such that for any polynomial P € C|z,y] we have

max
z€(a,b]

d
45 P < Claeg P)Y o PG, 7))

Moreover, the exponent 4 is optimal.

ITI. A Generalized Bernstein Inequality. Let K be a non-pluripolar compact subset
of CN and let V; C Vo C - C O(f2) be a nested sequence of linear subspaces of the space
O(Q) of holomorphic functions on an open bounded neighborhood € of the polynomial
hull K of K. Let {¢(n)}22, C (0,00) be an increasing sequence tending to co.

DEFINITION. The compact K is said to have property (B) (of Bernstein) with respect
to {V,} and {¢(n)} if there exists a positive constant C = C(, K) such that for each
n € N and each f € V,,, one has

sup|f| < C?" sup | f|.
) K

EXAMPLES.

1° (Siciak 1962) Let K be a non-pluripolar compact subset of CN and let V,, =
Cnlz1,-..,2n], the space of algebraic polynomials of degree at most d in N complex
variables z1, ..., zy. Then the Siciak extremal function

D (2) = sup{|P(z)|/98 . P e C[z], S?)'P' <1}
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is locally bounded in CV. Hence for any bounded open neighborhood € of K we have
sup |P| < C"sup|P|, with C =sup k.
Q K Q

2° (Baouendi 1974) Let D be a bounded open set in RY with Lipschitz boundary and let
A be a differential operator of order 2 with coefficients in the space O(D) of holomorphic
functions in a neighbourhood of D. We assume that A is formally self-adjoint. We denote
by (A, D(A)) astrictly positive self-adjoint realization of A in L?(D). We assume moreover
that the embedding of D(A) into L?(D) is compact and that A has the following iteration
property: If u € D(A™) and if there exists a constant L > 0 such that

||Aku||Lz(D) < LFFY(2E)!
for every k € N, then u € O(D). (Such operators are generalizations of the classi-
cal Legendre operator A = —-(1 — 2?)L + 1 with D = (—1,1).) We denote by
(A\j)jen the nondecreasing sequence of eigenvalues of A repeated according to their mul-
tiplicities, and by (h;) the sequence of eigenfunctions of A associated to (A;). We set

V.. = Lin{hg, h1,...,hy}. Then for every b > 1 there exists a neighborhood Q of K in
CY such that for each n € N and for each f € V,,, f extends holomorphically to  and

sup | f] < bmsup|f|.
Q K

3° (Tijdeman 1971) Let K = {z € C: |z| < 1} and let V;, = {f(2) = P(z,€*)): P €
C,[z,w]}, where C, [z, w] denotes the space of all polynomials in C? of degree at most n.
For R > 1,set Qp = {z € C: |z| < R}. Then for z € Qpg, for each f € V,, and for each
n €N,

F@] < [1fllxem s tront,

4° (Coman and Poletsky 2003) Let K = {(z, f(z)) € C?: |z| < 1}, where f(z) = e*. Put
V., = C,[z,w]. Then there exists a constant C' > 0 such that for every R > 1 and for
every PeV, (n=1,2,...)

n?logn

|P(z,w)| < ||P|lx exp( +Cln2+nlogR)

for any (z,w) € Qg := {max{|z|, |w|} < R}.

5° (Bos, Brudnyi, Levenberg and Totik 2003) Let T'(x) be any fixed polynomial in z € R.
Put V,, = {f(2) = P(z,e"@) : P € C,[z,y]} and ¢(n) = n. Then, if 0 < R; < Ry,
there exists a constant C' = C(R1, R2) such that for each n € N and each f € V,,,

f(2)] < C*™ sup  |f]
[—R1,Re]

for each z € C with |z| < Rs.

By a standard pluripotential theory argument, property (B) implies a Markov type
inequality on a sufficiently regular compact set K. More precisely, we have

THEOREM. Suppose Vi :=log @ is Holder continuous on K, i.e. there exist constants
M >0 and s > 1 such that

Vi (z) < M(dist(z, K))Y*  for e CN.
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If the couple (K,Q) has property (B) with respect to {V,,} and ¢(n), then there exists a
constant C' > 0 such that for each n € N and for each f € V,, one has

lgrad f(z)| < C(¢(n))°||fllx  for v € K.

In the definition of property (B) no assumption on dimV,, is imposed. However, we
have

THEOREM. If K satisfies (B) with respect to {V,,} and {¢(n)}, then
dimV,, = O(¢™ (n)).
The above theorem follows by combining the next two lemmas.

UNIFORM BERNSTEIN-WALSH-SICIAK THEOREM (Plesniak 1972). Let H™(Q) be the
space of all bounded holomorphic functions in an open set Q@ C CN. For every poly-
nomially convex compact subset K of Q there exist constants M > 0 and a € (0,1) such

that for every f € H®(Q),
distg (f,Cy[2]) < MSlgllp |fla™.

KREIN-KRASNOSELSKY-MILMAN LEMMA (cf. Singer 1970). Let E be a normed linear
space and G, Go two linear subspaces of E such that

dim Gy < o0, dim Gy < dim Gs.
Then there exists an element y € Go \ {0} such that

lly+gll = llyll  for every g € Gy.

It is well-known that
Vian)(2) < M(dist(z, [a,]))/2, z€C.

Hence by the first theorem of this section, the Bos-Brudnyi-Levenberg-Totik theorem
with exponent 4 follows from property (B) with ¢(n) = n?.

In this case, the curve I' := {y = ¢7®) 2 € [a,b]} is not algebraic (if T(z) # 0),
whence

1
dimV,, = dim{P(z,e” @) : P € C,[z,y]} = dimC,[z,y] = %
Therefore by our previous Theorem we must have
p(n)>Cn?, n=12,...,

independently of the choice of the polynomial T. Consequently, we get

COROLLARY. The Bernstein exponent ¢p(n) = n? of Bos-Brudnyi-Levenberg-Totik’s ex-
ample 5° is optimal.
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