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Abstract. We investigate the convergence and the rate of convergence in || - |L,||, 1 < p < oo,
of a bivariate interpolating (with respect to a sparse grid) trigonometric polynomial in the
framework of Sobolev spaces of dominating mixed smoothness.

1. Introduction. The present article is a continuation of the investigations of the ap-
proximation properties of trigonometric interpolation with respect to uniform grids, see
[5, 4, 19, 21, 14]; we now study the bivariate situation with respect to a sparse grid. More
precisely, we investigate the rate of convergence of the Smolyak algorithm (applied to
trigonometric interpolation on uniform grids) for functions belonging to a Sobolev space
of dominating mixed smoothness. This continues earlier work of Smolyak [17], Temlyakov
[19], Wasilkowski, Wozniakowski [23] and the author [15]. At the end of this article we
add a comment on consequences of our estimates for the problem of optimal recovery.
To prove our main assertion we make use of the Fourier series of the interpolatory
trigonometric polynomial, a special decomposition of the function in the Fourier image
(related to the function spaces) and a Fourier multiplier theorem due to Lizorkin.

2. Interpolation on sparse grids. As usual, N stands for the natural numbers, by
Ny we denote the natural numbers including 0 and by Z? the d-tuples of integers. Let
T = [0, 27). Further, let

D (t) = Z e*  teT, me N,

|k|<m
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be the Dirichlet kernel and let

In f(t) =

2m/
the m(t—te),  te=

2m+1 2m 41"

Then I, is the unique trlgonometrlc polynomial of degree less than or equal to m which
interpolates f at the nodes ty. As usual, let

alf) =@ [ pwetta, ke,

be the Fourier coefficient of f € L;(T%). The Fourier series S[I,, f] of I, f is then given

by
S f](t) Z ( Z Crte(2m+1)( )) "
k=—m f=—0oc0
Let
Qme={neZ: L2m+1)—m<n<L(2m+1)+m}, meN, (€Z.
Hence,

QumeNQme =0 if €#0 and | Quei=12Z
l=—o0

The Fourier series of I,,, f can be rewritten as

SUAIB = 30 D ST (e 1

l=—00 k€EQm ¢
at least if f belongs to the Wiener algebra.

We do not need the complete sequence of interpolatory polynomials of a given func-
tion. We concentrate on a dyadic subsequence. To have a convenient notation we put
Lj:=1,j=0,1,.... By Lj := Lj ® L, we denote the tensor product of L; and Ly.
The sampling operators B,, we are going to study are defined as

m m—1
Bu:=Y Lijm—j— Y Lim—j-1, m=12....
j=0 J=0

This is Smolyak’s construction (sometimes called Smolyak algorithm or blending oper-
ators) with respect to the L;, cf. e.g. [3, 16, 17, 21, 23]. We collect a few elementary
properties of B,,. Let

m::{( b 2l ):o<el<2f+17o<eg<2mJ’“,j:o,...,m}.

20+ 17 2m=i+l 1]
Then we have the following.
LEMMA 1.
(1) By, uses samples of f from the sparse grid T, U Ty 1
(i) e (Buf) = 0 if
k¢ Hpy :={({1,¢2) : Ir € (NgN [0,m]) s.t. |[€1] <27 and |l <277 }.

(111) Suppose that [ is a trigonometric polynomial with harmonics from H,,. Then

Bnf=1f.
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Proof. The proof of these statements is elementary, but see also [20]. =

3. Function spaces of dominating mixed smoothness

3.1. Sobolev spaces. If r is a natural number and 1 < p < oo, then the Sobolev space
S;W(’]IQ) of dominating mixed smoothness of order r is defined as the collection of all
J € L,(T?) such that
aQrf arf arf
Ozt dzh’ Oxt Oxh
For general r > 0 one may use
D= e+ k)72 (U ko) /2 e € Ly (T2).
kez?

€ L,(T?).

We endow these classes with the norm

LFISEWT) = | 30 enlF) 1+ )72 (1 Plal?) 2 e
kez?

LP(TQ)H.

3.2. Lizorkin-Triebel and Besov spaces. For us it is convenient to introduce Triebel-
Lizorkin and Besov spaces by making use of a Littlewood-Paley decomposition, cf. [9, 13].
Let
Py=(-1,1), Pi={z:2'<[|z[<2/}, jeEN,
Pj,k:PjXPk7 ];kGNO
As an abbreviation we shall use
fin@)= D alf)e™, xzeT’, jkeN,,
ZEP]‘JC

which results in

o0 o0

f=22 fir:

§=0 k=0

at least in the sense of periodic distributions.

Let 1 <p < o0,1<q<o0,and r > 0. Then the Lizorkin-Triebel space S;7qF(T2) of
dominating mixed smoothness is the collection of all functions f € L,(T?) such that

| 185,72 = | (fjsz%k)q \fj,w)” 2,1 < . )
=0 k=0

7=0
These classes generalize the Sobolev scale. More precisely,
S;QF(TQ) = S;;W(’]I‘Q) (equivalent norms) , (3)

cf. e.g. [13, 2.3.1] for the non-periodic case.
Let 1 <p < o0,1<g<o00,and r > 0. Then the Besov space S;qu(’]I‘z) of dominating
mixed smoothness is the collection of all functions f € L,(T?) such that

oo o0 ] 1/
1185 B = (30 S 20 14 | L, (T2))7) ' < oo, (4)

=0 k=0
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Obviously, from the definitions it follows S} ,B(T?) = S; F(T?). For r > 1/p and all ¢
it is known that
(S;W(T*) U s; F(T*)U S,  B(T?) — C(T?)
holds, cf. [13, 2.4.1]. So, for > 1/p interpolation of functions f belonging to one of these
classes makes sense.
Important for us will also be the following interpolation formula. Here [-, -]o denotes
the complex interpolation functor. Let 0 < © < 1 and 1 < pg, p1,q0,q1 < oo. Then

[S;quOF(TQ), S;quF(Tz)}@ = S;,qF(TZ) (equivalent norms), (5)
where
1 1-6 6 1 1-6 ©
- = +—, - = +—, and r=(1-0)rg+06r,
Po Y41 q q0 q1

cf. [12] for the nonperiodic case.

4. The approximation power of B,,

4.1. The approxzimation power of B,, for functions belonging to the Triebel-Lizorkin
classes of dominating mized smoothness. Let I be the identity operator (we do not indi-
cate the space where I is considered, hoping this will be clear from the context). We write
a ~ b if there exists a constant ¢ > 0 (independent of the context dependent relevant
parameters) such that

clta<b<ca.

Our main result in [15] has been the following.
PROPOSITION 1. Suppose 1 < p < o0, 1 <qg<o0, andr > 1/p. Then
| T— By ¢ Sy ,B(T?) — Ly(T?)|| ~ m!~1/a27m" (6)
Now we are going to prove a counterpart for the Lizorkin-Triebel classes.
PROPOSITION 2. Suppose 1 < p,q < oo and r > 1. Then
I T— By ¢ S5, F(T?) — Ly(T?)| ~ m!~ 427" (7)

Proof. Step 1. Preparations. Because of the density of the trigonometric polynomials in
S; ,F(R?) (under the restrictions of the proposition) we assume that f is a trigonometric
polynomial. We shall employ the same decomposition of the error f — B,,f as in [15],
where we investigated the same problem for Besov spaces instead of Lizorkin-Triebel
spaces. For given m we shall use the splitting f = f1 + fo + f3 + f1 + f5, where

m m m [eS)
fl = Z fu,va fQZZ Z fu,'U7 f3zz Z fu,va
ut+v<m u=1v=m—u+1 u=0v=m+1
[eS) m ) [e%S)
f4 = Z qu,v and f5: Z Z fu,v~
u=m-4+1v=0 u=m—4+1v=m+1

Moreover, in [15] we proved

Ifi = B fi ILp(T*)| < 27" || fi|Sp oo B(T?)|,  i=3,4,5.
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Since S}, ,F(T?) — S} ., B(T?) this is enough to guarantee the desired estimate for these
parts of the error. Furthermore, Lemma 1 implies f; = B,,f1. So it remains to consider

I f2 = B f2 |Lp(T?)|.

Step 2. Estimate of || fo — By, f2 |L,(T?)]||. Using the projection property of L; we derive
((I_L])®(L’H’L—]_ m—j— 1)) fuu: (8)

if either j > w or if m — j — 1 > v. Furthermore, we recall the identity

[&T By =(I—Lp)®Lo+1® (I —Ly)
m—1
+ Z(I - LJ) ® (Lm—j - Lm—j—l)v (9)
)=0

valid for each m € N, cf. [3, Prop. 1.4/2| or [23]. Altogether this implies fo — B, fo =
T1 + Ts, where

-1

L= Y X (L) ®Eney = Lnmyt)) S (10)

T2=2m: Xm: (I = L) ® Lo) fuw+ T @ (I = L)) fuw - (11)

u=1v=m—u+1

S

Substep 2.1. Estimate of T7. We rewrite 17 by making use of the Fourier series of the
terms on the right-hand side. To avoid double indices we put:

I} =Qu, and I}V =1 xIf,
j €Ny, 01,05 € Z. In view of (1) we find the identities

(I = Lj) ® (Lin—j = Lin—j-1)) fu

o0 (o] .
Z Z eii(zm—_7+1+1)€2x2 2 (fu v) 6i(k1w1+k2x2)
41:700 42:700 kellgl";zj
§ § : i(2m I 1) oo 2 : (fu v) 6i(k1z1+kQZQ)
l1=—0o0 lr=—00 keIglrrz]ZJ 1
o oo ) .
e—i((2‘7+1+1)€1$1+(2m7‘7+1+1)€2z2) (f )ei(k1x1+kgmg)
E E E u,v
€1=—oo €2=—OO k.elgl"ng
o0 o0 . .
n Z Z o (2T )z (@2 1) o) Z () iEr1HR222)
Z1:—OO ézZ—OC ke]iln;zj 1

Observe that on the right-hand side the terms with ¢; = ¢, = 0 sum up to zero. So we
shall use this identity with |¢1| 4+ |¢3] > 0. Furthermore, comparing Ig;"g;j and P, , and
Iglan 71 and P, v, respectively, we see that all sums (with respect to /1, () are finite.
Let
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: —i(2" T e i(k1zy+kox
huvjen e, 7= € ( Yeawa E Ck(fu,v)e( 121+k22)

jym—j
ke]fllQ

—i(2M I 1)l Z i(k1@1 ko
—e ( Va2 Ck(fu,v)e( 1T1 2%2)
jom—j—1
keIgMQJ
—i (2T 1)z (2™ I T 1) b Z i(k1z1+koo
_e (( +1)l1x1+( +1)l2x2) ck:(fu,v)e( 171 +kaw2)
keIg’lirzz_]

4o U@ ) iz + (27T 1)l z2) Z i (fun) e Fronthara)

jym—j—1
kelel s

For the absolute value of these functions one has the obvious estimate

[Paw,jien,0a] < 2 ‘ Z ek (fuw) eilkizitkazs) | | o ‘ Z er(fun) etkizithaxs) |

J.m—j Jjsm—j—1
kel keI,
= P, b

Defining

G1uw,j = E E P g ta

[€1]>0 |£2]|>0
G2 = D a0
[£1]>0
Guwi = O huwios -
[£2]>0

we see that the identity (10) can be rewritten now in the form

u=lv=m—u+lj

u—1

Z Z gi,u,v,j .
=m

—v i=1

Substep 2.1.1. Estimate of > j 91,u0,5- We compare the coverings induced by Ig;”g;j
and P, ,, respectively. Suppose |{1], |¢2| > 1. Elementary calculations yield that

L NPy # 0
implies
max(1,2%777) < [6y] < 247 and max(1, 207" ) < lp| < 207

We put J;, := [max(1,2*%),2%), k € N. Our decomposition of the approximation error
will be applied together with a vector-valued Fourier multiplier theorem of Lizorkin, cf.
[7], which has been transferred to the periodic case in [11], see also [13, Th. 3.4.3/3]. It
says that a sequence of rectangles with sides parallel to the axes is a Fourier multiplier
for the space L,(¢,) (1 < p,q < c0). Here the norm of the corresponding operator neither
depends on the centres of these rectangles nor on their side-length. Hence, using Holder’s
inequality, 7 > 1, and the quoted Fourier multiplier assertion we obtain
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m m
H Z E E gl,u,v,j
—
m m
<X X ¥ X > s ]
—

V| ]€Ju—j [£2|€Tv—m4; Uy —mij+1

Ly(T?)|

L,(T?)|

u—1

SIS DS >

u=lv=m—u+lj=m—v [ly|€Jy_; [l2|€Ty _mi;UJv—mijt1

~ 1/q
(v —m) 2t 2 1) Ly (T2

X(Em: in: Z Z (u—i—v—m)q//q

u=lv=m—utlj=m—v|l|€Jy—; l2|€Jy—m+t;UJv—mj+1
1 ’
s 9(utv—m)d'/q 2—(u+v>rq/> /a
( m m u—1
L

=V [l1|€Ju—j [L2|€Ty—m+iUJv—mijt1

A
N
3
=
_
"
3
3

- —(urv—m u—T+v)r 1/q
(-t v —m) =t g Cbvmm gletoira o) (72)|

, m m 1/
< c3 ml/q Q—mnr (Z Z 2(u+v)rq |fum|q) q’Lp(Tz)H
u=1v=m—u+1
< cgm!7 27| f 1Sy F(T?)]]. (12)

Here c¢3 does not depend on m and f.

Substep 2.1.2. Estimate of ) i i, i = 2,3. Analogously to the previous step we
conclude

m m u—1
DOND SIND S ES
u=1v=m—u+1j=m—v
m m u—1 "
< H Z Z |hu,v,j7€170 LP(TQ)H
u=1v=m—u+1j=m-—v |€1|6Ju 3
m m — 1/q
a5 F 5 awmamong p)om)|
u=lv=m—u+lj=m—v |[{1|€J,_;
m m u—1 ’
(L35 3 o)
u=1lv=m—u+1j=m—v |e1|€Tu—j
, m m 1/q
SYATAER [N DR T RG]
u=1v=m—u+1
< com' 27| 1Sy F(T?)], (13)
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where ¢y does not depend on m and f. The estimate of ) v.j 93,u0,j CaN be done
similarly. Now, putting (12) and (13) together we obtain the desired estimate of T} from
above.

Substep 2.2. Estimate of T5. Similarly as in Substep 2.1 we conclude
((I - Lm) ® LO) fuw + (I ® (I - Lm)) fuﬂ)

— i i e—i(21+1)£2902 Z Ck(fu)v)ei(klxl+k2x2)

l1=—00ly=—00 keI;YIL’(éQ

oo oo
_ rom41 1 .
_ E E e 2(2 +1)l1$1+(2 +1)£2m2 E Ck;(fu,y) ez(k1r1+k2z2)

l1=—00Ly=—00 ke]Z'»gQ

. i i i@ 1) o) Z ck(fuw)ei(klmljtkza:z)

51:700 Z2:7OO ke[?l'”zQ

61:700 Zg:*()o ke[gl’"'zz

As before, the terms on the right-hand side with ¢; = ¢ = 0 sum up to zero. So we shall
use this identity with |[¢1]| + |¢2| > 0. Furthermore, let

0l .
hu’v,fl,fg = 6—1(2 +1)A€2$2 E Ck(fu”u)e’b(klail-'rkzxz)

m,0
kel
_irom+1 1 i
—e (2 +1)l1z14+(27+1)laxo § : Ck(fu,v) ez(k1x1+k2x2)

kel™9

£1,62
_i(om+1 .
—e 1(2 +1)22:E2 E Ck;(fuﬂ;)el(klzl-‘erZQ)
0,m
keIel’fz,z
i(k k
+ E Ck(fu,v) 62( 171+ 2062),
0,m
keI
and
Jluw = § E hu,v,ll,fga
[€1]>0|£2]>0
Fruw = D huwtros Gruw = D Puwois-
[€1]>0 |€2]>0
Consequently

26 EX (DD SRD R R

lLv=m—u+1|li|€Jy—m [l2|ETy

A X 5 5 sl )

u=lv=m—u+l|{1|€], [l2|€Ty_m

m m
H Z Z 91,u,v

u=1v=m—u+1
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and now we can continue as in Substep 2.1.1. Also the estimates of

H Z Z 92,u,v Lp(Tz)H and H Z Z 93,uv

u=1v=m—u+1 u=1lv=m—u+1

Ly(T2)|

can be done in this way. This proves
1T [ Ly (T?)[| < cam™@ 27" || [ ISy o F(T)]] . (14)

Inequalities (12) and (13) and (14) yield the estimate of || I — By, : S} F(R?) — L,(R?)||
from above.

Step 3. Estimate from below. We employ lacunary series as test functions. Let

m—1
fm(x1,22) := Z 2 e Fi2" T , m=23,4,.... (15)
u=2
Then
m—1 m—1
. Sou - . com—u-+1
Bmfm(x17x2) _ _(m _ 2) e—z(r1+z2) + Z 612 T —iTo + Z e—zr1+12 T2
u=2 u=2
Obviously
| fn 1S5 F(T2)| ~  m*a2mr, (16)

To calculate the L,-norm of f,, and B,, we shall use the following Littlewood-Paley
assertion, cf. [9]. There exist positive constants A, and B), such that

A5 < (X )
3=0 k=0

holds for all f € L,(T?) (1 < p < oo). This yields
| o |Lp(T?) | ~ m'/2, (17)
| B for | Lp(T2)|| ~ 0, (18)

if 1 < p < oo. Combining (16) with (17) and (18) the estimate from below follows. The
proof is complete. m

Ly(T?)|| < B, || £ 1L,(T2)]

REMARK 1. Lemma 1(ii),(iii) suggests to compare f — B,,f with f — SX f where
Spfe) = > al(f)e™,
keH,,

is the partial sum of the Fourier series with respect to the hyperbolic cross H,,. It is
known that if 1 < p < oo and r > 0, then

2-mr if 1<g<2
I =88] F(T?) — Ly(T?)|  ~ -
11 = 53 85, (T%) — Lp(T7) || =t g-mr i 2<g<oo,

holds, cf. [12] for a proof in the nonperiodic situation (but the arguments carry over).
This implies

| I — B | S} ,F(T?) — Ly (T?) || mi—1/q if 1<q¢g<2,

| 1—SH|Sr F(T?) — Ly(T?) || m'/? if 2<q<oo0,
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at least if 1 < p < co and r > 1. Hence, one has to pay a price for using the operator
B, (based on the function values of f) instead of the operator S (based on integrals).
This does not have a counterpart in the one-dimensional case.

REMARK 2. From the density of the trigonometric polynomials in S;"’qF(']TQ) it follows
that
i |- SHF1S], PR =0,
From this, Proposition 2 and B,,(SX f) = SH f, see Lemma 1(iii), we conclude that
lim m~'*Ya2m || f — B, f|L,(R?*)| =0
m—0oQ
for each f € S;qu(RQ), 1<p,q<ooandr>l1.

REMARK 3. For Besov spaces of dominating mixed smoothness the picture is a bit dif-
ferent. For 1 < p < oo and r > 0 we have

2’:’”’1 if 1<g<min(p,?2),
| I1-SH 1Sy ,B(T?) — Ly(T?)[| ~ § m2~a 27™" if 2<p<oo and ¢q>2
mr a2 if 1<p<2 and p<¢g< .

This has been known for the Nikol'skij-Besov spaces S;VOO(TZ) for a long time, see the
papers of Bugrov [2], Nikol’skaya [8] or [21, Theorem I11.3.3]. For 1 < g < co the problem
has been treated by Kamont [6] (in the context of spline approximation on the unit cube)
and in [12]. In view of this Proposition 1 yields

1-1/p :
11=Bul Sp, BT ~ L) | [™, foaops2 o psgsec
11— SH1Sp 4B(T?) — Ly(T?) || .y . p=oe b=
P m-— /4 if 1<g<min(p,2),

at least if 1 <p < oo and 7 > 1.

4.2. The approximation power of B,, for functions belonging to the Sobolev classes
of dominating mized smoothness. Of course, by means of the equality S;QF(TQ) =
S;W('JI‘Q) we immediately derive some assertions about B,, and its approximation power
for functions taken from Sobolev spaces. However, the restriction r > 1 in Proposition 2
is not satisfactory.

THEOREM 1. Suppose 1 < p < oo and r > max(1/p,1/2). Then
IT— Bm : SSW(R?) — Ly(R?)|| ~ m!/227™" (19)

Proof. Step 1. Estimate from below. It is enough to observe that the restriction r > 1
has not been used in Step 3 of the proof of Proposition 2.

Step 2. Estimate from above. We use Proposition 1, Proposition 2 and complex interpo-
lation.

Step 2.1. As long as r > 1 we have nothing to do because of Sj ,F(R?) = S;W(R?)
(equivalent norms), cf. Proposition 2.

Step 2.2. Tn case 1 < p < 2 and r > 1/p we use the continuous embedding S ,W (R?) —
Sy ,B(R?) and Proposition 1.
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Step 2.3. Let 2 < p < oo and let 1/p < r < 1. If we proved the estimate from above
in (19) for some ro < 1, then by complex interpolation with fixed p we would get the
estimate from above for all r > rg. So we concentrate on the smallest r.

For this we proceed as demonstrated in the figure below, that means we use (5) with
p1 close to infinity, ¢; close to 1, 71 close to 1, and ry close to 1/pg.

4——7’11
p
0 P
i1 1 1 1
p Po 2 p

To simplify the considerations we formally work with the limit case. Finally we shall
use the argument that we can come arbitrarily close to the following constellation of the

parameters:
1 1-6 © 1-06
- = —|— _— =
p Po p1 Po
and 1 1-e 6 1-0 1
- = + —= +0=-+4+0.
q Po Q1 Po p

It follows that -6 ) )
— +O0=-+6="-.
p q

Since we want to have ¢ = 2 we arrive at r = 1/2 independent of p. The interpolation prop-

erty of the complex method, Proposition 1 with respect to S;g’poB(RQ) = S;O,pOF(R2),

and Proposition 2 with respect to Syt | F(R?) yield the desired conclusion. m

r=(1-0)rg+0r =

Po

REMARK 4. As in Remark 1 we conclude
| 1= B S;WIT) = Ly(T) [
11— S [SpW(T?) — Ly(T?) ||

if 1 <p<ooandr>1/min(2,p).

5. Approximate optimal recovery. We study the effectiveness of the approximation
by generalized sampling operators. Let F' be a class of continuous periodic function defined
on T? = [0,27)2. Then, following [21, Chapter 4, Section 5|, we consider for fixed m,
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€= (64,62, ,6m), ¢ €T2% j =1,...,m, and ¥ (21,22),... ,¥m(x1,22) the linear

operator
m
m (£, ) (@1, 22) =Y f(&0) (w1, w2)
j=1

and define the quantities
m (P& Ly(T?)) = sup [ Wn(f,€) ~ f |Lp(T)]|

and

m(F, Ly(T?)) := inf inf W, (F,&, L,(T?)).

Lo Pm
Hence g, (F, L,(T?)) measures the optimal approximate recovery of the functions from
F'. Here we are interested in the case when F' is the unit ball in a Lizorkin-Triebel
space S), ,F(T?) of dominating mixed smoothness. As a consequence of Lemma 1(i) and
Proposition 2 we obtain the following.

THEOREM 2. Let 1 < p < oc.
(i) Let 1 < ¢ < 0o and v > 1. Let F be the unit ball in S}, ,F(T?). For any natural

number m there exists a system of points £, ... ,&™ € T?, a collection of trigonometric
polynomials 1(x1,22), ... , Ym(x1,22) and a constant C' (independent of m) such that
sup || W (f,€) = f[Lp(T?)[| < Cm™" (logm)™ =1/, (20)
fer
(i) Let r > max(1/2,1/p). Let F be the unit ball in S;W(']I‘Q). For any natural number m
there erists a system of points &1, ... €™ € T?, a collection of trigonometric polynomials
P1(x1,22), ..., YUm(21,22) and a constant C (independent of m) such that
up || (€)= £ Ly ()] < Com (logm)” /2. (21)
€

REMARK 5. Theorem 2(ii) improves an estimate given by Temlyakov in [19], see also [21,
4.5]. However, let us mention that Temlyakov has treated the general d-dimensional case
in his papers.
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