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Abstract. The aim of the paper is twofold. First we give a survey of some recent results concern-

ing the asymptotic behavior of the entropy and approximation numbers of compact Sobolev em-

beddings. Second we prove new estimates of approximation numbers of embeddings of weighted

Besov spaces in the so called limiting case.

The idea of entropy numbers goes back to the works of L. S. Pontryagin and

L. G. Schnirelmann and of A. N. Kolmogorov in the 1930s on the metric entropy of

compact sets in metric spaces. The definition of approximation numbers has its roots in

D. Eh. Allakhverdiev’s paper published in 1957. It is proved there that singular numbers

of a compact operator acting in a Hilbert space coincide with a quantities that nowadays

are called approximation numbers. The abstract Banach space setting of the topic was

given by A. Pietsch who developed the theory of operator ideals and s-numbers. Very

important contribution to the subject was provided in 1980 by B. Carl’s observation

that entropy numbers of a compact operator acting in a Banach space are related to its

eigenvalues by a simple inequality.

Embeddings between function spaces from the point of view of entropy numbers were

first investigated by A. N. Kolmogorov and V. M. Tikhomirov in 1959. They found

the asymptotic behavior of the natural embedding of Ck([0, 1]n) into C([0, 1]n). En-

tropy numbers of embeddings of Sobolev spaces were first treated by M. S. Birman and

M. Z. Solomyak in 1967. The great impetus to the development of the study of asymp-

totic behavior of the entropy and approximation numbers of embedding between function

spaces was given by D. E. Edmunds and H. Triebel in the 80s and 90s of the last century.

They proved several sharp estimates, gave the quasi-Banach version of the theory and
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moreover developed a method of application of the estimates to spectral properties of

some elliptic pseudo-differential operators.

Recently it has become obvious that the simplest and quite efficient way of studying

the asymptotic behavior of both entropy and approximation numbers leads through the

discretization of the function spaces. This strategy was used in a series of papers by

Th. Kühn, H. G. Leopold, W. Sickel and the author [27]–[31], but also in D. Haroske,

H. Triebel [21] and B. Tomasz and the author [44], cf. also [43]. The first step of the

method is to reduce the problem from the function spaces level to related sequence

spaces. Then one deals with estimates for embeddings of the sequence spaces, using or

developing the knowledge about corresponding operator ideals and diagonal operators.

Theorems stated in Section 3 can be proved using this method. The strategy is presented

in the last section in which we prove one of the theorems of Section 3.

1. Compact Sobolev embeddings. Sobolev embeddings we mention above are the

embeddings between function spaces of Besov and Lizorkin-Triebel type. In the paper we

concentrate on (inhomogeneous) Besov spaces. But all theorems stated in Section 3 except

for Theorem 4 and Theorem 5 hold also for Sobolev and more general Lizorkin-Triebel

spaces.

We assume that the reader is acquainted with the definition and basic properties

of Besov spaces Bs
p,q(R

d), 0 < p, q ≤ ∞ and s ∈ R. Triebel’s books [49] and [51] are

the classical references here but one can consult also [14] and many other books. In

this section we recall a definition and a few properties of weighted function spaces. For

simplicity we restrict our attention to the Besov spaces with indices p and q greater than

or equal to one. In that case the spaces Bs
p,q(R

d) are Banach spaces. If p < 1 or q < 1

then the corresponding spaces are quasi-Banach. Most of the results we present in the

paper have their quasi-Banach counterparts. We will denote the continuous embeddings

between Banach spaces by →֒.

Let p0 ≤ p1 and s0 ≥ s1. It is well known that if δ = s0 − s1 − d
(

1
p0
− 1

p1

)
> 0 or

δ = 0 and q0 ≤ q1 then

Bs0

p0,q0
(Rd) →֒ Bs1

p1,q1
(Rd).

The above embeddings are never compact. To get compact embeddings we must take a

smaller source space or a bigger target space. We will focus our attention on the following

three situations that found different applications in analysis:

(i) Spaces on bounded domains. Let Ω be a bounded domain in R
d with smooth or

Lipschitz boundary. We define the Besov spaces on Ω by restriction, i.e.

Bs
p,q(Ω) = {f ∈ D′(Ω) : f = g|Ω, for some g ∈ Bs

p,q(R
d)},

‖f |Bs
p,q(Ω)‖ = inf ‖g|Bs

p,q(R
d)‖,

where the infimum is taken over all possible g ∈ Bs
p,q(R

d).

Given any a ∈ R we shall write a+ = max(a, 0). The embedding

Bs0

p0,q0
(Ω) →֒ Bs1

p1,q1
(Ω)

is compact if and only if s0 > s1 and δ+ = s0 − s1 − d
(

1
p0
− 1

p1

)
+
> 0.



COMPACT SOBOLEV EMBEDDINGS 311

(ii) Spaces of radial functions and distributions. We recall that the distribution f is

called radial if f(ϕ) = f(ϕ ◦R) for any test function ϕ and any rotation R around

the origin. We put

RBs
p,q(R

d) = {f ∈ Bs
p,q(R

d) : f radial}.
The embedding

RBs0

p0,q0
(Rd) →֒ RBs1

p1,q1
(Rd)

is compact if and only if 1 ≤ p0 < p1 ≤ ∞ and δ := s0 − s1 − d
(

1
p0
− 1

p1

)
> 0.

(iii) Weighted function spaces. We restrict here to the function spaces with polynomial

weights

wα(x) = (1 + |x|2)α/2, α > 0.

The weighted Besov spaces with the above weight can be defined in the following

way:

Bs
p,q(R

d, wα) = {f ∈ S ′(Rd) : ‖f |Bs
p,q(R

d, w)‖ = ‖fw|Bs
p,q(R

d)‖ <∞}.
The study of the properties of embeddings between two weighted spaces can be

easily reduced to properties of embedding of weighted spaces into unweighted spaces

by taking a new space with weight equal to the ratio of the two original weights.

The embedding

Bs0

p0,q0
(Rd, wα) →֒ Bs1

p1,q1
(Rd)

is compact if and only if min(α, δ) > d( 1
p1
− 1

p0
)+, where δ = s0 − s1 − d

(
1
p0
− 1

p1

)
.

So called limiting embeddings are other interesting cases. They are embeddings into

spaces that do not belong to the Besov or Triebel-Lizorkin scales. In particular embed-

dings of the Trudinger-Strichartz type are embeddings into exponential Orlicz spaces

Eν,ρ(R
d). The latter are Orlicz spaces generated by Orlicz functions t→ tν exp(tρ) (one

can use also t → exp(tρ) − 1 on bounded domains). It is well known that the space

B
d/p
p,q (Rd) is not contained in L∞(Rd) but we have B

d/p
p,q (Rd) →֒ Eν,ρ(R

d) if ν ≥ p and

ρ ≤ q′ = q
q−1 , 1 < q < ∞, 1 < p < ∞. This justifies the name “limiting embeddings”.

In a similar way a function f belonging to the (fractional) Sobolev space H
1+d/p
p (Rd),

1 < p < ∞, is Hölder-continuous with exponent α < 1 but not Lipschitz-continuous. It

was noticed by Brézis and Wainger that f is “almost” Lipschitz-continuous in the sense

that

|f(x)− f(y)| ≤ C|x− y|| log |x− y||1/p′‖f |H1+d/p
p (Rd)‖

with 0 < |x− y| < 1
2 , x, y ∈ R

d. In the paper we restrict our attention to the embeddings

of the Besov spaces into spaces of the same type.

Remark 1. (a) The compactness of the embeddings of classical Sobolev spaces defined

on bounded domains into Lp spaces was noticed by V. I. Kondrashov in 1945.

(b) The fact that symmetry as well as weights can be used to generate compactness of

embeddings on R
d is known since the seventies, cf. e.g. Strauss [46], Coleman, Glazer and

Martin [10] and Lions [32] about the first order Sobolev spaces.

(c) It follows immediately from the definition that an operator f → wf is an isomorphic

mapping from Bs
p,q(R

d, w) onto Bs
p,q(R

d). There are different ways to introduce weighted
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function spaces, but for the polynomial weights we use, these different approaches coin-

cide, cf. [33, 40, 41, 14].

(d) The Trudinger-Strichartz embeddings were first considered by Trudinger [53] and

Strichartz [47], whereas the Brézis-Wainger embeddings were introduced in [4]. There

is a quite large literature on entropy and approximation numbers of these embeddings,

cf. e.g. [48, 26, 42] about the Trudinger-Strichartz embeddings and [11, 9] about the

Brézis-Wainger embeddings.

2. Approximation and entropy numbers. Approximation numbers and entropy

numbers are popular tools for qualitative description of the compactness of a bounded

linear operator with applications to the spectral theory. Approximation numbers measure

the closeness by which a bounded operator may be approximated by linear maps of finite

range, whereas entropy numbers measure compactness of the operator by means of finite

coverings of images of the unit ball.

Let us briefly recall the definition and basic properties of approximation and entropy

numbers. Let A0 and A1 be two complex Banach spaces and let T : A0 → A1 be a

bounded linear operator.

Definition 1. The kth approximation number ak(T ) of a bounded linear operator T :

A0 → A1 is the infimum of all numbers ‖T − F‖ where F runs over all continuous linear

operators F : A0 → A1 of rank smaller than k.

The approximation numbers ak(T ) form a decreasing sequence with a1(T ) = ‖T‖. If

the sequence converges to zero then the operator T is compact. The opposite implication

in general is not true. It may happen that limk→∞ ak(T ) > 0 for some compact T if A1

fails to have the approximation property. The approximation numbers have in particular

the following properties:

– (additivity) an+k−1(T1 + T2) ≤ ak(T1) + an(T2),

– (multiplicativity) an+k−1(T1T2) ≤ ak(T1)an(T2),

– (rank property) ak(T ) = 0 ⇒ rank (T ) < k.

Definition 2. Let A0, A1 be two complex Banach spaces and let T be a linear and

continuous operator from A0 into A1. Let k ∈ N. The k-th entropy number ek(T : A0 →
A1) is the infimum of all numbers ε > 0 such that there exist 2k−1 balls in A1 of radius ε

which cover the image of the unit ball U := {x ∈ X : ‖x‖A0
≤ 1} under the mapping T .

Entropy numbers have properties similar to approximation numbers: they form a de-

creasing sequence with e1(T ) = ‖T‖; they have additivity and multiplicativity properties,

but not the rank property. Moreover,

T is compact ⇔ lim
k→∞

ek(T : A0 → A1) = 0.

For details proofs and other properties we refer to the monographs [7, 14, 25, 37].

We shall use the operator ideals L(a)
p,∞ and L(e)

p,∞, 0 < p <∞, formed by all bounded

linear operators T between Banach spaces such that the quasi-norms

L(a)
p,∞(T ) = sup

k
k1/pak(T ) and L(e)

p,∞(T ) = sup
k
k1/pek(T )
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respectively, are finite. The classes (L(a)
p,∞, L

(a)
p,∞) and (L(e)

p,∞, L
(e)
p,∞) are quasi-normed op-

erator ideals in the sense of A. Pietsch [37, Definition 6.1.1].

Both concepts, entropy and approximation numbers, are related to each other. Namely

for a compact operator T there is some constant c > 0 such that for all k ∈ N the

inequality ek(T ) ≤ c ak(T ) holds assuming that there is some c′ > 0 such that a2j−1(T ) ≤
c a2j (T ) for all j ∈ N , cf. [50].

Both quantities have their importance for spectral theory. For example the Carl in-

equality links entropy numbers and eigenvalues of the compact operator. More precisely, if

T : A0 → A0 is a compact operator and (λn(T ))∞n=1 is the sequence of all non-zero eigen-

values of T , repeated according to algebraic multiplicity and ordered in the decreasing

way then

|λn(T )| ≤
√

2en(T ),

cf. [6], [8] or monographs [7] and [14].

On the other hand if T is a compact operator acting in the Hilbert space H and |T |
is a square root of T ∗T then the k-th approximation number of T coincides with the

k-th non-zero eigenvalue of |T |. In particular if T is nonnegative and self-adjoint then

ak(T ) = λk(T ). Moreover, for any compact operator in T acting in the Hilbert space H

we have the following well known Weyl inequality

n∏

j=1

|λj(T )| ≤
n∏

j=1

aj(T ).

For Banach spaces H. König proved the following weaker version of the last inequality:

( n∑

j=1

|λj(T )|p
)1/p

≤ Kp

( n∑

j=1

ap
j (T )

)1/p

,

where 0 < p <∞ and Kp is an explicit numerical constant depending on p, cf. [25].

In [14] D.E. Edmunds and H. Triebel systematically developed a method of investi-

gation of spectral properties of some compact elliptic differential and pseudo-differential

operators, both on bounded domains and on R
d, cf. also D. Haroske, H. Triebel [20]. One

of crucial ingredients of the method is a factorization through compact Sobolev embed-

dings in order to use estimates of entropy and approximation numbers as well as their

relations with spectral theory. Then using the Birman-Schwinger principle they studied

the ”negative” spectrum of the Schrödinger type operators H = A − V , where A is a

positive, self adjoint operator in L2 and V is a positive potential. One should also mention

forerunners by M. S. Birman, M. Z. Solomyak [3], K. Mynbaev and M. Otel’baev [35]

and others.

3. Approximation and entropy numbers of Sobolev embeddings. We start with

function spaces defined on bounded domains Ω ⊂ R
d. For convenience we will use the

following abbreviations. Let 1 ≤ p0 ≤ p1 ≤ ∞ then

1

p
=

1

p0
− 1

p1
and

1

t
=

1

min(p′0, p1)
,

1

p′0
= 1− 1

p0
.
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Moreover we denote ak ∼ bk if there exists a constant c > 0 independent of k such that

c−1 bk ≤ ak ≤ cbk, k = 1, 2, 3 . . . .

Theorem 1. Let Ω ⊂ R
d be a bounded domain with smooth or Lipschitz boundary. Let

−∞ < s1 < s0 <∞ and 1 ≤ p0, p1, q0, q1 ≤ ∞, (p0, p1) 6= (1,∞), and suppose that

δ+ = s0 − s1 − d
(

1

p0
− 1

p1

)

+

> 0.

Then

ek(Bs0

p0,q0
(Ω) →֒ Bs1

p1,q1
(Ω)) ∼ k−

s0−s1
d (1)

and

ak(Bs0

p0,q0
(Ω) →֒ Bs1

p1,q1
(Ω)) ∼ k−κ (2)

where

κ =





δ+

d if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,

or 1 ≤ p1 ≤ p0 ≤ ∞,
δ
d + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞ and δ > d

t ,
δ
d · t

2 if 1 ≤ p0 < 2 < p1 ≤ ∞ and δ ≤ d
t

Remark 2. (a) The estimate (1) was proved by D. E. Edmunds and H. Triebel, cf.

[12, 13, 14]. They also proved the estimate (2) except for some cases if 1 ≤ p0 < 2 <

p1 ≤ ∞. These remaining estimates were improved by A. Caetano [5] except for one case,

when δ+ = d/min(p′0, p1). The last step was recently done in [43].

(b) It follows from (1) and (2) that the asymptotic behavior of the entropy numbers

and approximation numbers of Sobolev embeddings on bounded domain depends mainly

on the difference of the smoothnesses s0 − s1. For approximation numbers we have an

additional effect when we cross the Hilbert case p = 2.

In the next theorem we will see that the asymptotic behavior of both entropy and

approximation numbers is quite different for spaces of radial functions.

Theorem 2. Let −∞ < s1 < s0 < ∞, 1 ≤ p0 < p1 ≤ ∞ and 1 ≤ q0, q1 ≤ ∞ and

suppose that

δ = s0 − s1 − d
(

1

p0
− 1

p1

)
> 0.

Then

ek(RBs0

p0,q0
(Rd) →֒ RBs1

p1,q1
(Rd)) ∼ k−d( 1

p0
− 1

p1
) (3)

and

ak(RBs0

p0,q0
(Rd) →֒ RBs1

p1,q1
(Rd)) ∼ k−κ (4)

where

κ =





d−1
p if 1 ≤ p0 < p1 ≤ 2 or 2 < p0 ≤ p1 ≤ ∞,

d−1
p + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞ and d−1

p > 1
t ,

d−1
p · t

2 if 1 ≤ p0 < 2 < p1 ≤ ∞ and d−1
p ≤ 1

t .



COMPACT SOBOLEV EMBEDDINGS 315

Remark 3. (a) The estimate (3) was proved by Th. Kühn, H.-G. Leopold, W. Sickel and

the author, cf. [27], whereas (4) was proved by B. Tomasz and the author [44].

(b) In contrast to the last theorem now neither estimates for entropy numbers nor for

approximation numbers depend on the difference of smoothnesses s0−s1. This means that

behavior of radial functions at infinity is dominating. But for approximation numbers we

have a similar additional effect when we cross the Hilbert case p = 2.

(c) The above estimates for spaces of radial functions depend of the geometry of the

underlying space. One can consider also the Besov and Sobolev spaces on Riemannian

manifolds with bounded geometry e.g. on hyperbolic spaces H
d (the space H

2 is the

Lobachevsky plane). Let us fix one point o ∈ H
d and call it the origin. One can regard

radial functions on H
d to be functions whose value at a point x depends only on the

distance of x to the origin o. The notation can be extended to distributions in the standard

way. Let RBs
p,q(H

d) denote a Besov space consisting of radial distributions defined on H
d.

If −∞ < s1 < s0 <∞, 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞ and δ = s0−s1−d
(

1
p0
− 1

p1

)
> 0.

then

ek(RBs0

p0,q0
(Hd) →֒ RBs1

p1,q1
(Hd)) ∼ k−(s0−s1).

This reminds more the behavior of the Sobolev embeddings on bounded domains on R
d

than the embeddings of radial spaces on R
d, cf. [45].

Now we consider the embeddings of weighted function spaces. As it was mentioned

before we restrict our attention to the polynomial weights. First we formulate the result in

so called non-limiting case, i.e. when the power of the weight is not equal to the quantity

δ = s0 − s1 − d( 1
p0
− 1

p1
).

Theorem 3. Let 1 ≤ p0, p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞ and −∞ < s1 < s0 < ∞. Let α > 0

and 1
p̃ = α

d + 1
p0

. We assume that

(a) 1 ≤ p0 ≤ p1 ≤ ∞ or p̃ < p1 < p0 ≤ ∞,

(b) α 6= s0 − s1 − d( 1
p0
− 1

p1
) =: δ and δ > 0. Then

ek(Bs0

p0,q0
(Rd, wα) →֒ Bs1

p1,q1
(Rd)) ∼ k−κ , (5)

where

κ =

{
s0−s1

d if d
p̃ < δ < α,

α
d + 1

p0
− 1

p1
if d

p̃ < α < δ.

If in addition (p0, p1) 6= (1,∞) then

ak(Bs0

p0,q0
(Rd, wα) →֒ Bs1

p1,q1
(Rd)) ∼ k−κ (6)

where

κ =





min(α,δ)
d if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,

min(α,δ)
d + 1

p0
− 1

p1
if p̃ ≤ p1 < p0 ≤ ∞,

min(α,δ)
d + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞ and min(α, δ) > d

t ,

min(α,δ)
d · t

2 if 1 ≤ p0 < 2 < p1 ≤ ∞ and min(α, δ) ≤ d
t .

Remark 4. (a) The first results concerning entropy and approximation numbers of em-

beddings of weighted spaces were proved by D. Haroske and H. Triebel, cf. [19, 20] for
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entropy numbers and D. Haroske [16] for approximation numbers. The above theorem

was partly proved there. The final estimates for entropy numbers were proved in [21]

and [28]. The related final result concerning approximation number can be found in [43].

(b) The interpretation of the last theorem is the following: if the weight is increasing fast

enough near infinity then we are back in the compact case, that means, the asymptotic

behavior of the corresponding entropy and approximation numbers coincides with that

of the unweighted Besov spaces defined on a bounded domain with smooth or Lipschitz

boundary. If the weight is not increasing fast enough, i.e. α < δ, then there is a direct

influence of the weight on the asymptotic behavior of the entropy and approximation

numbers.

(c) One can also consider more general weights in this context. Entropy numbers for

perturbed polynomial weights are considered in [30] and for subpolynomial weights in

[31]. Some partial results concerning logarithmic weights can be found also in [17, 18].

The estimates in the limiting case are harder to prove and still interesting. For entropy

numbers the following theorem was proved in [30].

Theorem 4. Suppose

α =

(
s0 −

d

p0

)
−

(
s1 −

d

p1

)
> d

(
1

p1
− 1

p0

)

+

and set τ :=
s0 − s1
d

+
1

q1
− 1

q0
.

(i) If τ > 0, then

ek(Bs0

p0,q0
(Rd, wα) →֒ Bs1

p1,q1
(Rd)) ∼ k−

s0−s1
d (1 + log k)τ .

(ii) If τ < 0, then

ek(Bs0

p0,q0
(Rd, wα) →֒ Bs1

p1,q1
(Rd)) ∼ k−

s0−s1
d .

Remark 5. (a) Now the asymptotic behavior of the entropy numbers depends on the

fine indices of the involved Besov spaces, i.e. on q0 and q1, a phenomenon that does not

occur in non-limiting cases. This was observed first by D. Haroske [17]. She proved part

(i) of Theorem 4 under additional restrictions, see [17, 18].

(b) In contrast to the first three theorems the last theorem cannot be immediately ex-

tended to Triebel-Lizorkin or even Sobolev spaces. Some partial results related to Sobolev

spaces of fractional order can be found in [21].

Much less is known about the asymptotic behavior of the approximation numbers in

the limiting case. To the best of our knowledge the following theorem is the first one

presenting a partial but sharp result in this direction.

Theorem 5. Suppose

α =

(
s0 −

d

p0

)
−

(
s1 −

d

p1

)
> d

(
1

p1
− 1

p0

)

+

and q0 = p0, q1 = p1, (p0, p1) 6= (1,∞). Then

ak(Bs0

p0,p0
(Rd, wα) →֒ Bs1

p1,p1
(Rd)) ∼ k−κ(1 + log k)

α
d ,
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where

κ =





α
d if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,
α
d + 1

p0
− 1

p1
if p̃ ≤ p1 < p0 ≤ ∞,

α
d + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞ and α > d

t ,
α
d · t

2 if 1 ≤ p0 < 2 < p1 ≤ ∞ and α ≤ d
t .

We give a proof of the above theorem in the next section.

Remark 6. The only former sharp result (concerning the above described limiting situ-

ation δ = α) is that of Mynbaev and Otel’baev [35, §3, Theorem 9]. They proved that

ak(Hs0

p0
(Rd, wα) →֒ Lp1

(Rd)) ∼ (k−1(1 + log k))
α
d ,

if s0 > 0 and 1 < p0 < p1 ≤ 2 or 2 ≤ p0 < p1 < ∞. Some, but not sharp, results can be

found in [18].

4. Proof of Theorem 5

4.1. Discretization of function spaces. We use wavelet bases as a method of discretiza-

tion. They are now a well developed concept in Besov spaces. In the case of unweighted

spaces we refer to the monographs of Y. Meyer [34], P. Wojtaszczyk [54] and the article of

G. Bourdaud [2]. Here we are interested in wavelet bases in weighted spaces. We quote the

wavelet characterization of weighted Besov spaces proved in [29], but cf. also [39] where

the more general weights are considered and [21] where quasi-Banach case is included.

First of all we need to fix some notations. By N we denote the set of natural numbers,

by N0 the set N ∪ {0}, and by Z
d the set of all lattice points in R

d having integer

components. Let φ̃ be an orthogonal scaling function on R with compact support and of

sufficiently high regularity. Let ψ̃ be a corresponding wavelet. Then the tensor product

yields a scaling function φ and associated wavelets ψ1, . . . , ψ2d−1, all defined now on R
d.

We suppose

φ̃ ∈ CN1 and supp φ̃ ⊂ [−N2, N2]

for certain natural numbers N1 and N2. This implies

φ, ψi ∈ CN1 and suppφ, suppψi ⊂ [−N3, N3]
d, i = 1, . . . , 2d − 1. (7)

We shall use the standard abbreviations

φj,ℓ(x) = 2jd/2φ(2jx− ℓ) and ψi,j,ℓ(x) = 2jd/2ψi(2
jx− ℓ). (8)

Similar to function spaces with weights we introduce sequence spaces with weights. If

w is a given continuous weight function, j ∈ N0 and ℓ ∈ Z
d then w(j, ℓ) = w(2−jℓ). Let

1 ≤ p, q ≤ ∞. We put

ℓq(2
jsℓp(wα)) :=

{
λ = {λi,j,ℓ}i,j,ℓ : λi,j,ℓ ∈ C,

‖λ|ℓq(2jsℓp(w))‖ =
( ∞∑

j=0

2jsq
( 2d−1∑

i=1

∑

ℓ∈Zd

|λi,j,ℓ w(j, ℓ)|p
)q/p)1/q

<∞
}
. (9)
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For smooth weights and compactly supported wavelets it makes sense to consider the

Fourier-wavelet coefficients of functions f ∈ Lp(w) with respect to such an orthonormal

basis. The following proposition was proved in [29].

Proposition 1. Let φ be a scaling function and let ψi, i = 1, . . . , 2d − 1 be the corre-

sponding wavelets satisfying (7). Let 1 ≤ p, q ≤ ∞ and let 0 < s < N1. Then a function

f ∈ Lp(R
d, wα) belongs to Bs

p,q(R
d, wα), α > 0, if and only if We put

‖f |Bs
p,q(R

d, wα)‖♣ =
( ∑

ℓ∈Zd

|〈f, φ0,ℓ〉wα(ℓ)|p
)1/p

+

2d−1∑

i=1

{ ∞∑

j=0

2j(s+d( 1
2
− 1

p
))q

( ∑

ℓ∈Zd

|〈f, ψi,j,ℓ〉wα(2−jℓ)|p
)q/p}1/q

<∞. (10)

Furthermore, ‖f |Bs
p,q(R

d, wα)‖♣ may be used as an equivalent norm in Bs
p,q(R

d, wα).

Remark 7. There is another way of discretization of the function spaces used in this

context. It is so called quarkonial decomposition. The method was developed by H. Triebel

in [52].

4.2. Approximation numbers of sequence spaces. Proposition 1 reduces the proof of The-

orem 5 to the study of approximation numbers of the following embeddings between the

sequence spaces

id : ℓp0
(2jαℓp0

(wα))→ ℓp1
(ℓp1

) (11)

where we put

ℓq(2
jαℓp(wα)) :=

{
λ = {λj,ℓ}j,ℓ : λj,ℓ ∈ C,

‖λ|ℓq(2jδℓp(wα))‖ =
( ∞∑

j=0

2jδq
( ∑

ℓ∈Zd

|λj,ℓwj,ℓ|p
)q/p)1/q

<∞
}
, (12)

where wj,ℓ = wα(2−jℓ). We recall that α = δ =
(
s0− d

p0

)
−

(
s1− d

p1

)
. The finite summation

on i = 1, 2, . . . , 2d − 1 is irrelevant and can be omitted.

To estimate the asymptotic behavior of the approximation numbers of the embed-

dings (11) we divide the source space into two parts: the local part and the global part.

Namely we put

ℓq(2
jαℓ2

jd

p (wα)) = {λ = (λj,ℓ) ∈ ℓq(2jαℓp(wα)) : λj,ℓ = 0 if ℓ > 2jd}, (13)

ℓq(2
jαℓ̃p(wα)) = {λ = (λj,ell) ∈ ℓq(2jαℓp(wα)) : λj,ℓ = 0 if ℓ ≤ 2jd}.

The weight does not influence the behavior of the embeddings of the local part since then

wα(2−jk) ∼ 1, but its influence is crucial for the second part.

The following estimates of approximation numbers of embeddings of finite dimensional

sequence spaces are well known.

Lemma 1. Let N ∈ N and k ≤ N
4 .

(i) If 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞ then

ak(id : ℓNp0
→ ℓNp1

) ∼ 1.
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(ii) If 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞) then

ak(id : ℓNp0
→ ℓNp1

) ∼ min(1, N1/tk−1/2)

where 1
t = 1

min(p′

0
,p1)

.

The above lemma is essentially due to E. D. Gluskin [15], cf. also [35] and [14].

For p1 < p0 the corresponding approximation numbers are calculated by A. Pietsch,

cf. [37, p. 109].

Lemma 2. Let 1 ≤ p1 < p0 ≤ ∞. Then

ak(id : ℓNp0
→ ℓNp1

) = (N − k + 1)1/p1−1/p0 , k = 1, . . . , N.

The following extension of the estimates of the second part of Lemma 1 will be also

useful, cf. [5] and [43].

Lemma 3. Let 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞), and N = 1, 2, 3, . . .. Then there

is a positive constant C independent of N and k such that

ak(id : ℓNp0
→ ℓNp1

) ≤ C





1 if k ≤ N2/t,

N1/tk−1/2 if N2/t < k ≤ N ,

0 if k > N ,

(14)

where 1
t = max

(
1
p1
, 1

p′

0

)
.

First we prove the estimates of the local part.

Proposition 2. Let α > 0 and let d > 0 be a positive integer. There exist a positive

constant C > 0 independent of k such that

ak(id1 : ℓq0
(2jαℓ2

jd

p0
(wα))→ ℓq1

(ℓ2
jd

p1
)) ≤ Ck−β

where

β =





α
d + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞), and α

d >
1
t ,

α
d

t
2 if 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞), and α

d ≤ 1
t ,

α
d if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,
α
d + 1

p0
− 1

p1
if p̃ < p1 < p0 ≤ ∞,

and 1
t = 1

min{p
′

0
,p1}

, 1
p̃ = α

d + 1
p0

.

Proof. Step 1. Preparations. Let

Λ := {λ = (λj,ℓ)j∈N0, 0≤ℓ≤2jd : λj,ℓ ∈ C, j ∈ N0, 0 ≤ ℓ ≤ 2jd}.
and

A0 = ℓq0
(2jδℓ2

jd

p0
) and A1 = ℓq1

(ℓ2
jd

p1
).

Then

ak(ℓq0
(2jδℓ2

jd

p0
(wα))→ ℓq1

(ℓ2
jd

p1
)) ≤ Cak(A0 → A1), (15)

since wα(2−jℓ) ∼ 1 if 0 ≤ ℓ) ≤ 2jd. Let Pj : Λ → Λ be the canonical projection onto

j-level i.e. for λ = (λj,ℓ) we put

(Pjλ)ℓ :=

{
λk,ℓ if k = j,

0 otherwise,
ℓ ∈ N0.
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Then id1 =
∑∞

j=0 Pj . The elementary properties of the approximation numbers yield for

any j ∈ N0

ak(Pj : A0 → A1) ≤ 2−jδak(id : ℓ2
jd

p0
→ ℓ2

jd

p1
). (16)

Step 2. Let p0 ≤ p1. The estimates of approximation numbers between finite dimensional

spaces imply

k
1
r ak(id : ℓNp0

→ ℓNp1
) ≤ C





N
2
tr for k ≤ N 2

t ,

N
1
t
+ 1

r
− 1

2 for 1
r − 1

2 > 0 and N
2
t < k ≤ N ,

N
2
tr for 1

r − 1
2 ≤ 0 and N

2
t < k ≤ N ,

0 for k > N ,

(17)

if 1 ≤ p0 < 2 < p1 ≤ ∞, r > 0, cf. Lemma 3, and

k
1
r ak(id : ℓNp0

→ ℓNp1
) ≤ CN1/r, (18)

if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞, cf. Lemma 1.

As a consequence we get for N = 2jd

L(a)
r,∞(Pj) ≤ C2−jδ





2jd 2
tr for 1

r ≤ 1
2 and

1 ≤ p0 ≤ 2 < p1 ≤ ∞,

2jd( 1
t
+ 1

r
− 1

2
) for 1

r >
1
2 and

1 ≤ p0 < 2 < p1 ≤ ∞,

2jd 1
r for 1 ≤ p0 ≤ p1 ≤ 2 or

2 ≤ p0 ≤ p1 ≤ ∞.

(19)

Now, for given M ∈ N0 let

P :=

M∑

j=0

Pj and Q :=

∞∑

j=M+1

Pj . (20)

The expression L
(a)
r,∞(T ) is a quasi-norm of the operator ideal L(a)

r,∞ therefore there exists

a number 0 < ̺ ≤ 1 such that

L(a)
r,∞(P )̺ ≤ C

M∑

j=0

L(a)
r,∞(Pj)

̺, L(a)
r,∞(Q)̺ ≤ C

∞∑

j=M+1

L(a)
r,∞(Pj)

̺. (21)

Due to (19), (21), and elementary properties of geometric series we have the estimate

L(a)
r,∞(Q)̺ ≤





2Md̺( 2
tr

− δ
d
) for 1

r < min{ 1
2 ,

δt
d2},

1 ≤ p0 < 2 < p1 ≤ ∞,

2Md̺( 1
t
+ 1

r
− δ

d
− 1

2
) for 1

2 <
1
r <

1
2 + δ

d − 1
t ,

1 ≤ p0 < 2 < p1 ≤ ∞
2Md̺( 1

r
− δ

d
) for 1

r <
δ
d , 1 ≤ p0 ≤ p1 ≤ 2

or 2 ≤ p0 ≤ p1 ≤ ∞.

(22)

Now, if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞ then (22) implies

a2Md(Q) ≤ C2−Md α
d , (23)
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with the constant C independent of M . In a similar way if 1 ≤ p0 < 2 < p1 ≤ ∞ then

ak(Q) ≤ C
{
k−( α

d
+ 1

2
− 1

t
) if α

d >
1
t ,

k−
α
d

t
2 if α

d ≤ 1
t ,

(24)

with k = 2Md if α
d > 1

t and k = [2Md2/t] otherwise. Here [x] denotes the integer part of

x. By monotonicity of approximation numbers we extend the inequalities (23) and (24)

to any positive integer k.

The estimate of the approximation numbers of the operator P goes in a similar way.

The only difference is that we should choose a different value of r to sum up the corre-

sponding sums. Namely we have

L(a)
r,∞(P )̺ ≤ C





2Md̺( 2
tr

− δ
d
) for δt

d2 <
1
r <

1
2 ,

1 ≤ p0 < 2 < p1 ≤ ∞,

2Md̺( 1
t
+ 1

r
− δ

d
− 1

2
) for 1

r > max{ 1
2 ,

1
2 + δ

d − 1
t },

1 ≤ p0 ≤ 2 < p1 ≤ ∞,

2Md̺( 1
r
− δ

d
) for 1

r >
δ
d , 1 ≤ p0 ≤ p1 ≤ 2

or 2 ≤ p0 < p1 ≤ ∞.

(25)

Now, if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞ then (25) implies

a2Md(P ) ≤ C2−Md α
d . (26)

In a similar way if 1 ≤ p0 < 2 < p1 ≤ ∞ then

ak(P ) ≤ C
{
k−( α

d
+ 1

2
− 1

t
) if α

d ≥ 1
t ,

k−
α
d

t
2 if α

d <
1
t .

(27)

with k = 2Md if α
d >

1
t and k = [2Md2/t] otherwise.

Step 3. Let p̃ < p1 < p0. Now using the Pietsch estimates, cf. Lemma 2, we get

k
1
r ak(id : ℓNp0

→ ℓNp1
) ≤ CN

1
r
+ 1

p1
− 1

p0 . (28)

In consequence

L(a)
r,∞(Pj) ≤ C2−jδ2jd( 1

r
+ 1

p1
− 1

p0
). (29)

Summing up as in the previous step we get

L(a)
r,∞(Q) ≤ C2Md( 1

r
+ 1

p1
− 1

p0
−α

d
) (30)

if 0 < 1
r <

α
d + 1

p0
− 1

p1
. So,

a2Md(Q) ≤ C2−Md( α
d
+ 1

p0
− 1

p1
). (31)

In an analogous way

L(a)
r,∞(P ) ≤ C2Md( 1

r
+ 1

p1
− 1

p0
−α

d
) (32)

if 1
r >

α
d + 1

p0
− 1

p1
and

a2Md(P ) ≤ C2−Md( α
d
+ 1

p0
− 1

p1
). (33)

This finishes the proof.
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It remains to consider the global part. This is done in the next proposition.

Proposition 3. Let α > 0 and let d > 0 be a positive integer. There exists a positive

constant C > 0 independent of k such that

ak(id2 : ℓp0
(2jαℓ̃p0

(wα))→ ℓp1
(ℓ̃p1

)) ∼ k−β(1 + log k)α/d,

where

β =





α
d + 1

2 − 1
t if 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞), and α

d >
1
t ,

α
d

t
2 if 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞), and α

d ≤ 1
t ,

α
d if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,
α
d + 1

p0
− 1

p1
if p̃ < p1 < p0 ≤ ∞.

and 1
t = 1

min{p
′

0
,p1}

, 1
p̃ = α

d + 1
p0

.

Proof. Step 1. Preparations. If |ℓ| > 2j , ℓ ∈ Z
d, then (1 + |2−jℓ|2)α/2 ∼ 2−jα|ℓ|α. So,

ak(id2) ∼ ak(ℓp0
(ℓ̃p0

(vα))→ ℓp1
(ℓ̃p1

)), (34)

where vα(j, ℓ) = ℓα/d. The norm in the space ℓp(ℓ̃p(vα)) is given by

‖λ|ℓp(ℓ̃p(vα))‖ =
( ∞∑

j=0

∞∑

ℓ=2jd+1

|λj,ℓℓ
α/d|p

)1/p

. (35)

If 2nd ≤ ℓ < 2(n+1)d then ℓα/d ∼ 2nα. So the condition

2nd ≤ ℓ < 2(n+1)d and λj,ℓ 6= 0

can be satisfied on any j-level with j ≤ n for at most 2jd(2d − 1) entries. In consequence

taking Nj = j2jd(2d − 1) and changing the order of summation in (35) we get

‖λ|ℓp(ℓ̃p,wα
)‖ ∼ ‖λ|ℓp(2jαℓNj

p )‖ (36)

So it follows from (34)–(36) that

ak(id2) ∼ ak(id3 : ℓp0
(2jαℓNj

p0
)→ ℓp1

(ℓNj
p1

)). (37)

Now to prove the estimates from above we can deal as in the proof of Proposition 2. So

we only sketch the argument. Let the operators Pj , P and Q be the same as above. We

have

ak(Pj) ≤ 2−jαak(id : ℓNj
p0
→ ℓNj

p1
), (38)

Step 2. We prove the estimates from above. Let p0 ≤ p1. Using (17), (18) and (28) we get

L(a)
r,∞(Pj) ≤ C2−jα





N
2
tr

j for 1
r ≤ 1

2 and

1 ≤ p0 < 2 < p1 ≤ ∞,

N
1
t
+ 1

r
− 1

2

j for 1
r >

1
2 and

1 ≤ p0 < 2 < p1 ≤ ∞,

N
1
r

j for 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,

N
1
r
+ 1

p1
− 1

p0

j for p̃ < p1 < p0 ≤ ∞.

(39)
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Now, for chosen M ∈ N0 the formulae (20) and (39) imply

L(a)
r,∞(Q)̺ ≤ C





M̺ 2
tr 2Md̺( 2

tr
−α

d
) for 1

r < min{ 1
2 ,

α
d

t
2},

1 ≤ p0 < 2 < p1 ≤ ∞
M̺( 1

t
+ 1

r
− 1

2
)2Md̺( 1

t
+ 1

r
−α

d
− 1

2
) for 1

2 <
1
r <

1
2 + α

d − 1
t ,

1 ≤ p0 ≤ 2 < p1 ≤ ∞
M̺ 1

r 2Md̺( 1
r
−α

d
) for 1

r <
α
d , 1 ≤ p0 ≤ p1 ≤ 2

or 2 ≤ p0 < p1 ≤ ∞,

M̺( 1
r
+ 1

p1
− 1

p0
)2̺Md( 1

r
+ 1

p1
− 1

p0
−α

d
) for 1

r <
α
d + 1

p0
− 1

p1
.

(40)

If 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞ then (40) implies

aM2Md(Q) ≤ C2−Md α
d ≤ C(1 + log(M2Md))

α
d (M2Md)−

α
d . (41)

In a similar way if 1 ≤ p0 < 2 < p1 ≤ ∞ then

ak(Q) ≤ C
{

(1 + log(k))
α
d k−( α

d
+ 1

2
− 1

t
) if α

d >
1
t ,

(1 + log(k))
α
d k−

α
d

t
2 if α

d ≤ 1
t .

(42)

with k = M2Md if α
d >

1
t and k = [(M2Md)2/t] otherwise.

Finally, if p̃ < p1 < p0 then

aM2Md(Q) ≤ C(1 + log(M2dM ))
α
d (M2Md)−( α

d
+ 1

p0
− 1

p1
). (43)

The proof of the estimates for the operator P goes in a similar way. This proves the

estimates from above.

Step 3. It remains to consider the estimates from below. We consider the following com-

mutative diagram

ℓ
Nj
p0

S−−−−→ ℓp0
(2jαℓ

Nj
p0

)

Id

y
yid3

ℓ
Nj
p1

T←−−−− ℓp1
(ℓ

Nj
p1

),

(44)

where

(S(ν))i,ℓ =

{
νℓ if (i, ℓ) = (j, ℓ),

0 otherwise,

(T (λ))ℓ = λj,ℓ, 1 ≤ ℓ ≤ Nj .

Then

ak(Id) ≤ ‖S‖ak(id3). (45)

Taking k = j2dj−2 we get by (37) and Lemma 1 or Lemma 2

1 ≤ Cak(Id) ≤ C2jαak(id2) ≤ C(k(1 + log k)−1)α/dak(id2),

if 1 ≤ p0 ≤ p1 ≤ 2 or 2 ≤ p0 ≤ p1 ≤ ∞,
(j2dj−2)

1
t
− 1

2 ≤ Cak(Id) ≤ C2jαak(id2),

if 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞) and
α

d
>

1

t
,

(j2dj)
1

p1
− 1

p0 ≤ Cak(Id) ≤ C2jαak(id2), if p̃ < p1 < p0 ≤ ∞.
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For 1 ≤ p0 < 2 < p1 ≤ ∞, (p0, p1) 6= (1,∞) and α
d ≤ 1

t we take k = [(j2jd)2/t]. Then

1 ≤ Cak(Id) ≤ C2jαak(id2).

This finishes the proof.

Since id = id1 + id2, cf. (11)–(13), it follows from Proposition 2 and Proposition 3

that

ak(id) ∼ k−β(1 + log k)α/d

where β takes the same values as in Proposition 3. Now Theorem 5 follows from the

above estimate and Proposition 1.
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