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Abstra
t. This paper is a survey of re
ent results on some problems of supervised learning inthe setting formulated by Cu
ker and Smale. Supervised learning, or learning-from-examples,refers to a pro
ess that builds on the base of available data of inputs xi and outputs yi,
i = 1, . . . , m, a fun
tion that best represents the relation between the inputs x ∈ X and the
orresponding outputs y ∈ Y . The goal is to �nd an estimator fz on the base of given data
z := ((x1, y1), . . . , (xm, ym)) that approximates well the regression fun
tion fρ of an unknownBorel probability measure ρ de�ned on Z = X × Y . We assume that (xi, yi), i = 1, . . . , m, areindepent and distributed a

ording to ρ. We dis
uss a problem of �nding optimal (in the senseof order) estimators for di�erent 
lasses Θ (we assume fρ ∈ Θ). It is known from the previousworks that the behavior of the entropy numbers ǫn(Θ, B) of Θ in a Bana
h spa
e B plays animportant role in the above problem. The standard way of measuring the error between a targetfun
tion fρ and an estimator fz is to use the L2(ρX) norm (ρX is the marginal probabilitymeasure on X generated by ρ). The usual way in regression theory to evaluate the performan
eof the estimator fz is by studying its 
onvergen
e in expe
tation, i.e. the rate of de
ay of thequantity E(‖fρ − fz‖

2
L2(ρX )) as the sample size m in
reases. Here the expe
tation is taken withrespe
t to the produ
t measure ρm de�ned on Zm. A more a

urate and more deli
ate way ofevaluating the performan
e of fz has been pushed forward in [CS℄. In [CS℄ the authors studythe probability distribution fun
tion

ρ
m{z : ‖fρ − fz‖L2(ρX ) ≥ η}instead of the expe
tation E(‖fρ−fz‖

2
L2(ρX )). In this survey we mainly dis
uss the optimizationproblem formulated in terms of the probability distribution fun
tion.
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342 V. N. TEMLYAKOV1. Introdu
tion. Notations. Settings. This paper is a survey of re
ent results onsupervised learning. Supervised learning, or learning-from-examples, refers to a pro
essthat builds on the base of available data of inputs xi and outputs yi, i = 1, . . . ,m, afun
tion that best represents the relation between the inputs x ∈ X and the 
orrespondingoutputs y ∈ Y . This is a big area of resear
h both in nonparametri
 statisti
s and inlearning theory. In this paper we 
on�ne ourselves to re
ent results obtained in a dire
tionof further development of the settings and results from the fundamental paper of Cu
kerand Smale [CS℄. In this paper we illustrate how methods of approximation theory 
anbe used in learning theory. We begin our dis
ussion with a very brief survey of di�erentsettings that are 
lose to the setting of our main interest.1. Approximation theory. Re
overy of fun
tions. Deterministi
 model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi), i = 1, . . . ,m, f ∈ Θ.Re
over f ∈ Θ (�nd an approximant of f). Error of approximation is measured in somenorm ‖ · ‖. Usually it is the Lp norm, 1 ≤ p ≤ ∞, with respe
t to the Lebesgue measureon a given domain X.2. Statisti
s. Regression theory.a) Fixed design model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + ǫi, x1, . . . , xm �xed,

ǫi independent identi
ally distributed (i.i.d.), Eǫi = 0, f ∈ Θ.Find an approximant for f (estimator f̂). The unknown fun
tion f is 
alled theregression fun
tion. Error is measured by expe
tation E(‖f−f̂‖2) of some of the standardnorms.b) Random design model: given
z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + ǫi,

x1, . . . , xm random, i.i.d.; ǫi i.i.d. (independent of xi), Eǫi = 0, f ∈ Θ. Find an estimator
f̂ for f . Error is measured by expe
tation E(‖f − f̂‖2).
) Distribution-free theory of regression.Let X ⊂ R

d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X × Y .For f : X → Y de�ne the error
E(f) := Eρ(f) :=

∫

Z

(f(x) − y)2dρ.Consider ρ(y|x), the 
onditional (with respe
t to x) probability measure on Y , and ρX ,the marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S × Y )). De�ne
fρ(x) :=

∫

Y

ydρ(y|x).The fun
tion fρ minimizes the error E(f). It is known in statisti
s as the regressionfun
tion of ρ. Given: (xi, yi), i = 1, . . . ,m, independent identi
ally distributed a

ordingto ρ, |y| ≤M a.e. Find an estimator f̂ for fρ. Error: E(‖fρ − f̂‖2
L2(ρX)). Assume fρ ∈ Θ.
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lass Θ 
onsider
E(Θ,m, f̂) := sup

fρ∈Θ
E(‖fρ − f̂‖2

L2(ρX)), E(Θ,m) := inf
f̂
E(Θ,m, f̂).3. Learning theory. This is a vast area of resear
h with a wide range of di�erentsettings. In this paper we only dis
uss a development of a setting from [CS℄. For resultsin other settings we re
ommend a fundamental book of V. Vapnik [V℄ and a ni
e surveyon the 
lassi�
ation problem by G. Lugosi [L℄. Our setting is similar to the setting of thedistribution-free regression problem. The goal is to �nd an estimator fz, on the base ofgiven data z = ((x1, y1), . . . , (xm, ym)) that approximates fρ (or its proje
tion) well withhigh probability. We assume that (xi, yi), i = 1, . . . ,m are independent and distributeda

ording to ρ. Similarly to the distribution-free theory of regression we measure the errorin the L2(ρX) norm. This di�ers the distribution-free theory of regression and our settingof learning theory from 
lassi
al nonparametri
 statisti
s. One 
an �nd a dis
ussion ofrelations between the �xed design model, the random design model, and the distribution-free theory of regression in the re
ent book [GKKW℄ (see also [VG℄, [BM1℄). Here weonly mention that the problem of learning theory that we dis
uss in this paper 
an berewritten in the form

yi = fρ(xi) + ǫi, ǫ := y − fρ(x),
lose to the form of the random design model. However, in our setting we are not assumingthat ǫ and x are independent. While the theories of �xed and random design models do notdire
tly apply to our setting, they utilize several of the same te
hniques we shall en
ountersu
h as the use of entropy and the 
onstru
tion of estimators through minimal risk.We note that a standard setting in the distribution-free theory of regression (see[GKKW℄) involves the expe
tation as a measure of quality of an estimator. An importantnew feature of the setting in learning theory formulated in [CS℄ is the following. Theypropose to study systemati
ally the probability distribution fun
tion
ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}instead of the expe
tation. There are several important ingredients in mathemati
al for-mulation of the learning problem. In our formulation we follow the way that has be
omestandard in approximation theory and based on the 
on
ept of optimal method.We begin with a 
lass M of admissible measures ρ. Usually, we impose restri
tions on

ρ in the form of restri
tions on the regression fun
tion fρ: fρ ∈ Θ. Then the �rst step is to�nd an optimal estimator for a given 
lass Θ of priors (we assume fρ ∈ Θ). In regressiontheory the usual way to evaluate the performan
e of the estimator fz is by studying its
onvergen
e in expe
tation, i.e. the rate of de
ay of the quantity E(‖fρ − fz‖
2
L2(ρX)) asthe sample size m in
reases. Here the expe
tation is taken with respe
t to the produ
tmeasure ρm de�ned on Zm. We note that E(fz)−E(fρ) = ‖fz−fρ‖

2
L2(ρX). As we alreadymentioned above a more a

urate and more deli
ate way of evaluating the performan
eof fz has been pushed forward in [CS℄. In this paper we 
on
entrate on a dis
ussion ofresults on the probability distribution fun
tion.An important question in �nding an optimal fz is the following. How to des
ribe the
lass Θ of priors? In other words, what 
hara
teristi
s of Θ govern, say, the optimal rate



344 V. N. TEMLYAKOVof de
ay of E(‖fρ − fz‖
2
L2(ρX)) for fρ ∈ Θ? Previous and re
ent works in statisti
s andlearning theory (see [B℄, [BM2℄, [BM3℄, [CS℄, [DKPT1℄, [DKPT2℄, [GKKW℄, [KT1℄, [KT2℄,[L℄, [V℄, [VG℄) indi
ate that the 
ompa
tness 
hara
teristi
s of Θ play a fundamental rolein the above problem. It is 
onvenient for us to express 
ompa
tness of Θ in terms ofthe entropy numbers. In this survey we dis
uss the 
lassi
al 
on
ept of entropy and the
on
ept of tight entropy. We note that some other 
on
epts of entropy, for instan
e,entropy with bra
keting, proved to be useful in the theory of empiri
al pro
esses andnonparametri
 statisti
s (see [VG℄, [BM2℄, [V℄). There is a 
on
ept of V C dimension thatplays a fundamental role in the problem of pattern re
ognition and 
lassi�
ation [V℄. This
on
ept is also useful in des
ribing 
ompa
tness 
hara
teristi
s of sets. We do not dis
ussthis 
on
ept here be
ause we have no new results in this dire
tion.For a 
ompa
t subset Θ of a Bana
h spa
e B we de�ne the entropy numbers as follows

ǫn(Θ, B) := inf{ǫ : ∃f1, . . . , f2n ∈ Θ : Θ ⊂ ∪2n

j=1(fj + ǫU(B))}where U(B) is the unit ball of Bana
h spa
e B. We denoteN(Θ, ǫ, B) the 
overing numberthat is the minimal number of balls of radius ǫ needed for 
overing Θ. The 
orresponding
ǫ-net is denoted by Nǫ(Θ, B). In the papers [CS℄, [DKPT1℄, [DKPT2℄, [KT1℄ in the most
ases the spa
e C := C(X) of 
ontinuous fun
tions on a 
ompa
t X ⊂ R

d has beentaken as a Bana
h spa
e B. This allowed us to formulate all results with assumptionson Θ independent of ρ. In [KT2℄ and [BCDDT℄ we obtain some results for B = L2(ρX).On the one hand we weaken assumptions on the 
lass Θ and on the other hand thisresults in the use of ρX in the 
onstru
tion of an estimator. Thus, we have a tradeo�between treating wider 
lasses and building estimators that are independent of ρX . Wenote that in pra
ti
e we often do not know the ρX . Thus, it is very desirable to buildestimators independent of ρX . In statisti
s this type of regression problem is referred toas distribution-free. A re
ent survey on distribution-free regression theory is provided inthe book [GKKW℄.In Se
tions 2 and 3 of this paper we always assume that the unknown measure ρsatis�es the 
ondition |y| ≤ M (or a little weaker |y| ≤ M a.e. with respe
t to ρX) withsome �xedM . Then it is 
lear that for fρ we have |fρ(x)| ≤M for all x (for almost all x).Therefore, it is natural to assume that a 
lass Θ of priors where fρ belongs is embeddedinto the C(X)-ball (L∞-ball) of radius M . We make this assumption in all theorems ofSe
tions 2 and 3 without formulating the assumption.In [DKPT1℄, [DKPT2℄, [KT1℄ the restri
tions on a 
lass Θ have been imposed in thefollowing forms:
(1.1) ǫn(Θ, C) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(C).or
(1.2) dn(Θ, C) ≤ Kn−r, n = 1, 2, . . . , Θ ⊂ KU(C).Here, dn(Θ, B) is the Kolmogorov width. Kolmogorov's n-width for the 
entrally sym-metri
 
ompa
t set Θ in the Bana
h spa
e B is de�ned as follows

dn(Θ, B) := inf
L

sup
f∈Θ

inf
g∈L

‖f − g‖B
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es of B. In [KT2℄ we impose aweaker restri
tion
(1.3) ǫn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).We have already mentioned above that the study of the probability distribution fun
-tion ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} is a more di�
ult and deli
ate problem than thestudy of the expe
tation E(‖fρ − fz‖

2
L2(ρX)). We en
ounter this di�
ulty even at thelevel of formulation of a problem. The reason for this is that the probability distri-bution fun
tion provides 
ontrol of two 
hara
teristi
s: η, the error of estimation, and

1 − ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}, the 
on�den
e of the error η. Therefore, we need amathemati
al formulation of the above dis
ussed problems of optimal estimators.We propose (see [DKPT2℄) to study the following fun
tion that we 
all the a
-
ura
y 
on�den
e fun
tion. Let a set M of admissible measures ρ, and a sequen
e
E := {E(m)}∞m=1 of allowed 
lasses E(m) of estimators be given. For m ∈ N, η > 0we de�ne

ACm(M,E, η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}where Em is an estimator that maps z → fz. For example, E(m) 
ould be the 
lass of allestimators, the 
lass of linear estimators of the form
fz =

m
∑

i=1

wi(x1, . . . , xm, x)yi,or a spe
i�
 estimator. In the 
ase E(m) is the set of all estimators, m = 1, 2, . . . , wewrite ACm(M, η).In Se
tion 2 we dis
uss results on ACm(M,E, η) with M = M(Θ) := {ρ : fρ ∈ Θ}.In this 
ase we write ACm(M(Θ),E, η) =: ACm(Θ,E, η). Thus Se
tion 2 is devoted tothe study of priors on fρ in the form fρ ∈ Θ. Sometimes this setting is referred to asproper fun
tion learning problem.It is 
lear from the de�nition of E(Θ,m) and ACm(Θ, η) that
(1.4)

∫ ∞

0

ACm(Θ, η1/2)dη ≤ E(Θ,m),and for ρ, Θ satisfying |y| ≤M , Θ ⊂MU(C(X))

(1.5) E(Θ,m) ≤ min
η

(η2 + 4M2
ACm(Θ, η)).One of the important variants of the learning problem formulated in [CS℄ is thefollowing. We now do not impose any restri
tions on ρ, ex
ept |y| ≤ M a.e. and insteadof estimating the regression fun
tion fρ we estimate a proje
tion (fρ)W of fρ onto a
ompa
t set W of our 
hoi
e. Sometimes this setting is referred to as improper fun
tionlearning problem. Similarly to the above 
ase (fρ ∈ Θ) we introdu
e the 
orrespondinga

ura
y 
on�den
e fun
tion

AC
p
m(W,E, η) := inf

Em∈E(m)
sup

ρ
ρm{z : E(fz) − E((fρ)W ) ≥ η2}.



346 V. N. TEMLYAKOVIn the 
ase E(m), m = 1, 2, . . . , is a 
olle
tion of all estimators Em : z → fz ∈ W wedrop E from the notation. We note that in the 
ase of 
onvex W we have for any f ∈W

‖f − (fρ)W ‖2
L2(ρX) ≤ E(f) − E((fρ)W ).We dis
uss related results in Se
tion 3.In Se
tion 4 we dis
uss an important statisti
al problem of how well the empiri
alerror (risk) of f

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2


an approximate the a
tual error E(f). This problem is related to the 
on
ept of theGlivenko-Cantelli sample 
omplexity.Se
tion 5 
ontains a probabilisti
 inequality that we use in the dis
ussion in Se
tion2. This inequality might be of an independent interest.By C and c we denote absolute positive 
onstants and by C(·), c(·), and A0(·) wedenote 
onstants that are determined by their arguments. For two nonnegative sequen
es
a = {an}

∞
n=1 and b = {bn}

∞
n=1 the relation (order inequality) an ≪ bn means that thereis a number C(a, b) su
h that for all n we have an ≤ C(a, b) bn; and the relation an ≍ bnmeans that an ≪ bn and bn ≪ an.2. Prior on fρ in the form fρ ∈ Θ. We begin with the lower estimate of the a

ura
y
on�den
e fun
tion from [DKPT2℄. We shall establish lower bounds in terms of a 
ertainvariant of the Kolmogorov entropy of Θ whi
h we shall 
all tight entropy. This type ofentropy has been used to prove lower bounds in approximation theory. Also, a similartype of entropy was used by Yang and Barron [YB℄ in statisti
al estimation. The entropymeasure that we shall use is in general di�erent from the Kolmogorov entropy, but, for
lassi
al smoothness sets Θ, it is equivalent to the Kolmogorov entropy and therefore ourlower bounds will apply in these 
lassi
al settings.For a 
ompa
t Θ in a Bana
h spa
e B we de�ne the pa
king numbers as

(2.1) P (Θ, δ) := P (Θ, δ, B) := sup{N : ∃ f1, ..., fN ∈ Θ, δ ≤ ‖fi − fj‖B , ∀i 6= j}.It is well known [P℄ and easy to 
he
k that N(Θ, δ, B) ≤ P (Θ, δ, B). The tight pa
kingnumbers are de�ned as follows. Let 1 ≤ c1 < ∞ be a �xed real number. We de�ne thetight pa
king numbers as
(2.2) P̄ (Θ, δ) := P̄ (Θ, δ, c1, B) := sup{N : ∃f1, . . . , fN ∈ Θ, δ ≤ ‖fi−fj‖B ≤ c1δ, ∀i 6= j}.It is 
lear that P̄ (Θ, δ, c1, B) ≤ P (Θ, δ, B).We let µ be any Borel measure de�ned on X and let M(Θ, µ) denote the set ofall ρ ∈ M(Θ) su
h that ρX = µ, |y| ≤ 1. As above M(Θ) = {ρ : fρ ∈ Θ}. Wespe
ify B = L2(µ) and assume that Θ ⊂ L2(µ). We will use the abbreviated notation
P̄ (δ) := P̄ (Θ, δ, c1, L2(µ)).Let us �x any set Θ and any Borel measure µ de�ned on X. We set M := M(Θ, µ)as de�ned above. We also take 1 < c1 in an arbitrary way but then �x this 
onstant. Forany �xed δ > 0, we let {fi}

P̄
i=1, with P̄ := P̄ (δ), be a net of fun
tions satisfying (2.2). To
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h fi, we shall asso
iate the measure
dρi(x, y) := (ai(x)dδ1(y) + bi(x)dδ−1(y))dµ(x),where ai(x) := (1 + fi(x))/2, bi(x) := (1− fi(x))/2 and dδξ denotes the Dira
 delta withunit mass at ξ. Noti
e that (ρi)X = µ and fρi

= fi and hen
e ea
h ρi is in M(Θ, µ).We have the following theorem.Theorem 2.1 ([DKPT2℄). Let 1 < c1 be a �xed 
onstant. Suppose that Θ is a subset of
L2(µ) with tight pa
king numbers P̄ := P̄ (δ). In addition suppose that for δ = 2η > 0,the net of fun
tions {fi}

P̄
i=0 in (2.2) satis�es ‖fi‖C(X) ≤ 1/4, i = 1, . . . , P̄ . Then for anyestimator fz we have for some i ∈ {1, . . . , P̄}

ρm
i {z : ‖fz − fi‖L2(µ) ≥ η} ≥ min(1/2, (P̄ (2η) − 1)1/2e−8c2

1mη2−3/e),

∀η > 0, m = 1, 2, . . . .The proof of Theorem 2.1 is given in [DKPT2℄. This proof uses the 
on
ept of theKullba
k-Leibler information. Given two probability measures dP and dQ de�ned onthe same spa
e and su
h that dP is absolutely 
ontinuous with respe
t to dQ, we write
dP = gdQ and de�ne

K(P,Q) :=

∫

ln gdP =

∫

g ln gdQ.If dP is not absolutely 
ontinuous with respe
t to dQ then K(P,Q) := ∞.It is obvious that
K(Pm, Qm) = mK(P,Q).The use of Kullba
k-Leibler information is well known in statisti
s and goes ba
k toKullba
k, Leibler [KL℄ and Ibragimov, Hasminskii [IH℄.As we already mentioned Theorem 2.1 provides lower estimates for 
lasses Θ withknown lower estimates for the tight pa
king numbers P̄ (Θ, δ). We now show how thistheorem 
an be used in a situation when we know the behavior of pa
king numbers

P (Θ, δ).Lemma 2.1. Let Θ be a 
ompa
t subset of B. Assume that
C1ϕ(δ) ≤ lnP (Θ, δ) ≤ C2ϕ(δ), δ ∈ (0, δ1],with a fun
tion ϕ(δ) satisfying the following 
ondition. For any γ > 0 there is Aγ su
hthat for any δ > 0

(2.3) ϕ(Aγδ) ≤ γϕ(δ).Then there exists c1 ≥ 1 and δ2 > 0 su
h that
ln P̄ (Θ, δ, c1, B) ≥ C3 lnP (Θ, δ), δ ∈ (0, δ2].Proof. For δ > 0 we take the set F := {fi}

P (Θ,δ)
i=1 ⊂ Θ satisfying (2.1). Considering a

lδ-net with l ≥ 1 for 
overing Θ we obtain that one of the balls of radius lδ 
ontains atleast P (Θ, δ)/P (Θ, lδ) points of the set F . Denote this set of points by Fl = {fi}i∈Λ(l).Then, obviously, for any i 6= j ∈ Λ(l) we have
δ ≤ ‖fi − fj‖ ≤ 2lδ.



348 V. N. TEMLYAKOVTherefore
ln P̄ (Θ, δ, 2l, B) ≥ lnP (Θ, δ) − lnP (Θ, lδ) ≥ C1ϕ(δ) − C2ϕ(lδ).Spe
ifying γ = C1/(2C2), l = Aγ , and δ2 := δ1/l we 
ontinue

≥ C1ϕ(δ)/2 ≥
C1

2C2
lnP (Θ, δ), δ ∈ (0, δ2].As a 
orollary of Theorem 2.1 and Lemma 2.1 we obtain the following theorem.Theorem 2.2. Assume Θ is a 
ompa
t subset of L2(µ) su
h that Θ ⊂ 1

4U(C(X)) and
(2.4) ǫn(Θ, L2(µ)) ≍ n−r.Then there exist δ0 > 0 and ηm := ηm(r) ≍ m− r

1+2r su
h that
(2.5) ACm(M(Θ, µ), η) ≥ δ0 for η ≤ ηmand
(2.6) ACm(M(Θ, µ), η) ≥ Ce−c(r)mη2 for η ≥ ηm.Proof. Condition (2.4) implies

C1(r)δ
−1/r ≤ lnP (Θ, δ) ≤ C2(r)δ

−1/r, δ ∈ (0, δ1].Clearly, the fun
tion ϕ(δ) = δ−1/r satis�es the 
ondition (2.3) from Lemma 2.1. Thereforeby Lemma 2.1 we obtain
ln P̄ (Θ, η, c1(r), L2(µ)) ≥ C3(r)η

−1/r, η ∈ (0, δ2(r)],with some c1(r) ≥ 1. It remains to use Theorem 2.1 with ηm a solution of the equation
C3(r)

2
(2η)−1/r − 8c1(r)

2mη2 = 0.It is 
lear that
ηm ≍ m− r

1+2r .Remark 2.1. Theorem 2.2 holds in the 
ase Θ ⊂ (M/4)U(C(X)), |y| ≤ M , with 
on-stants allowed to depend on M .We note that we do not impose dire
t restri
tions on the measure µ in Theorem 2.2.However, the assumption (2.4) imposes an indire
t restri
tion. For instan
e, if µ is aDira
 measure then we always have ǫn(Θ, L2(µ)) ≪ 2−n. Therefore, Theorem 2.2 doesnot apply in this 
ase.Let us make some 
omments on Theorem 2.2. It is 
lear that the parameter r 
ontrolsthe size of the 
ompa
t Θ. The bigger the r the smaller the 
ompa
t Θ. In the statementof Theorem 2.2 the parameter r a�e
ts the rate of de
ay of ηm. The quantity ηm is animportant 
hara
teristi
 of the estimation pro
ess. The inequality (2.5) says that thereis no way to estimate fρ from Θ with a

ura
y ≤ ηm with high 
on�den
e (> 1 − δ0). Itseems natural that this 
riti
al a

ura
y ηm depends on the size of Θ (on parameter r).The inequalities (2.5) and (2.6) give
(2.7) ACm(M(Θ, µ), η) ≥ δ0Ce

−c(r)mη2for all η. The exponent mη2 in this inequality does not depend on the size of Θ. This mayindi
ate that the form of this exponent is related not to the size of Θ but rather to the
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hasti
 nature of the problem. Other argument in support of the above observationis provided by an inequality from Se
tion 5. We will use that inequality to show that inthe 
ase of a 
ompa
t Θ 
onsisting of only one fun
tion we have an analogue of (2.7) inthe 
ase of linear estimators. Let Θ = {1/2}. Suppose that we are looking for a linearestimator
(2.8) fz =

m
∑

i=1

wi(x1, . . . , xm, x)yiof the regression fun
tion fρ. Consider the following spe
ial 
ase of the measure ρ. Let
ρX = µ be any probabilisti
 measure on X. We de�ne ρ(y|x) as the Bernoulli measure:

ρ(1|x) = ρ(0|x) = 1/2, x ∈ X.Then for the above measure ρ we have fρ(x) ≡ 1/2 ∈ Θ. Then
‖fz − fρ‖L2(µ) ≥

∫

X

|fz − fρ|dµ ≥
∣

∣

∣

∫

X

(fz − fρ)dµ
∣

∣

∣
=

∣

∣

∣

m
∑

i=1

wi(x1, . . . , xm)yi − 1/2
∣

∣

∣
,where

wi(x1, . . . , xm) :=

∫

X

wi(x1, . . . , xm, x)dµ.Using Theorem 5.1 we get
ρm{z : ‖fz − fρ‖L2(µ) ≥ η} ≥ Probz∈Zm

{∣

∣

∣

m
∑

i=1

wi(x1, . . . , xm)yi − 1/2
∣

∣

∣
≥ η

}

≥ exp(−25mη2 − 6.25

m−1
∑

k=1

1/k) ≥ m−6.25 exp(−25mη2 − 1).Therefore, in the 
ase E(m) is the set of estimators of the form (2.8) we have for Mµ :=

{ρ : fρ = 1/2, ρX = µ}

ACm(Mµ,E, η) ≥ m−6.25 exp(−25mη2 − 1).We now pro
eed to upper estimates. In order to prove upper estimates we need tode
ide what should be the form of an estimator fz. In other words we need to spe
ify thehypothesis spa
e H (see [CS℄, [PS℄) where an estimator fz 
omes from.The next question is how to build fz ∈ H. In this paper we dis
uss a standard instatisti
s method of empiri
al risk minimization that takes
fz,H = arg min

f∈H
Ez(f),where

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2is the empiri
al error (risk) of f . This fz,H is 
alled the empiri
al optimum. We beginwith the following estimate.Theorem 2.3 ([CS℄, [DKPT1,2℄). Assume that Θ satis�es (1.1). Suppose that fρ ∈ Θ.Then for η ≥ A0(M,D, r)m− r

2(1+r)

(2.9) ρm{z : ‖fz,Θ − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).



350 V. N. TEMLYAKOVLet us 
ompare this theorem with Theorem 2.2. First of all we note that the estimator
Ez : z → fz,Θ does not depend on η. Se
ondly, this estimator provides an optimalestimate for the probability distribution fun
tion with the exponentmη2 that mat
hes theexponent in the lower bound (2.6). However, (2.9) holds for η ≫ m− r

2(1+r) and (2.6) holdsfor η ≫ m− r
1+2r . Thus Theorem 2.3 does not 
over the range ofm− r

1+2r ≪ η ≪ m− r
2(1+r) .Also, we should point out that Θ satis�es (1.1), whi
h is stronger than the 
orresponding
ondition (1.3).The key ingredient of the proof of Theorem 2.3 is the following theorem from [CS℄.For a 
ompa
t H denote

fH := arg min
f∈H

E(f).Theorem 2.4 ([CS℄). Suppose that H is a 
ompa
t subset of C(X) whi
h is either 
onvexor fρ ∈ H. Assume that for all f ∈ H, f : X → Y is su
h that |f(x)− y| ≤M a.e. Then,for all ǫ > 0

ρm{z : E(fz,H) − E(fH) ≥ ǫ} ≤ N(H, ǫ/(24M), C(X))2 exp

(

−
mǫ

288M2

)

.Theorem 2.5 ([DKPT1,2℄). Let Θ satisfy (1.2). Suppose that fρ ∈ Θ. Then there existsan estimator fz su
h that for η ≥ A0(M,K, r)(lnm/m)
r

1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).Theorem 2.5 allows us to build estimators with better a

ura
y than in Theorem 2.3:with error ≍ (lnm/m)
r

1+2r instead of error ≍ m− r
2(1+r) . This is done under assumption(1.2) instead of (1.1). We note that 
ondition (1.2) is stronger than (1.1). By Carl'sinequality [C℄ (1.2) implies (1.1). We now des
ribe the 
onstru
tion of the estimator fzfrom Theorem 2.5. Let {Ln} be a sequen
e of optimal (near optimal) subspa
es for Θ,

dimLn = n. Then for any f ∈ Θ there is a ϕn ∈ Ln su
h that ‖f −ϕn‖C(X) ≤ 2Dn−r. Itis 
lear that ‖ϕn‖C(X) ≤ 3D. We now 
onsider the set Vn := 3DU(C(X)) ∩ Ln. In otherwords we take as a hypothesis spa
e the set Vn. We 
onstru
t an estimator for fρ ∈ Θ by
fz := fz,Vn

= arg min
f∈Vn

Ez(f)with n := [( m
ln m )

1
1+2r ]. This 
onstru
tion has an advantage over the 
hoi
e fz = fz,Θin Theorem 2.3. Building fz,Vn

we optimize over a ball in a �nite dimensional spa
e Lninstead of optimizing over Θ. We note that the set H, smaller than Θ, that is used as ahypothesis spa
e is known in statisti
s under the name sieve [G℄, [BM2℄. In the proof ofTheorem 2.5 we also use Theorem 2.4.Theorem 2.6 ([KT1℄). Let Θ satisfy (1.1). Suppose that fρ ∈ Θ. Then there exists anestimator fz su
h that for η ≥ A0(M,D, r)m− r
1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).Comparing this theorem with Theorem 2.2 we see that Theorem 2.6 provides boththe optimal rate of a

ura
y ≍ m− r
1+2r and the best estimate of probability distributionfun
tion with the exponent mη2. The only thing in Theorem 2.6 that does not mat
h theassumptions of Theorem 2.2 is the following. In Theorem 2.6 we assume that Θ satis�es(1.1) that means we impose restri
tions in the uniform norm but not in the L2(ρX) norm



OPTIMAL ESTIMATORS IN LEARNING THEORY 351as in Theorem 2.2. Thus, Theorem 2.6 provides an optimal result in the 
ase of Θ su
hthat
ǫn(Θ, C(X)) ≍ ǫn(Θ, L2(µ)) ≍ n−rfor some measure µ.The 
onstru
tion of fz in Theorem 2.6 uses ǫ-nets of Θ in the uniform norm. We
hoose ǫ = A

1/2
0 m− r

1+2r and de�ne Vǫ to be a ǫ-net of Θ in the C(X) norm. We 
onstru
tan estimator for fρ ∈ Θ by
fz := fz,Vǫ

= arg min
f∈Vǫ

Ez(f).The set Vǫ is not 
onvex and we 
annot 
laim that fρ ∈ Vǫ. Therefore Theorem 2.4 doesnot apply for this set. In [KT1℄ we used the following theorem in the proof of Theorem 2.6.Theorem 2.7 ([DKPT1,2℄). Let H be a 
ompa
t subset of C(X). Assume that for all
f ∈ H, f : X → Y is su
h that |f(x) − y| ≤M a.e. Then, for all ǫ > 0

ρm{z : E(fz,H) − E(fH) ≥ ǫ} ≤ N(H, ǫ/(24M), C(X))2 exp

(

−
mǫ

C(M,R)

)

under assumption E(fH) − E(fρ) ≤ Rǫ.Theorem 2.8 ([KT2℄). Assume that Θ satis�es (1.3) with r > 1/2. Suppose also fρ ∈ Θ.Let mη4 ≥ 1. Then there exists an estimator fz su
h that
ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M, r) exp(−c(M)mη4).Theorem 2.9 ([KT2℄). Let Θ satisfy (1.3). Suppose that fρ ∈ Θ. Assume that r ∈

(0, 1/2) and mη2+1/r ≥ C1(M,D, r). Then there exists an estimator fz su
h that
ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).Assume that r = 1/2 and mη4/(1 + (log(M/η))2) ≥ C1(M,D). Then there exists anestimator fz su
h that

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)).Theorems 2.8 and 2.9 are 
lose to Theorem 2.2 in formulation of assumptions. In both
ases we impose restri
tions in the L2(ρX) norm. Combination of Theorems 2.2 and 2.9gives the optimal rate of a

ura
y ≍ m− r
1+2r for 
lasses M(Θ, µ) with

(2.10) ǫn(Θ, L2(µ)) ≍ n−r, r ∈ (0, 1/2).In the 
ase r > 1/2 Theorems 2.2 and 2.8 do not mat
h. It is an interesting open problem:�nd optimal rate of a

ura
y for 
lasses M(Θ, µ) su
h that ǫn(Θ, L2(µ)) ≍ n−r in the
ase r > 1/2.The above dis
ussed fa
t that in the 
ase r ∈ (0, 1/2) for any measure µ the behavior(2.10) of the entropy numbers determines the optimal rate of a

ura
y ≍ m− r
1+2r in theestimation problem indi
ates that it is natural to 
lassify 
lasses of priors by the behaviorof their entropy numbers.We now des
ribe the 
onstru
tion of the estimator from Theorem 2.9. Contrary tothe estimators from Theorems 2.3, 2.5, and 2.6 the estimator in Theorem 2.9 dependson η. Here we take fz = f

z,Nη(Θ) with Nη(Θ) := Nη(Θ, L2(ρX)). Proofs of Theorems 2.8and 2.9 are somewhat more dire
t than the proofs of Theorems 2.3, 2.5, and 2.6. In the



352 V. N. TEMLYAKOVproofs of Theorems 2.8 and 2.9 we use the Bernstein 
on
entration measure inequalityand apply the 
haining te
hnique (boot strapping te
hnique, peeling devi
e). We nowformulate the Bernstein inequality. If ξ is a random variable (a real valued fun
tion on aprobability spa
e Z) then denote
E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ.The Bernstein inequality says: if |ξ(z) − E(ξ)| ≤M a.e. then for any ǫ > 0

(2.11) Probz∈Zm

{∣

∣

∣

∣

1

m

m
∑

i=1

ξ(zi) − E(ξ)

∣

∣

∣

∣

≥ ǫ

}

≤ 2 exp

(

−
mǫ2

2(σ2(ξ) +Mǫ/3)

)

.We 
omplete the dis
ussion of Theorem 2.9 by a theorem that is a 
orollary of Theo-rem 2.2, Remark 2.1, and Theorem 2.9.Theorem 2.10. Let µ be a Borel measure on X. Assume r ∈ (0, 1/2) and Θ is a 
ompa
tsubset of L2(µ) su
h that
ǫn(Θ, L2(µ)) ≍ n−r, Θ ⊂ (M/4)U(C(X)).Then there exist δ0 > 0 and η−m ≤ η+

m, η−m ≍ η+
m ≍ m− r

1+2r su
h that
ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−mand

C1(Θ,M)e−c1(Θ,M)mη2

≤ ACm(M(Θ, µ), η) ≤ C2(Θ,M)e−c2(Θ,M)mη2+1/rfor η ≥ η+
m.The above theorems give the upper estimates in the following style. For a given 
lass

M there exist η+
m(M) and positive 
onstants C, c, a su
h that for η ≥ η+

m(M)

ACm(M, η) ≤ Ce−cmηa

.Theorem 2.1 and 2.2 give the lower estimates of the following type. For a given M thereexist δ0(M) > 0 and η−m(M) > 0 su
h that for η ≤ η−m(M) one has
ACm(M, η) ≥ δ0(M).These inequalities indi
ate that the behavior of the a

ura
y 
on�den
e fun
tion 
hangesdramati
ally within the 
riti
al interval [η−m(M), η+

m(M)]. It drops from a 
onstant δ0(M)to an exponentially small quantity C exp(−cmη+
m(M)a). One may also 
all the interval

[η−m(M), η+
m(M)] the interval of phase transition. Clearly, good estimates for η−m(M) and

η+
m(M) are of great importan
e. We introdu
e more terminology in this regard. Supposefor a given 
lass M there exist a fun
tion ϕ(M,m) and two 
onstants C1(M), C2(M)su
h that

C1(M)ϕ(M,m) ≤ η−m(M) ≤ η+
m(M) ≤ C2(M)ϕ(M,m).Then we 
all the fun
tion ϕ(M,m) the 
riti
al rate of a

ura
y. The following theoremis a 
orollary of Theorem 2.10.Theorem 2.11. Let r ∈ (0, 1/2). Assume Θ is a 
ompa
t subset of L2(µ) su
h that

ǫn(Θ, L2(µ)) ≍ n−r, Θ ⊂ (M/4)U(C(X)).



OPTIMAL ESTIMATORS IN LEARNING THEORY 353Let M(Θ, µ) := {ρ : fρ ∈ Θ, ρX = µ, |y| ≤ M}. Then the 
riti
al rate of a

ura
y existsfor M(Θ, µ) and has the order
ϕ(M(Θ, µ),m) ≍ m− r

1+2r .Results of this se
tion show that from a theoreti
al point of view the entropy numbers
ǫn(Θ, L2(ρX)) are the right 
hara
teristi
 of a 
lass Θ in the problem of estimating theregression fun
tion fρ. However, the above dis
ussion indi
ates 
ertain di�
ulties withthe use of the entropy numbers ǫn(Θ, L2(ρX)). As we have mentioned the estimator fzfrom Theorem 2.9 has been built using the η-net of Θ in the L2(ρX) norm. In many
ases the measure ρX is unknown. Therefore, we would like to 
onstru
t an estimatorthat does not depend on ρX and provides good estimation for all ρX . This is the maingoal of distribution-free theory of regression. One of the ways out of the above problemwith the use of the 
hara
teristi
 ǫn(Θ, L2(ρX)) is to go through the uniform norm, i.e.to use the 
hara
teristi
 ǫn(Θ, C(X)). Clearly, this narrows the set of 
lasses of priors
Θ we 
an work with. Theorem 2.6 shows that we 
an 
onstru
t an estimator fz thatdoes not depend on ρX and does an optimal (in the sense of order) job for 
lasses sat-isfying (1.1). From a theoreti
al point of veiw this estimator is very good. However, itis 
lear that we have a problem with dire
t pra
ti
al implementation of this estima-tor be
ause it is built on the base of an ǫ-net of Θ. The estimator from Theorem 2.5is better in the sense of implementation. It is 
onstru
ted by least squares method inthe �nite dimensional subspa
e Ln. Thus in addition to theoreti
al problem of �ndingoptimal rates of estimation we have a pra
ti
al problem of implementation of optimal(near optimal) estimators. We want to understand what 
hara
teristi
s of prior 
lasses
Θ are suitable for the task of 
onvenient pra
ti
al implementation. It is somewhat 
learthat the des
ription of Θ in terms of the entropy numbers does not �t this goal. Indeed,at this point it looks unfeasible to implement algorithms based on ǫ-nets of fun
tion
lasses.Interesting results in this dire
tion on building estimation s
hemes with ni
e imple-mentation properties have been obtained in the re
ent paper [BCDDT℄. The most impor-tant property of those estimation s
hemes is universality. It is a very important propertyof an estimation algorithm. We do not dis
uss the universality property in this paper andrefer the reader to the papers [DKPT1℄, [DKPT2℄, [BCDDT℄, [KT2℄ where this propertyhas been dis
ussed in detail.We present here a result from [KT2℄ in a style of Theorem 2.5 with a des
ription of
Θ in the L2(ρX) norm instead of the C(X) norm. Let B(X) be a Bana
h spa
e withthe norm ‖f‖B(X) := supx∈X |f(x)|. Let {Ln}

∞
n=1 be a given sequen
e of n-dimensionallinear subspa
es of B(X) su
h that Ln is also a subspa
e of ea
h L∞(µ), where µ is aprobability measure on X, n = 1, 2, . . . . Assume that n-dimensional linear subspa
es Lnhave the following property: for any probability measure µ on X one has

(2.12) ‖Pµ
Ln

‖B(X)→B(X) ≤ K, n = 1, 2, . . .where Pµ
L is the operator of L2(µ) proje
tion onto L. For a �nite dimensional linearsubspa
e L ⊂ L2(ρX) and f ∈ L2(ρX) we denote by d(f, L)L2(ρX) the L2(ρX) distan
ebetween f and L.



354 V. N. TEMLYAKOVTheorem 2.12 ([KT2℄). Assume that a sequen
e {Ln}
∞
n=1 satis�es (2.12). For given m,

r > 0 there exists an estimator fz su
h that for any ρ satisfying
d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,we get for η ≥ A0(M,K, r)(lnm/m)

r
1+2r

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).The above theorem 
an be used, in parti
ular, in the following situation. Let X bea 
ompa
t subset of R
d. Let Pn denote the set of all partitions of X into n disjointBorel subsets. Let pn ∈ Pn, n = 1, . . . . De�ne Ln as a subspa
e of all fun
tions that arepie
ewise 
onstant on the partition pn. The subspa
es Ln satisfy (2.12) with K = 1.Thus we 
an obtain simpler estimators when we repla
e assumptions on Θ in termsof entropy numbers (a 
hara
teristi
 of nonlinear approximation) by assumptions on Θin terms of approximation by linear subspa
es (a 
hara
teristi
 of linear approximation).It is known from works in approximation theory (see surveys [D℄, [T℄) and statisti
s([DJ℄, [KP℄) that nonlinear approximation is more �exible than linear approximationand provides optimal means of approximation and estimation. The most important inthis regard form of nonlinear approximation is the n-term approximation with regardto a given basis or more generally with regard to a di
tionary. We present one result inthis dire
tion from [DKPT1℄. We will 
onsider n-term approximations with regard to agiven system Ψ. Assume that the system Ψ = {ψj}

∞
j=1 is a (VP)-system, i.e. satis�es the
ondition:(VP) There exist three positive 
onstants Ai, i = 1, 2, 3, and a sequen
e {nk}

∞
k=1,

nk+1 ≤ A1nk, k = 1, 2, . . . su
h that there is a sequen
e of de la Vallée-Poussin typeoperators Pk with the properties
Pk(ψj) = λk,jψj ,

λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

‖Pk‖C(X)→C(X) ≤ A3, k = 1, 2, . . . .Denote
σn(f,Ψ) := inf

k1,...,kn;c1,...,cn

∥

∥

∥
f −

n
∑

j=1

cjψkj

∥

∥

∥

C(X)
,and

σn(Θ,Ψ) := sup
f∈Θ

σn(f,Ψ).Theorem 2.13. Let fρ ∈ Θ and let Θ satisfy the following two 
onditions.
σn(Θ,Ψ) ≤ C1n

−r, Θ ⊂ C1U(C(X)),

En(Θ,Ψ) := sup
f∈Θ

inf
c1,...,cn

‖f −
n

∑

j=1

cjψj‖C(X) ≤ C2n
−b,where Ψ is the (VP)-system. Then there exists an estimator fz su
h that for η ≥

A0(M, r, b)(lnm/m)
r

1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−C(M, r)mη2).
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 system and wavelets are (VP)-systems.We now give a 
on
rete example of a 
lass of priors Θ to demonstrate how the generaltheory developed in this se
tion works. Let X = [0, 1]d and W s
p , s ∈ N, 1 ≤ p ≤ ∞, bethe Sobolev 
lass (the unit ball of the Sobolev spa
e): the set of all fun
tions g ∈ Lp(X)whose distributional derivatives Dνg, ‖ν‖ℓ1 ≤ s, are also in Lp(X) and

∑

‖ν‖ℓ1
≤s

‖Dνg‖Lp(X) ≤ 1.

Then it is known [BS℄ that for s > d/p one has
ǫn(W s

p , C) ≍ n−r, r := s/d,and
ǫn(W s

p , L2) ≍ n−r.Then by Theorem 2.6
ACm(W s

p , η) ≤ e−c1(M)mη2

, η ≥ η+
m ≍ m− r

1+2r .By Theorem 2.2 and Remark 2.1 with µ - Lebesgue measure we get
ACm(W s

p , η) ≥ δ0, η ≤ η−m ≍ m− r
1+2r ,

ACm(W s
p , η) ≥ Ce−c2(M)mη2

, η ≥ η−m.These results give a very a

urate des
ription of the a

ura
y 
on�den
e fun
tion
ACm(W s

p , η).We 
omplete this se
tion by a remark 
on
erning the quantities E(Θ,m) that givethe rate of a

ura
y of optimal estimation in the sense of expe
tation. We have alreadymentioned in the Introdu
tion (see (1.4), (1.5)) how the a

ura
y 
on�den
e fun
tion
ACm(Θ, η) 
an be used for estimating E(Θ,m) from below and from above. We nowdevelop the ideas of (1.4) and (1.5) to obtain the right order of

E(Θ,m)q := inf
f̂

sup
fρ∈Θ

Eρm(‖fρ − f̂‖q
L2(ρX)), 0 < q <∞.Suppose that a 
lass Θ is su
h that there exists a 
riti
al rate ϕ(Θ,m) := ϕ(M(Θ),m) ofa

ura
y for this 
lass and for any q ∈ (0,∞) we have ACm(Θ, η+

m) ≪ ϕ(Θ,m)q. Thenon one hand for any fz
Eρm(‖fρ − fz‖

q
L2(ρX)) ≥

∫ ∞

0

ACm(Θ, η1/q)dη ≥ δ0(η
−
m)q ≫ ϕ(Θ,m)q.On the other hand for η = η+

m there exists fz su
h that
Eρm(‖fρ − fz‖

q
L2(ρX)) ≤ (η+

m)q + (2M)q
ACm(Θ, η+

m) ≪ ϕ(Θ,m)q.In parti
ular, this implies that for any 0 < q <∞ we have for 1 ≤ p ≤ ∞, s > d/p

(2.13) E(W s
p ,m)q ≍ m− qr

1+2r , r := s/d.In the 
ase q = 2 the lower estimate in (2.13) has been obtained by Stone [S℄ in 1982.The 
orresponding upper estimate and a dis
ussion 
an be found in [GKKW℄.



356 V. N. TEMLYAKOV3. No prior on fρ. In this se
tion we brie�y dis
uss the following setting. We now donot impose any restri
tion on the unknown measure ρ, ex
ept our standard assumption
|y| ≤ M . In su
h a situation we, 
learly, 
annot estimate fρ with a nontrivial errorestimate. Instead of estimating fρ we now estimate the L2(ρX) proje
tion of fρ onto a
ompa
tW that we may 
hoose. This setting is a more general setting than the one fromSe
tion 2. Indeed, if we know that fρ ∈ Θ then fΘ = (fρ)Θ = fρ. Therefore, the resultsof this se
tion apply with W = Θ. This remark motivates us to impose restri
tions on
W in the same style as we did in Se
tion 2. We begin with the upper estimates. For a
ompa
t in L2(ρX) set W denote by fW := (fρ)W the L2(ρX)-proje
tion of fρ onto W .In other words

fW := arg min
f∈W

E(f).Let us denote
Sr := Sr(X) := {W : ǫn(W, C(X)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C(X)}.Theorem 3.1 ([CS℄, [DKPT1℄). Assume thatW∈Sr. Then for η≥A0(M,D, r)m− r

2(1+2r)

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ exp(−c(M)mη4).Theorem 3.2 ([KT1℄). Assume that W satis�es (1.1). Then we have the following esti-mates
ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M)mη4),provided r > 1/2, mη4 ≥ 1;

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)),provided r = 1/2, mη4/(1 + (log(M/η))2) ≥ C2(M,D);
ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c(M,D, r)mη2/r),provided r ∈ (0, 1/2), mη2/r ≥ C2(M,D, r).In Theorems 3.1 and 3.2 we 
hoose the fz,W as the estimator. Theorem 3.2 gives thefollowing upper estimate for the a

ura
y 
on�den
e fun
tion. For W ∈ Sr, r > 1/2 wehave

(3.1) AC
p
m(W,η) ≤ C(M,D, r) exp(−c(M)mη4) for η ≥ m−1/4.Let us 
ompare this estimate with the 
orresponding estimate for ACm(Θ, η). Theorem2.6 gives for Θ ∈ Sr

(3.2) ACm(Θ, η) ≤ exp(−c(M)mη2) for η ≫ m− r
1+2r .The estimates (3.1) and (3.2) di�er in two ways. First, the a

ura
y ≍ m− r

1+2r in (3.2)depends on r and better for r > 1/2 than the a

ura
y ≍ m−1/4 in (3.1) that doesnot depend on r. Se
ond, the exponent mη2 from (3.2) in the bound for the probabilitydistribution fun
tion is better than the 
orresponding exponent mη4 from (3.1). Thefollowing proposition shows that we 
annot improve (3.1).Proposition 3.1. There exist two positive 
onstants c1, c2 and a 
lass W 
onsisting oftwo fun
tions 1 and −1 su
h that for every m = 2, 3, . . . and m−1/4 ≤ η ≤ 1/2 there are
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h that for any estimator fz ∈W for one of ρ = ρ0 or ρ = ρ1we have
ρm{z : E(fz) − E(fW ) ≥ η2} ≥ c1 exp(−c2mη

4).In the 
ase η = m−1/4 this proposition has been proved in [KT1℄. The proof inthe general 
ase m−1/4 ≤ η ≤ 1/2 is similar. Proposition 3.1 indi
ates that there is aphenomenon of saturation for 
olle
tions Sr for r > 1/2.In the 
ase r ∈ (0, 1/2) Theorem 3.2 gives the estimate
(3.3) AC

p
m(W,η) ≪ exp(−c(M,D, r)mη2/r) for η ≫ m−r/2.Similarly to the above 
omparison of (3.1) and (3.2) we see that (3.3) is weaker than (3.2).The following proposition from [KT1℄ shows that the a

ura
y bound in (3.3) 
annot beimproved on the whole 
olle
tion Sr.Proposition 3.2 ([KT1℄). For any r ∈ [0, 1/2] and for every m ∈ N there is W ⊂

U(L∞([0, 1]) satisfying ǫn(W,L∞) ≤ n−r for n ∈ N su
h that for every estimator fz ∈Wthere is a ρ su
h that
ρm{z : E(fz) − E((fρ)W ) ≥ m−r/4} ≥ 1/7.We now present two results in the 
ase ofW satisfying a weaker 
ondition (1.3) insteadof (1.1).Theorem 3.3 ([KT2℄). Assume thatW satis�es (1.3) with r>1/2. Let mη2(1+max(1/r,1))

≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈W su
h that
ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c1(M)mη4).Theorem 3.4 ([KT2℄). Assume that W satis�es (1.3) with r ∈ (0, 1/2). Let mη2(1+1/r)

≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈W su
h that
ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).We now give an idea of proofs of the upper estimates of this se
tion. This idea providesa motivation for our interest in the problem dis
ussed in the next se
tion. Let W be ahypothesis spa
e. Then we have

E(fz,W ) − E(fW ) = E(fz,W ) − Ez(fz,W ) + Ez(fz,W ) − Ez(fW ) + Ez(fW ) − E(fW )

≤ E(fz,W ) − Ez(fz,W ) + Ez(fW ) − E(fW ).Thus we want to estimate
sup
f∈W

|E(f) − Ez(f)|.

4. Estimates for Lz(f). One of important questions dis
ussed in [CS℄, [DKPT1℄,[DKPT2℄, [KT1℄, [KT2℄ is to estimate the defe
t fun
tion Lz(f) := Lz,ρ(f) := E(f)−Ez(f)of f ∈W . If ξ is a random variable (a real valued fun
tion on a probability spa
e Z) thendenote as above
E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ.In this se
tion it will be 
onvenient for us to assume that
(4.1) for all f ∈W, f : X → Y is su
h that |f(x) − y| ≤M a.e.



358 V. N. TEMLYAKOVTheorem 4.1 ([CS℄). LetW be a 
ompa
t subset of C := C(X). Assume that ρ,W satisfy(4.1). Then, for all η > 0

(4.2) ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ N(W,η/(16M), C)2 exp

(

−
mη2

8(4σ2 +M2η/3)

)

.Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2).Remark 4.1. In general we 
annot guarantee that the set {z : supf∈W |Lz(f)| ≥ η} is
ρm-measurable. In su
h a 
ase the relation (4.2) and further relations of this type areunderstood in the sense of outer measure asso
iated with the ρm. For instan
e, for (4.2)this means that there exists ρm-measurable set G su
h that {z : supf∈W |Lz(f)| ≥ η} ⊂ Gand (4.2) holds for G.In [CS℄ this theorem has been derived from Bernstein's inequality (2.11). We notethat other variants of this theorem 
an be found in the literature (see, for instan
e, [Po℄,[GKKW℄). Theorem 4.1 
ontains a fa
tor N(W,η/(16M), C) that may grow exponentiallyfor 
lasses W satisfying (1.1): N(W,η, C) ≤ 2(D/η)1/r+1. A stronger (in a 
ertain sense)estimate than (4.2) has been obtained in [KT1℄ under the assumption that W satis�es(1.1).Theorem 4.2 ([KT1℄). Assume that ρ, W satisfy (4.1) and W is su
h that
(4.3)

∞
∑

n=1

n−1/2ǫn(W, C) <∞.Then for mη2 ≥ 1 we have
ρm{z : sup

f∈W
|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2)with C(M, ǫ(W )) that may depend on M and ǫ(W ) := {ǫn(W, C)}; c(M) may dependonly on M .Theorem 4.3 ([KT1℄). Assume that ρ, W satisfy (4.1) and W is su
h that

∞
∑

n=1

n−1/2ǫn(W, C) = ∞.For η > 0 de�ne J := J(η/M) as the minimal j satisfying ǫ2j (W, C) ≤ η/(8M) and
SJ :=

J
∑

j=1

2(j+1)/2ǫ2j−1(W, C).Then for m, η satisfying mη2/S2
J ≥ 480M2 we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2/S2
J).We formulate two 
orollaries of Theorem 4.3.Corollary 4.1 ([KT1℄). Assume ρ, W satisfy (4.1) and ǫn(W, C) ≤ Dn−r, r ∈ (0, 1/2).Then for m, η satisfying mη1/r ≥ C1(M,D, r) we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη1/r).



OPTIMAL ESTIMATORS IN LEARNING THEORY 359Corollary 4.2 ([KT1℄). Assume ρ, W satisfy (4.1) and ǫn(W, C) ≤ Dn−r, r ∈ (0, 1/2).Then for m, η, δ ≥ η/(8M) satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2)where Nδ(W ) is a minimal δ-net of W in the C norm.In [KT2℄ we have proved that it is impossible to have even a weaker form of Theo-rem 4.2 if we use the L2(ρX) norm instead of the uniform norm C. However, it turned outthat we 
an prove an L2(ρX) analogue of Theorem 4.2 for the δ-net Nδ(W ) of W in the
L2(ρX) norm instead ofW for δ2 ≥ η. The following proposition shows that if we 
onsiderentropy of W in L2[0, 1) rather than in C[0, 1] then even a fast de
ay of ǫn(W,L2(ρX))(say, ǫn(W,L2(ρX)) = o(n−r) for every r > 0) does not guarantee nontrivial estimatesfor supf∈W |Lz(f)|. We assume that Y = [−1, 1], and thus, the fun
tions f ∈ W and fρare uniformly bounded.Proposition 4.1 ([KT2℄). Let N be a non-in
reasing mapping (0,+∞) → [1,+∞) su
hthat

lim
u→0+

logN(u)/ log(1/u) = +∞.Then there exist a set W ⊂ U(L∞[0, 1)) and a ρ su
h that
N(W, ǫ, L2(ρX)) ≤ N(ǫ)and for every m

ρm{z : sup
f∈W

|Lz(f)| ≤ 1/2} = 0.Theorem 4.4 ([KT2℄). Assume that ρ, W satisfy (4.1) and W is su
h that
∞
∑

n=1

n−1/2ǫn(W,L2(ρX)) <∞.Let mη2 ≥ 1. Then for any δ satisfying δ2 ≥ η we have for a minimal δ-net Nδ(W ) of
W in the L2(ρX) norm

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)mη2).Theorem 4.5 ([KT2℄). Assume that ρ, W satisfy (4.1) and
∞
∑

n=1

n−1/2ǫn = ∞, ǫn := ǫn(W,L2(ρX)).Let η, δ be su
h that δ2 ≥ η. De�ne J := J(δ) as the minimal j satisfying ǫ2j ≤ δ and
SJ :=

J
∑

j=1

2(j+1)/2ǫ2j−1 , J ≥ 1; S0 := 1.Then for m, η satisfying m(η/SJ)2 ≥ 36M2 we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ǫ(W )) exp(−c(M)m(η/SJ )2),where Nδ(W ) is a minimal δ-net of W in the L2(ρX).



360 V. N. TEMLYAKOVCorollary 4.3 ([KT2℄). Assume ρ, W satisfy (4.1) and ǫn(W,L2(ρX)) ≤ Dn−r, r ∈

(0, 1/2). Then for m, η, δ2 ≥ η satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have
ρm{z : sup

f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2),where Nδ(W ) is a minimal δ-net of W in the L2(ρX).On the base of the above dis
ussion we propose to study the following fun
tion thatwe 
all the a

ura
y 
on�den
e fun
tion for the defe
t fun
tion. Let a fun
tion 
lass Wand a set M of admissible measures ρ be given. For m ∈ N, η > 0 we de�ne
AC

d
m(W,M, η) := sup

ρ∈M
ρm{z : sup

f∈W
|Lz,ρ(f)| ≥ η}.We note that the above fun
tion is related to the 
on
ept of the Glivenko-Cantellisample 
omplexity of a 
lass Φ with a

ura
y η and 
on�den
e δ:

SΦ(ǫ, δ) := min

{

n : ∀m ≥ n, ∀ρ

ρm

{

z = (z1, . . . , zm) : sup
φ∈Φ

∣

∣

∣

∣

∫

Z

φdρ−
1

m

m
∑

i=1

φ(zi)

∣

∣

∣

∣

≥ η

}

≤ δ

}

.In order to see that we de�ne zi := (xi, yi), i = 1, . . . ,m; φ(x, y) := (f(x) − y)2; Φ :=

{(f(x) − y)2, f ∈ W}. One 
an �nd a survey of re
ent results on the Glivenko-Cantellisample 
omplexity in [M℄.Theorem 4.2 asserts that for W satisfying (4.3) and for M satisfying (4.1) we have
AC

d
m(W,M, η) ≤ C(M, ǫ(W )) exp(−c(M)mη2), η ≥ m−1/2.Corollary 4.1 says that for W satisfying (1.1) with r ∈ (0, 1/2) and for M satisfying (4.1)we have

AC
d
m(W,M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη1/r), η ≫ m−r.It turns out that in some appli
ations it is more 
onvenient to have an estimate ofthe AC

d
m-fun
tion for a minimal δ-net of W instead of W itself. Corollary 4.2 givesthe following estimate under the assumption that W satis�es (1.1) with r ∈ (0, 1/2),

M satis�es (4.1) and δ ≥ η/(8M):
AC

d
m(Nδ(W, C),M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).Let now µ be a �xed probability measure on X. Assume W is su
h that

∞
∑

n=1

n−1/2ǫn(W,L2(µ)) <∞.Consider M(W,µ) := {ρ satisfying (4.1) : ρX = µ}. Then Theorem 4.4 
laims thatfor any µ we have for δ2 ≥ η ≥ m−1/2

AC
d
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M, ǫ(W )) exp(−c(M)mη2).Corollary 4.3 states that for W satisfying ǫn(W,L2(µ)) ≤ Dn−r, r ∈ (0, 1/2) we have for

δ2 ≥ η

AC
d
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).
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heme. We 
onsider in this se
tion the fol-lowing estimation problem. Let y be a random variable su
h that
Prob{y = 1} = Prob{y = 0} = 1/2.Then E(y)=1/2. We begin our dis
ussion with the standard estimator fm :=m−1

∑m
i=1 yi.Then it is well known that

Prob{|fm − 1/2| ≥ ǫ} = 2−m
(

∑

|k−m/2|≥mǫ

Ck
m

)

,where Ck
m are the binomial 
oe�
ients. It is easy to 
he
k that

C1e
−c1mǫ2 ≤

∑

|k−m/2|≥mǫ

Ck
m ≤ C2e

−c2mǫ2

with positive absolute 
onstants C1, C2, c1, c2.The main goal of this se
tion is to prove that fm is optimal in a 
ertain sense amongall linear estimators. We will prove the following theorem.Theorem 5.1. For any ǫ ∈ [0, 1/2], m ≥ 2, and w = (w1, . . . , wm) we have
Prob

{∣

∣

∣

m
∑

i=1

wiyi − 1/2
∣

∣

∣
≥ ǫ

}

≥ exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.We begin with a te
hni
al lemma.Lemma 5.1. Let ǫ ∈ (0, β], 9n ≥ ǫ−2, wn ∈ [0, 1/n]. Then for ǫ1 := (ǫ−wn/2)(1−wn)−1,
ǫ2 := (ǫ+ wn/2)(1 − wn)−1 one has for c = 25, β = (ln 2)1/2/5

(5.1) exp(−c(n− 1)ǫ21) + exp(−c(n− 1)ǫ22) ≥ 2 exp

(

−cnǫ2 −
c

4(n− 1)

)

.Proof. We 
onsider separately two 
ases: I wn ∈ [0, 1/(2n)] and II wn ∈ (1/(2n), 1/n].Case I. Using the 
onvexity of fun
tion e−x we obtain for any C > 0

(5.2) exp(−C(n− 1)ǫ21) + exp(−C(n− 1)ǫ22) ≥ 2 exp(−C(n− 1)(ǫ21 + ǫ22)/2).Next,
ǫ21 + ǫ22 = (1 − wn)−2((ǫ− wn/2)2 + (ǫ+ wn/2)2) = (1 − wn)−2(2ǫ2 + w2

n/2).Using the inequality
n− 1

(1 − wn)2
≤ n for wn ∈ [0, 1/(2n)]we get

(5.3) (n− 1)(ǫ21 + ǫ22)/2 ≤ nǫ2 + 1/(16n).Substituting (5.3) into (5.2) we obtain (5.1).Case II. We rewrite
S := exp(−c(n− 1)ǫ21) + exp(−c(n− 1)ǫ22)

= exp(−c(n− 1)ǫ21)(1 + exp(−c(n− 1)(ǫ22 − ǫ21))).
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ǫ22 − ǫ21 = 2wnǫ(1 − wn)−2.Denote an := (n− 1)(1 − wn)−2. We have

(5.4) 1 − 1/n ≤ an/n ≤ n/(n− 1).Let us estimate δ := nǫ2 − (n− 1)ǫ21. We have
δ = ǫ2

(

n

n− 1
(1 − wn)2 − 1

)

an + anwnǫ− anw
2
n/4.Using

n

n− 1
(1 − wn)2 − 1 =

(1 − wn)2

1 − 1/n
− 1 ≥ 1 − wn − 1 = −wnwe get

δ ≥ anwnǫ− anwnǫ
2 − anw

2
n/4.Therefore

S ≥ exp(−cnǫ2 − canw
2
n/4)2 cosh(canwnǫ) exp(−canwnǫ

2).We note that by (5.4)
anw

2
n ≤ ann

−2 ≤ (n− 1)−1.Thus we pro
eed to estimating cosh(Aǫ) exp(−Aǫ2) with A := canwn. By (5.4) and byour assumption wn > 1/(2n) we get
(5.5) A ≥ c(1 − 1/n)/2 ≥ c/3, n = 3, . . . .It is easy to 
he
k that for the fun
tion f(x) := cosh(Ax) − exp(Ax2) we have f(0) = 0and f ′(x) ≥ 0 for x2 ≤ (ln 4)/A in the 
ase A ≥ 8. The latter inequality A ≥ 8 followsfrom (5.5). Therefore,

cosh(Aǫ) exp(−Aǫ2) ≥ 1 if ǫ2 ≤ ln 4/A.By (5.4) we have A ≤ cn/(n − 1) and, hen
e, for c = 25 and n ≥ 2 we have β2 =

(1/5)2 ln 2 ≤ ln 4/A for all A of the form A = canwn. This 
ompletes the proof of thelemma.Lemma 5.2. For any ǫ ∈ [0, 1/2], m ≥ 2, and w1 ≥ w2 ≥ · · · ≥ wm ≥ 0, ∑m
i=1 wi = 1 wehave

(5.6) |{Λ ⊆ [1,m] :
∑

i∈Λ

wi ≥ 1/2 + ǫ}| ≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.Proof. Denote
L(ǫ,m,w) :=

{

Λ ⊆ [1,m] :
∑

i∈Λ

wi ≥ 1/2 + ǫ
}

.Then for any ǫ ∈ [0, 1/2], m, w we have |L(ǫ,m,w))| ≥ 1. Therefore, (5.6) obviously holdsfor m ≤ 6, ǫ ∈ [0, 1/2] and for any m > 6, ǫ ∈ [β, 1/2], β = (ln 2)1/2/5.We �rst establish Lemma 5.2 for ǫ ∈ [0, (9m)−1/2]. We will use a simple property ofthe Radema
her fun
tions {ri(t)}.
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i=1 |ci| = 1. Then
mes

{

t :
∣

∣

∣

n
∑

i=1

ciri(t)
∣

∣

∣
≤ 2(9n)−1/2

}

≤ 1 − 5/(9n).Proof. Denote
g :=

n
∑

i=1

ciri and E := {t : |g(t)| ≤ 2(9n)−1/2}.Then we have on the one hand
(5.7) ‖g‖2

2 =

n
∑

i=1

c2i ≥ 1/n.On the other hand
(5.8) ‖g‖2

2 ≤ (4/(9n)|E| + (1 − |E|).Comparing (5.7) and (5.8) we get
|E| ≤ 1 − 5/(9n).We 
ontinue the proof of Lemma 5.2 in the 
ase ǫ ∈ [0, (9m)−1/2]. We observe that

2−m|L(ǫ,m,w)| = mes
{

t :

m
∑

i=1

wi(ri(t) + 1)/2 ≥ 1/2 + ǫ
}

(5.9)

= mes
{

t :

m
∑

i=1

wiri(t) ≥ 2ǫ
}

.Using Lemma 5.3 we obtain
2−m|L((9m)−1/2,m,w)| ≥ 5/(9m).This inequality 
ombined with the simple inequality
6

m−1
∑

k=1

1

k
≥ ln(2m), m = 2, 3, . . . ,gives us (5.6) in the 
ase ǫ ∈ [0, (9m)−1/2].It remains to 
onsider the 
ase ǫ ∈ [(9m)−1/2, β]. The proof of this 
ase goes byindu
tion. As we have already mentioned (5.6) holds for m ≤ 6. So, we assume that(5.6) holds for m − 1 and derive from it (5.6) for m. Denoting w′ := (w1, . . . , wm−1),

w1 := w′(1 − wm)−1 we get
(5.10) L(ǫ,m,w) = {{m} ∪ Λ,Λ ∈ L(ǫ− wm,m− 1, w′)} ∪ L(ǫ,m− 1, w′).Next,

L(ǫ− wm,m− 1, w′) = L((ǫ− wm/2)(1 − wm)−1,m− 1, w1),

L(ǫ,m− 1, w′) = L((ǫ+ wm/2)(1 − wm)−1,m− 1, w1).Using the notations ǫ1 := (ǫ−wm/2)(1−wm)−1, ǫ2 := (ǫ+wm/2)(1−wm)−1 we obtainfrom (5.10)
|L(ǫ,m,w)| = |L(ǫ1,m− 1, w1)| + |L(ǫ2,m− 1, w1)|.
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tion assumption we hen
e get
|L(ǫ,m,w)| ≥ 2m−1 exp

(

−
c

4

m−2
∑

k=1

1

k

)

(

exp(−c(m− 1)ǫ21) + exp(−c(m− 1)ǫ22)
)

.We want to apply Lemma 5.1 with n = m. The assumptions of Lemma 5.1 ǫ ∈ (0, β],
m ≥ (3ǫ)−2 follow from ǫ ∈ [(9m)−1/2, β]. Therefore, by Lemma 5.1 we obtain

|L(ǫ,m,w)| ≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

.This 
ompletes the proof of Lemma 5.2.Theorem 5.2. For any ǫ ∈ [0, 1/2], m ≥ 2, and w = (w1, w2, . . . , wm) we have
∣

∣

∣

{

Λ ⊆ [1,m] :
∣

∣

∣

∑

i∈Λ

wi − 1/2
∣

∣

∣
≥ ǫ

}
∣

∣

∣
≥ 2m exp

(

−cmǫ2 −
c

4

m−1
∑

k=1

1

k

)

with c = 25.Proof. Denote
L′(ǫ,m,w) :=

{

Λ ⊆ [1,m] :
∣

∣

∣

∑

i∈Λ

wi − 1/2
∣

∣

∣
≥ ǫ

}

.Similarly to (5.9) we have
(5.11) 2−m|L′(ǫ,m,w)| = mes

{

t :
∣

∣

∣

m
∑

i=1

wi(ri(t) + 1)/2 − 1/2
∣

∣

∣
≥ ǫ

}

.Denoting s :=
∑m

i=1 wi we 
ontinue (5.11)
= mes

{

t :

m
∑

i=1

wiri(t) ≥ 1 − s+ 2ǫ
}

+ mes
{

t :

m
∑

i=1

wiri(t) ≤ 1 − s− 2ǫ
}

= mes
{

t :
m

∑

i=1

|wi|ri(t) ≥ 1 − s+ 2ǫ
}

+ mes
{

t :
m

∑

i=1

|wi|ri(t) ≤ 1 − s− 2ǫ
}

=: M1 +M2.Denote a :=
∑m

i=1 |wi| and ui := |wi|/a. In the 
ase a ≥ 1, s ≥ 1 we have
M1 = mes

{

t :
m

∑

i=1

uiri(t) ≥ (1 − s)/a+ 2ǫ/a
}

≥ mes
{

t :
m

∑

i=1

uiri(t) ≥ 2ǫ
}

.We get the required estimate by Lemma 5.2. In the 
ase a ≥ 1, s ≤ 1 we get in the sameway as above
(5.12) M2 ≥ mes

{

t :

m
∑

i=1

uiri(t) ≤ −2ǫ
}

.By Lemma 5.2 we 
omplete the 
ase.Let 0 < a < 1. Then using s ≤ a we get
(1 − s)/a− 2ǫ/a ≥ −2ǫand, therefore, (5.12) holds also in this 
ase. It remains to use Lemma 5.2.Theorem 5.2 is now proved.



OPTIMAL ESTIMATORS IN LEARNING THEORY 365Theorem 5.1 is an immediate 
orollary of Theorem 5.2.I am grateful to Professor Kwapie« for the following remark 
on
erning the proof ofTheorem 5.1.Remark 5.1. One 
an use the paper [HK℄ in the proof of Theorem 5.1. This gives theestimate
(5.13) Prob

{
∣

∣

∣

m
∑

i=1

wiyi − 1/2
∣

∣

∣
≥ ǫ

}

≥ exp(−cmǫ2 − 6 − ln 8)with c = 128.Also, S. Kwapie« has given an argument how to improve the 
onstant c in (5.13) from
128 to 24.
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