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Abstract. Some recent results on spline-Fourier and Ciesielski-Fourier series are summarized.

The convergence of spline Fourier series and the basis properties of the spline systems are con-

sidered. Some classical topics, that are well known for trigonometric and Walsh-Fourier series,

are investigated for Ciesielski-Fourier series, such as inequalities for the Fourier coefficients, con-

vergence a.e. and in norm, Fejér and θ-summability, strong summability and multipliers. The

connection between Fourier series and Hardy spaces is studied.

1. Introduction. It is known that the spline Fourier series of f ∈ Lp converges a.e.

and in Lp norm to f , whenever 1 ≤ p < ∞. The maximal operator of the partial sums

with respect to the spline (or unbounded Ciesielski) systems of order (m, k) is bounded

from the Hardy space Hp to Lp (1/(m − k + 2) < p < ∞) and is of weak type (1, 1). If

1 < p < ∞ then Hp is equivalent to Lp. Moreover, the spline systems are unconditional

and equivalent bases to the Haar system in Hp (1/(m − k + 2) < p < ∞).

We investigate also the bounded Ciesielski systems, which can be obtained from the

spline systems in the same way as the Walsh system from the Haar. Some results, that

are well known for trigonometric and Walsh-Fourier series, are extended to Ciesielski-

Fourier series. Paley and Hardy-Littlewood type inequalities are shown for Ciesielski-

Fourier coefficients. If f ∈ Lp (1 < p < ∞) then the Ciesielski-Fourier series of f converges
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a.e. and in Lp-norm to f . It is proved that a lacunary sequence of the Ciesielski-Fourier

series of f ∈ H1 converges almost everywhere to f . The maximal operator of the Fejér

means of the Ciesielski-Fourier series is bounded from Hp to Lp (1/2 < p < ∞) and it is of

weak type (1, 1). As a consequence we obtain that the Fejér means of the Ciesielski-Fourier

series of a function f ∈ L1 converges a.e. to f . Some other summability methods, called

θ-summability are considered as well. θ-summability includes the well known summations

of Weierstrass, Picar, Bessel, Riesz, de La Vallée-Poussin, Rogosinski and Riemann. The

analogue of the strong convergence result is also given. It is proved that the maximal

strong operator is of weak type (1, 1) and the Ciesielski-Fourier series of f ∈ L1 is strong

summable to f . Some multiplier theorems, e.g. the Marcinkiewicz multiplier theorem is

shown for Ciesielski-Fourier series. The results can be extended to the multi-dimensional

case, too.

2. Hardy spaces on the unit interval. We consider the unit interval [0, 1) with the

Lebesgue measure λ. We briefly write Lp instead of the real Lp([0, 1), λ) equipped with

the norm (or quasinorm) ‖f‖p := (
∫ 1

0
|f |p dλ)1/p (0 < p ≤ ∞). The space Lp,∞ =

Lp,∞([0, 1), λ) (0 < p < ∞) consists of all measurable functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p < ∞,

while we set L∞,∞ = L∞. Note that Lp,∞ is a quasi-normed space. It is easy to see that

Lp ⊂ Lp,∞ and ‖ · ‖p,∞ ≤ ‖ · ‖p

for each 0 < p ≤ ∞. The space Lp(lr) (1 ≤ p, r < ∞) consists of all sequences f :=

(fn, n ∈ N) of functions for which

‖f‖Lp(lr) :=
∥

∥

∥

(

∑

n∈N

|fn|
r
)1/r∥

∥

∥

p
< ∞.

In order to have a common notation for the dyadic and classical Hardy spaces we

define the Poisson kernels P
(m,k)
t . If k ≤ m then we introduce P

(m,k)
t by

P
(m,k)
t (x) :=

ct

(t2 + |x|2)
(x ∈ R, t > 0).

If k = m+1 then we define P
(m,k)
t as follows. For a fixed t > 0, if n ≤ t < n+1 for some

n ∈ N then let

P
(m,k)
t (x) := 1[0,2−n)(x) (x ∈ R).

For a tempered distribution f the non-tangential maximal function is defined by

f
(m,k)
∗ (x) := sup

t>0
|(f ∗ P

(m,k)
t )(x)| (x ∈ R)

where ∗ denotes the convolution.

For 0 < p < ∞ the Hardy space H
(m,k)
p (R) consists of all tempered distributions f for

which

‖f‖
H

(m,k)
p (R)

:= ‖f
(m,k)
∗ ‖p < ∞.

Now let

Hp := H(m,k)
p ([0, 1)) := {f ∈ H(m,k)

p (R) : supp f ⊂ [0, 1)}.
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Obviously, Hp is the dyadic Hardy space if k = m + 1. It is known (see Stein [56]) that

the space Hp coincides with Lp if 1 < p < ∞.

The atomic decomposition is a basic tool in proving the results below. A function

a ∈ L∞ is called a p-atom if there exists an interval I ⊂ [0, 1) such that

(i) supp a ⊂ I,

(ii) ‖a‖∞ ≤ |I|−1/p,

(iii)
∫

I
a(x)xj dx = 0 where j ∈ N and j ≤ [1/p − 1].

Note that [x] denotes the integer part of x ∈ R.

In the dyadic case, i.e. if k = m + 1, we consider only dyadic intervals I and instead

of (iii) we assume

(iii’)
∫

I
a(x) dx = 0.

The following result shows that for the boundedness of a sublinear operator V from

the Hardy space Hp to Lp, it is enough to check the operator on p-atoms (Weisz [61]).

Theorem 1. Suppose that the operator V is sublinear and
∫

[0,1)\16I

|V a|p dλ ≤ Cp

for every p-atom a with support I, where 0 < p ≤ 1. If V is bounded from Lp1
to Lp1

for

some 1 < p1 ≤ ∞ then

‖V f‖p ≤ Cp‖f‖Hp
(f ∈ Hp).

3. Spline systems. We are going to introduce the spline systems as in Ciesielski [12].

Let us denote by D the differentiation operator and define the integration operators

Gf(t) :=

∫ t

0

f dλ, Hf(t) :=

∫ 1

t

f dλ.

Define the χn, n = 1, 2, . . ., Haar system by χ1 := 1 and

χ2n+k(x) :=















2n/2, if x ∈ ((2k − 2)2−n−1, (2k − 1)2−n−1),

−2n/2, if x ∈ ((2k − 1)2−n−1, (2k)2−n−1),

0, otherwise,

for n, k ∈ N, 0 < k ≤ 2n, x ∈ [0, 1).

Let m ≥ −1 be a fixed integer. Applying the Schmidt orthonormalization to the

linearly independent functions

1, t, . . . , tm+1, Gm+1χn(t), n ≥ 2,

we get the spline system (f
(m)
n , n ≥ −m) of order m. For 0 ≤ k ≤ m + 1 and n ≥ k − m

define the splines

f (m,k)
n := Dkf (m)

n , g(m,k)
n := Hkf (m)

n

of order (m, k). Let us normalize these functions and introduce a more unified notation,

h(m,k)
n :=

{

f
(m,k)
n ‖f

(m,k)
n ‖−1

2 for 0 ≤ k ≤ m + 1

g
(m,−k)
n ‖f

(m,−k)
n ‖2 for 0 ≤ −k ≤ m + 1.
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We get the Haar system if m = −1, k = 0 and the Franklin system if m = 0, k = 0. The

systems (h
(m,k)
i , i ≥ |k| − m) and (h

(m,−k)
j , j ≥ |k| − m) are biorthogonal, i.e.

(h
(m,k)
i , h

(m,−k)
j ) =

{

1, if i = j

0, if i 6= j,

where (f, g) denotes the usual scalar product
∫

[0,1)
fg dλ.

Ciesielski [11, 12] proved that the spline functions have the nice property

|DNh
(m,k)
2µ+ν (t)| ≤ C2(N+1/2)µq2µ|t−ν/2µ|, (1)

which is used several times in the proofs, where m ≥ −1, |k| ≤ m + 1, k + N ≤ m + 1,

µ ∈ N and ν = 1, . . . , 2µ.

In this paper the constants C and q depend only on m and the constants Cp depend

only on p and m. The symbols C, q and Cp may denote different constants in different

contexts, however, q denotes constants for which 0 < q < 1.

3.1. Spline-Fourier series. The partial sums and the maximal operator of the partial

sums of the spline-Fourier series are defined by

P (m,k)
n f :=

n
∑

i=|k|−m

(f, h
(m,k)
i )h

(m,−k)
i =

∫ 1

0

F (m,k)
n (t, x)f(t) dt

and

P
(m,k)
∗ f := sup

n∈N

|P (m,k)
n f |

respectively, where m ≥ −1 and |k| ≤ m + 1. Using (1), Domsta and Ciesielski [7] (see

also Ciesielski [12]) proved that

|F (m,k)
n (t, x)| :=

∣

∣

∣

n
∑

j=|k|−m

h
(m,k)
j (t)h

(m,−k)
j (x)

∣

∣

∣
≤ Cnqn|t−x|. (2)

Since
∫ 1

0

|F (m,k)
n (t, x)| dt ≤ C,

∫ 1

0

|F (m,k)
n (t, x)| dx ≤ C,

we have

‖P (m,k)
n f‖p ≤ Cp‖f‖p (f ∈ Lp) (3)

for p = ∞ and p = 1. By interpolation we get (3) for all 1 < p < ∞. Note that C and Cp

are independent of n.

Corollary 1. Assume that m ≥ −1 and |k| ≤ m + 1. If f ∈ Lp for some 1 ≤ p < ∞

then P
(m,k)
n f → f in Lp norm as n → ∞.

This means that the spline systems are bases in Lp (1 ≤ p < ∞). There is also a

vector valued version of (3) (see Weisz [69]).

Theorem 2. Assume that m ≥ −1, |k| ≤ m + 1 and f = (fi, i ∈ N) ∈ Lp(lr) (1 < p, r <

∞). If n(i) is an arbitrary natural number for each i ∈ N then
∫ 1

0

(

∞
∑

i=0

|P
(m,k)
n(i) fi|

r
)p/r

dλ ≤ Cp,r

∫ 1

0

(

∞
∑

i=0

|fi|
r
)p/r

dλ.
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Ciesielski [11, 12, 9] has generalized (3) and showed that P
(m,k)
∗ can be estimated by

the Hardy-Littlewood maximal operator M . Hence P
(m,k)
∗ is bounded on Lp (1 < p ≤ ∞)

and is of weak type (1, 1).

Theorem 3. If m ≥ −1 and |k| ≤ m + 1 then

‖P
(m,k)
∗ f‖p ≤ Cp‖f‖p (f ∈ Lp)

for all 1 < p ≤ ∞. In particular, if f ∈ L1 then

λ(P
(m,k)
∗ f > ρ) ≤

C

ρ
‖f‖1 (ρ > 0).

The last weak type inequality and the usual density theorem due to Marcinkiewicz

and Zygmund [29] imply

Corollary 2. If m ≥ −1, |k| ≤ m + 1 and f ∈ L1 then P
(m,k)
n f → f a.e. as n → ∞.

Theorem 3 can be extended to Hardy spaces as follows (see Sjölin [55] and Weisz

[58, 61], for p = 1 Schipp and Simon [39]). Let

p0 :=

{

1/(m − k + 2), if k ≤ m,

0, if k = m + 1.

Theorem 4. If m ≥ −1 and |k| ≤ m + 1 then

‖P
(m,k)
∗ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp)

for all p0 < p < ∞. If k ≤ m then

‖P
(m,k)
∗ f‖p0,∞ ≤ Cp0

‖f‖Hp0
(f ∈ Hp0

).

3.2. Equivalent bases. The spline systems have very nice bases properties. To see this we

will investigate the conditional partial sums and the square function of the spline-Fourier

series:

T (m,k)
n f :=

n
∑

i=|k|−m

ǫi(f, h
(m,k)
i )h

(m,−k)
i

and

Q(m,k)f :=
(

∞
∑

i=|k|−m

|(f, h
(m,k)
i )h

(m,−k)
i |2

)1/2

,

respectively, where m ≥ −1, |k| ≤ m + 1 and ǫi = ±1. Of course, if each ǫi = 1 then

T
(m,k)
n = P

(m,k)
n . Let T (m,k)f := limn→∞ T

(m,k)
n f , if the limit does exist.

Bočkariev [3] proved that the Franklin system is an unconditional basis in Lp (1 <

p < ∞). Some years later Ciesielski [12] verified that the spline systems are equivalent

and unconditional bases in Lp (1 < p < ∞).

Theorem 5. Assume that m ≥ −1, |k| ≤ m + 1 and 1 < p < ∞. Then the systems

(h
(m,−k)
n ) are unconditional bases in Lp and

‖T (m,k)
n f‖p ≤ Cp‖f‖p (f ∈ Lp),

uniformly in n ∈ N.
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For p = 2 see also Ropela [36]. Using this and Khinchine’s inequality we can prove

Theorem 6. If m ≥ −1, |k| ≤ m + 1, 1 < p < ∞ and f ∈ Lp then

C−1
p ‖f‖p ≤ ‖Q(m,k)f‖p ≤ Cp‖f‖p.

Corollary 3. Assume that m ≥ −1, |k| ≤ m + 1 and 1 < p < ∞. Then the Haar

system (χn) and the spline system (h
(m,−k)
n ) are equivalent bases in the Lp space, i.e. the

following two series
∞
∑

n=1

anχn and

∞
∑

n=|k|−m

a(n+m+1−|k|)h
(m,−k)
n

are equiconvergent in Lp.

The spline systems are also equivalent in Lp(lr) (see Figiel and Wojtaszczyk [17, 18]).

Actually, Figiel and Wojtaszczyk proved the equivalence in more general UMD spaces.

Corollary 4. Assume that m ≥ −1, |k| ≤ m + 1 and 1 < p, r < ∞. Then the Haar

system (χn) and the spline system (h
(m,−k)
n ) are equivalent bases in the Lp(lr) space.

Maurey [31] proved that the classical H1 space has an unconditional basis. His proof is

non-constructive, he proved that H1 is linearly isomorphic to the dyadic H1 in which the

Haar system is an unconditional basis. Carleson [5] constructed an unconditional basis in

H1 and Wojtaszczyk [71] verified that the Franklin system is an unconditional basis in

H1. Later Sjölin and Strömberg [52] and Wojtaszczyk [72] extended these results to Hp

spaces as follows. Let

p1 :=

{

1/(m − k + 2), if m ≥ 0,

0, if m = −1.

Theorem 7. If m ≥ −1, 0 ≤ k ≤ m + 1 and p1 < p < ∞ then

C−1
p ‖f‖Hp

≤ ‖Q(m,k)f‖p ≤ Cp‖f‖Hp
(f ∈ Hp).

The next corollary follows easily from this.

Corollary 5. Assume that m ≥ −1, 0 ≤ k ≤ m+1 and p1 < p < ∞. Then the systems

(h
(m,−k)
n ) are unconditional bases in Hp and

‖T (m,k)
n f‖Hp

≤ Cp‖f‖Hp
(f ∈ Hp),

uniformly in n ∈ N.

It is proved in Sjölin and Strömberg [53] and Wojtaszczyk [72] that the spline systems

are not bases in Hp, if p < p1. Moreover, the spline systems are not bases in the Hardy

spaces if k is negative (see Wojtaszczyk [72]).

The next result shows that the dyadic and classical Hardy spaces have equivalent

bases (cf. Maurey [31]).

Corollary 6. Assume that m ≥ −1, 0 ≤ k ≤ m + 1 and p1 < p < ∞. Then the

Haar system (χn) and the spline system (h
(m,−k)
n ) are equivalent bases in the dyadic and

classical Hp spaces.
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The following result is due to Chang and Ciesielski [6] for p = 1. For general p see

Weisz [58, 61].

Corollary 7. Assume that 0 ≤ k ≤ m + 1 and p1 < p < ∞. Then the following

properties are equivalent:

(i) f ∈ Hp,

(ii) Q(m,k)f ∈ Lp,

(iii) supǫ ‖T
(m,k)f‖p < ∞,

(iv) P
(m,k)
n f converges unconditionally in Lp.

Furthermore, the norms corresponding to (i), (ii) and (iii) are equivalent norms.

4. Ciesielski systems. First we define the Walsh system. Let

r(x) :=

{

1 if x ∈ [0, 1
2 ),

−1 if x ∈ [ 12 , 1),

extended to R by periodicity of period 1. The Rademacher system (rn, n ∈ N) is defined

by

rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The Walsh functions are given by

wn(x) :=
∞
∏

k=0

rk(x)nk (x ∈ [0, 1), n ∈ N)

where n =
∑∞

k=0 nk2k, (nk = 0 or nk = 1).

Starting with the spline system (h
(m,k)
n , n ≥ |k| − m) we define the Ciesielski system

(c
(m,k)
n , n ≥ |k| − m) in the same way as the Walsh system arises from the Haar system,

namely,

c(m,k)
n := h(m,k)

n (n = |k| − m, . . . , 1)

and

c
(m,k)
2ν+i :=

2ν
∑

j=1

A
(ν)
i,j h

(m,k)
2ν+j (1 ≤ i ≤ 2ν),

where

A
(ν)
i,j = A

(ν)
j,i = 2−ν/2wi−1(

2j − 1

2ν+1
)

(see Ciesielski [10], Ciesielski, Simon, Sjölin [8] or Schipp, Wade, Simon, Pál [40]). We

get immediately that

h
(m,k)
2ν+j :=

2ν
∑

i=1

A
(ν)
i,j c

(m,k)
2ν+i (1 ≤ j ≤ 2ν).

As mentioned before,

c(−1,0)
n = wn−1 (n ≥ 1)

is the usual Walsh system. The system (c
(m,k)
n ) is uniformly bounded and it is biorthogonal

to (c
(m,−k)
n ) whenever |k| ≤ m + 1 (see Ciesielski [10]).
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4.1. Inequalities for Ciesielski-Fourier coefficients. In this subsection we assume that

k = 0 and use the notation c
(m,0)
n = c

(m)
n . For simplicity we suppose here that (f, c

(m)
n ) = 0

for −m ≤ n ≤ 1. Of course, the theorems of this section can be shown without the last

condition, too.

Paley [33] proved the inequality

(

∞
∑

i=0

|(f, c
(m)
2i )|2

)1/2

≤ Cp‖f‖H1

for Walsh-Fourier coefficients (see also Coifman and Weiss [13]). A similar result was

shown in the trigonometric case by Gundy and Varopoulos [20]. Recently the inequality

was extended to unbounded Vilenkin systems and to all p by Simon and Weisz [46] (see

also Simon [47]). We generalized this inequality for Ciesielski-Fourier coefficients in [63].

Theorem 8. Let m ≥ −1 and An ⊂ [2n +1, 2n+1] be sets of integers. Then the following

two conditions are equivalent.

(i) For all f ∈ Hp ∩ L1

(

∞
∑

n=0

2n(2−2/p)
∑

k∈An

|(f, c
(m)
k )|2

)1/2

≤ Cp‖f‖Hp
(p1 < p ≤ 1),

(ii) supn∈N |An| < ∞, where |An| denotes the number of the elements of An.

By interpolation and duality argument we obtain a new version of Khinchine’s in-

equality:

Corollary 8. If m ≥ −1, 1 < p ≤ 2, An ⊂ [2n + 1, 2n+1] and supn∈N |An| < ∞ then

‖f‖p ∼
(

∞
∑

n=0

∑

k∈An

|(f, c
(m)
k )|2

)1/2

∼ ‖f‖BMO (0 < p < ∞)

for f =
∑∞

n=0

∑

k∈An
(f, c

(m)
k )c

(m)
k , where BMO is the dual space of H1.

Now we formulate the Hardy-Littlewood inequality for Ciesielski-Fourier coefficients

(see Weisz [68]).

Theorem 9. If m ≥ −1 and f ∈ Hp ∩ L1 then
( ∞

∑

n=2

|(f, c
(m)
n )|p

n2−p

)1/p

≤ Cp‖f‖Hp
(p1 < p ≤ 2).

This inequality is due to Hardy and Littlewood [22] for the trigonometric system (see

also Coifman and Weiss [13]) and to Ladhawala [27] for the Walsh system. The inequality

is also known for Fourier transforms (see Jawerth and Torchinsky [23]).

4.2. Convergence of Ciesielski-Fourier series. The partial sums and the maximal opera-

tors of the Ciesielski-Fourier series are defined by

s(m,k)
n f(x) :=

n
∑

i=|k|−m

(f, c
(m,k)
i )c

(m,−k)
i (x) =

∫ 1

0

D(m,k)
n (t, x)f(t) dt
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and

s
(m,k)
∗ f := sup

n∈N

|s(m,k)
n f |,

respectively, where m ≥ −1 and |k| ≤ m + 1. Here

D(m,k)
n (t, x) :=

n
∑

i=|k|−m

c
(m,k)
i (t)c

(m,−k)
i (x),

is the nth Dirichlet kernel.

In contrast to the spline system, the Lebesgue functions are not bounded in this case.

Ciesielski [10] proved that, similarly to the trigonometric and Walsh system,
∫ 1

0

|D(m,k)
n (t, x)| dt ≤ C log n (n ∈ N, x ∈ [0, 1)).

The next sharper result, which is well known for the trigonometric, Walsh- and Vilenkin

systems, is due to the author [66].

Theorem 10. If m ≥ −1, |k| ≤ m + 1 and n ≥ 0 then

|D(m,k)
n (t, x)| ≤

C

|t − x|
(t, x ∈ [0, 1), t 6= x).

The following theorem was proved by Carleson [4] for the trigonometric system, by

Billard [1] and Sjölin [54] (see also Schipp [44]) for the Walsh system and by Schipp [43]

and Ciesielski [11, 12] for the Ciesielski system.

Theorem 11. If m ≥ −1 and |k| ≤ m + 1 then

‖s
(m,k)
∗ f‖p ≤ Cp‖f‖p (f ∈ Lp)

for all 1 < p < ∞.

This means that s
(m,k)
n is uniformly bounded on Lp (1 < p < ∞). The result corre-

sponding to Theorem 2 holds for Ciesielski systems as well ([69]).

Theorem 12. Assume that m ≥ −1, |k| ≤ m + 1 and f = (fi, i ∈ N) ∈ Lp(lr) (1 <

p, r < ∞). If n(i) is an arbitrary natural number for each i ∈ N then
∫ 1

0

(

∞
∑

i=0

|s
(m,k)
n(i) fi|

r
)p/r

dλ ≤ Cp,r

∫ 1

0

(

∞
∑

i=0

|fi|
r
)p/r

dλ.

This was proved by Marcinkiewicz and Zygmund for trigonometric Fourier series (see

e.g. Zygmund [76, II. p. 225]) and by Sunouchi [57] for Walsh-Fourier series.

Theorem 11 imply

Corollary 9. Assume that m ≥ −1 and |k| ≤ m + 1. If f ∈ Lp for some 1 < p < ∞

then s
(m,k)
n f → f a.e. and in Lp norm as n → ∞.

Ciesielski, Simon and Sjölin [8] verified the a.e. convergence also for functions from

L(log L)3.

Since the Ciesielski systems are uniformly bounded, due to a theorem of Bočkariev

[2], this theorem does not hold for functions in L1. Moreover, there is f ∈ L1 such that

the Ciesielski-Fourier series diverges a.e. (see Kazarian and Sargsian [24]).
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The convergence result is not true even for Hardy spaces. Ladhawala and Pankratz

[26] verified for Walsh-Fourier series that there exists f ∈ H1 such that the partial sums

diverge everywhere (see also Schipp and Simon [37]). However, if f ∈ H1 then a lacunary

sequence of the partial sums converge a.e. to f . This was proved for Walsh-Fourier series

by Ladhawala and Pankratz [26], for trigonometric Fourier series by Zygmund [76, II.

p. 235] and for Vilenkin-Fourier series by Young [73]. Now we extend this result to

Ciesielski-Fourier series (see Weisz [62]).

We say that a sequence (ni, i ∈ N) of positive integers is lacunary if ni+1/ni > α > 1

for all i ∈ N.

Theorem 13. Assume that m ≥ −1, |k| ≤ m + 1 and (ni, i ∈ N) is a lacunary sequence

of positive integers. If f ∈ H1 then limi→∞ s
(m,k)
ni f = f a.e.

4.3. Fejér summability. Taking a suitable summability method, we can obtain a.e. con-

vergence for f ∈ L1 functions, too. It was proved by Lebesgue [28] that the Fejér means

of the trigonometric Fourier series of an integrable function f converge a.e. to f , i.e.

1

n

n−1
∑

k=0

(

skf(x) − f(x)
)

→ 0 as n → ∞ (4)

for a.e. x ∈ [−π, π], where skf denotes the kth partial sum of the Fourier series of f .

Fejér summability for Walsh-Fourier series is due to Fine [19] (see also Schipp [42]).

The Fejér means and the maximal Fejér operator of the Ciesielski-Fourier series are

given by

σ(m,k)
n f(x) :=

1

n

n
∑

j=1

s
(m,k)
j (x) =

∫ 1

0

K(m,k)
n (t, x)f(t) dt

and

σ
(m,k)
∗ f := sup

n∈N

|σ(m,k)
n f |,

where m ≥ −1, |k| ≤ m + 1 and

K(m,k)
n (t, x) :=

1

n

n
∑

j=1

D
(m,k)
j (t, x)

is the nth Fejér kernel. The L1 norms of the Fejér kernels are bounded (see Weisz [59]),

which implies the boundedness of σ
(m,k)
∗ on L∞.

Theorem 14. If m ≥ −1 and |k| ≤ m + 1 then
∫ 1

0

|K(m,k)
n (t, x)| dt ≤ C (n ∈ N, x ∈ [0, 1)).

Using Theorem 1 we have proved in [59, 67] that σ
(m,k)
∗ is bounded from the Hardy

space Hp to Lp (1/2 < p ≤ ∞). From this it follows by interpolation that σ
(m,k)
∗ is also

of weak type (1, 1). More exactly, we have

Theorem 15. If m ≥ −1 and |k| ≤ m + 1 then

‖σ
(m,k)
∗ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp)
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for all 1/2 < p < ∞. In particular, if f ∈ L1 then

λ(σ
(m,k)
∗ f > ρ) ≤

C

ρ
‖f‖1 (ρ > 0).

Moreover,

‖σ
(m,k)
∗ f‖1/2,∞ ≤ C‖f‖H1/2

(f ∈ H1/2).

The weak type (1, 1) inequality and the usual density theorem imply the analogue to

(4):

Corollary 10. If m ≥ −1 and |k| ≤ m + 1 then f ∈ L1 implies

σ(m,k)
n f → f a.e. as n → ∞.

Simon [51] gave a counterexample which shows the following result for the Walsh-

Fourier series.

Theorem 16. The operator σ
(−1,0)
∗ is not bounded from Hp to Lp, if 0 < p < 1/2.

4.4. Other summability methods. It is easy to see that the Fejér means can also be given

by

σ(m,k)
n f =

0
∑

j=|k|−m

(f, c
(m,k)
j )c

(m,−k)
j +

n
∑

j=1

(

1 −
j − 1

n

)

(f, c
(m,k)
j )c

(m,−k)
j .

As a generalization of Fejér summability we introduce the θ-summation. Assume that

θ ∈ L1(R) is even and continuous, θ(0) = 1,
(

θ( k
n+1 )

)

k∈Z

∈ ℓ1, limx→∞ θ(x) = 0,

θ is twice continuously differentiable on R except at finitely many points,

θ′′ 6= 0 except at finitely many points and finitely many intervals,

the left and right limits limx→y±0 xθ′(x) ∈ R exist at each point y ∈ R,

limx→∞ xθ′(x) = 0.







































(5)

Note that the second condition of (5) is satisfied if θ is non-increasing on (c,∞) for

some c ≥ 0 or if it has compact support.

The θ-means and the maximal θ-operator of f ∈ L1 are defined by

σ(m,k),θ
n f(x) :=

0
∑

j=|k|−m

(f, c
(m,k)
j )c

(m,−k)
j +

n
∑

j=1

θ
(j − 1

n

)

(f, c
(m,k)
j )c

(m,−k)
j

and

σ
(m,k),θ
∗ f := sup

n∈N

|σ(m,k),θ
n f |.

Obviously, if θ(x) := (1 − |x|) ∨ 0, then we get the Fejér means.

We have seen in [66] that if σ
(m,k)
∗ is bounded on a quasi-normed space then so is

σ
(m,k),θ
∗ . Let X and Y be two complete quasi-normed spaces of measurable functions and

L∞ be continuously and densely embedded into X. Suppose that if 0 ≤ f ≤ g, f, g ∈ Y

then ‖f‖Y ≤ ‖g‖Y. Moreover, if fn, f ∈ Y, fn ≥ 0 (n ∈ N) and fn ր f a.e. as n → ∞,

then ‖f − fn‖Y → 0. Note that the spaces Lp and Lp,∞ (0 < p ≤ ∞) satisfy these

properties.
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Theorem 17. If (5) is satisfied and σ
(m,k)
∗ : X → Y is bounded, then σ

(m,k),θ
∗ is also

bounded, i.e.,

‖σ
(m,k),θ
∗ f‖Y ≤ C‖f‖X (f ∈ X).

The next result follows easily from Theorem 15 (see [66]).

Theorem 18. If m ≥ −1, |k| ≤ m + 1 and (5) is satisfied then

‖σ
(m,k),θ
∗ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp)

for all 1/2 < p ≤ ∞,

‖σ
(m,k),θ
∗ f‖1/2,∞ ≤ C‖f‖H1/2

(f ∈ H1/2)

and

sup
ρ>0

ρλ(σ
(m,k),θ
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1).

Corollary 11. If m ≥ −1, |k| ≤ m + 1 and (5) is satisfied then f ∈ L1 implies

σ(m,k),θ
n f → f a.e. as n → ∞.

One can show easily that θ-summation includes Weierstrass, Picar, Bessel, Riesz, de

La Vallée-Poussin, Rogosinski and Riemann summations. For the details see Weisz [66].

4.5. Strong summability. Taking absolute value in (4) we obtain the strong summability.

More generally, we consider the convergence of the means
(

1

n

n−1
∑

k=0

|skf(x) − f(x)|r
)1/r

.

Strong summability was considered first by Hardy and Littlewood [21] for trigonometric

Fourier series. They verified that these means tend to 0 a.e. as n → ∞, whenever f ∈ Lp

(1 < p < ∞). This result was generalized for L1 functions and for r = 2 by Marcinkiewicz

[30] and for all r > 0 by Zygmund [75].

For Walsh-Fourier series the strong summability was shown by Schipp [41, 45] for

r = 2 and by Rodin [35, 34] for r > 0 and for BMO means. Now we formulate these

results for Ciesielski-Fourier series.

Let

S(m,k),(r)
n f :=

( 1

n

n
∑

j=1

|s
(m,k)
j f |r

)1/r

(n ∈ N)

be the strong means and

S
(m,k),(r)
∗ f := sup

n≥1
S(m,k),(r)

n f

be the strong maximal operator, where 0 < r < ∞. In [64] we extended strong summability

to Ciesielski-Fourier series.

Theorem 19. If m ≥ −1, |k| ≤ m + 1 and 0 < r ≤ 2 then

‖S
(m,k),(r)
∗ f‖∞ ≤ C‖f‖∞ (f ∈ L∞)

and

sup
ρ>0

ρ λ(S
(m,k),(r)
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1).
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The next corollary follows easily by interpolation.

Corollary 12. If m ≥ −1, |k| ≤ m + 1, 0 < r ≤ 2 and 1 < p < ∞ then

‖S
(m,k),(r)
∗ f‖p ≤ Cp‖f‖p (f ∈ Lp).

Note that the strong maximal operator is not bounded from H1 to L1 (see Schipp

and Simon [38]). The weak type (1, 1) inequality in Theorem 17 and the usual density

argument imply

Corollary 13. If m ≥ −1, |k| ≤ m + 1 and 0 < r ≤ 2 then f ∈ L1 implies

( 1

n

n
∑

j=1

|s
(m,k)
j f(x) − f(x)|r

)1/r

→ 0 for a.e. x ∈ [0, 1) as n → ∞ .

4.6. Multiplier theorems. For simplicity, in this subsection we suppose that

(f, c
(m,k)
j ) = 0 for j = |k| − m, . . . , 1.

The multiplier operator generalizes the operator T
(m,k)
n . For a given multiplier λ =

(λj , j = 2, . . .) where the λj ’s are real numbers, the multiplier operators are defined

by

T
(m,k)
λ f :=

∞
∑

j=2

λj(f, c
(m,k)
j )c

(m,−k)
j

if the sum exists and by

T
(m,k)
λ,n f :=

n
∑

j=2

λj(f, c
(m,k)
j )c

(m,−k)
j (n ∈ N),

where f ∈ L1.

The Marcinkiewicz multiplier theorem is generalized for Ciesielski systems in the next

theorem (see Weisz [69]).

Theorem 20. Assume that m ≥ −1, |k| ≤ m + 1 and f ∈ Lp (1 < p < ∞). If

|λi| ≤ C,
2i+1−1
∑

j=2i+1

|λj − λj+1| ≤ C (i ∈ N) (6)

then T
(m,k)
λ f ∈ Lp and

‖T
(m,k)
λ f‖p ≤ Cp‖f‖p.

The theorem can be proved by using Theorem 12 similarly to the trigonometric system

(see Zygmund [76, II. p. 232]). The result for Vilenkin-Fourier series is due to Young [74].

The multiplier theorem is extended to Hardy spaces in [69]. Note that (6) follows from

(7).

Theorem 21. Assume that m ≥ −1 and |k| ≤ m + 1. If

|λn| ≤ C, sup
2n+1≤j≤2n+1−1

j|λj − λj+1| ≤ C (n ∈ N) (7)
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and
2n+1−2
∑

j=2n+1

j|λj − 2λj+1 + λj+2| ≤ C (n ∈ N)

then, for 1/2 < p < ∞,

‖ sup
N∈N

|T
(m,k)

λ,2N f |‖p ≤ Cp‖f‖Hp
(f ∈ Hp). (8)

Some other multiplier theorems for the Walsh system and for Hardy spaces can be

found in Kitada [25], Onnewer and Quek [32], Simon [48, 49, 50] and Daly and Fridli

[14, 16, 15].

If the multiplier λ is piecewise linear then we can prove a stronger result ([69]).

Theorem 22. Assume that m ≥ −1 and |k| ≤ m + 1. If (7) is satisfied and

λj − 2λj+1 + λj+2 = 0 for all j = 2n + 1, . . . , 2n+1 − 2 (n ∈ N)

then (8) holds for all p0 < p < ∞.

For examples of multipliers we introduce

λ
(1)
j :=

j − 1

2n
if 2n + 1 ≤ j ≤ 2n+1 (n ∈ N)

and

λ
(2)
j :=

2n

j − 1
if 2n + 1 ≤ j ≤ 2n+1 (n ∈ N).

For more general multipliers we refer to [69]. It is easy to see that λ(1) satisfies the

conditions of Theorems 21 and 22 and, moreover, λ(2) fulfills the conditions in Theorem

21. These two multipliers are used in [69] to prove some inequalities for the Sunouchi

operators.

Remark. For the multi-dimensional versions of the theorems presented in this paper see

[58, 63, 68, 60, 66, 65, 70, 61]. To shorten the paper we do not give these extensions here.
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